Properties

Label 4032.2.j.c
Level 4032
Weight 2
Character orbit 4032.j
Analytic conductor 32.196
Analytic rank 0
Dimension 4
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4032.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(32.1956820950\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{8}^{2} q^{7} +O(q^{10})\) \( q -\zeta_{8}^{2} q^{7} + ( 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{11} + 6 \zeta_{8}^{2} q^{13} + ( -3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{23} -5 q^{25} + ( 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{29} -4 \zeta_{8}^{2} q^{31} -6 \zeta_{8}^{2} q^{37} + ( 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{41} + 6 q^{43} + ( -6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{47} - q^{49} + ( -9 \zeta_{8} + 9 \zeta_{8}^{3} ) q^{53} + ( -6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{59} -6 \zeta_{8}^{2} q^{61} -12 q^{67} + ( -3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{71} -2 q^{73} + ( 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{77} -10 \zeta_{8}^{2} q^{79} + ( -12 \zeta_{8} - 12 \zeta_{8}^{3} ) q^{83} + ( 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{89} + 6 q^{91} -10 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q - 20q^{25} + 24q^{43} - 4q^{49} - 48q^{67} - 8q^{73} + 24q^{91} - 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2591.1
−0.707107 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0 0 0 0 0 1.00000i 0 0 0
2591.2 0 0 0 0 0 1.00000i 0 0 0
2591.3 0 0 0 0 0 1.00000i 0 0 0
2591.4 0 0 0 0 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4032.2.j.c yes 4
3.b odd 2 1 inner 4032.2.j.c yes 4
4.b odd 2 1 4032.2.j.b 4
8.b even 2 1 4032.2.j.b 4
8.d odd 2 1 inner 4032.2.j.c yes 4
12.b even 2 1 4032.2.j.b 4
24.f even 2 1 inner 4032.2.j.c yes 4
24.h odd 2 1 4032.2.j.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4032.2.j.b 4 4.b odd 2 1
4032.2.j.b 4 8.b even 2 1
4032.2.j.b 4 12.b even 2 1
4032.2.j.b 4 24.h odd 2 1
4032.2.j.c yes 4 1.a even 1 1 trivial
4032.2.j.c yes 4 3.b odd 2 1 inner
4032.2.j.c yes 4 8.d odd 2 1 inner
4032.2.j.c yes 4 24.f even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4032, [\chi])\):

\( T_{5} \)
\( T_{19} \)
\( T_{43} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 + 5 T^{2} )^{4} \)
$7$ \( ( 1 + T^{2} )^{2} \)
$11$ \( ( 1 - 4 T^{2} + 121 T^{4} )^{2} \)
$13$ \( ( 1 - 4 T + 13 T^{2} )^{2}( 1 + 4 T + 13 T^{2} )^{2} \)
$17$ \( ( 1 - 17 T^{2} )^{4} \)
$19$ \( ( 1 + 19 T^{2} )^{4} \)
$23$ \( ( 1 + 28 T^{2} + 529 T^{4} )^{2} \)
$29$ \( ( 1 + 40 T^{2} + 841 T^{4} )^{2} \)
$31$ \( ( 1 - 46 T^{2} + 961 T^{4} )^{2} \)
$37$ \( ( 1 - 38 T^{2} + 1369 T^{4} )^{2} \)
$41$ \( ( 1 - 10 T^{2} + 1681 T^{4} )^{2} \)
$43$ \( ( 1 - 6 T + 43 T^{2} )^{4} \)
$47$ \( ( 1 + 22 T^{2} + 2209 T^{4} )^{2} \)
$53$ \( ( 1 - 56 T^{2} + 2809 T^{4} )^{2} \)
$59$ \( ( 1 - 46 T^{2} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 - 86 T^{2} + 3721 T^{4} )^{2} \)
$67$ \( ( 1 + 12 T + 67 T^{2} )^{4} \)
$71$ \( ( 1 + 124 T^{2} + 5041 T^{4} )^{2} \)
$73$ \( ( 1 + 2 T + 73 T^{2} )^{4} \)
$79$ \( ( 1 - 58 T^{2} + 6241 T^{4} )^{2} \)
$83$ \( ( 1 + 122 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 - 106 T^{2} + 7921 T^{4} )^{2} \)
$97$ \( ( 1 + 10 T + 97 T^{2} )^{4} \)
show more
show less