# Properties

 Label 4032.2.j.b Level 4032 Weight 2 Character orbit 4032.j Analytic conductor 32.196 Analytic rank 0 Dimension 4 CM no Inner twists 4

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4032 = 2^{6} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4032.j (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$32.1956820950$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{8})$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2\cdot 3^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{8}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{8}^{2} q^{7} +O(q^{10})$$ $$q -\zeta_{8}^{2} q^{7} + ( -3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{11} -6 \zeta_{8}^{2} q^{13} + ( -3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{23} -5 q^{25} + ( -3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{29} -4 \zeta_{8}^{2} q^{31} + 6 \zeta_{8}^{2} q^{37} + ( 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{41} -6 q^{43} + ( -6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{47} - q^{49} + ( 9 \zeta_{8} - 9 \zeta_{8}^{3} ) q^{53} + ( 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{59} + 6 \zeta_{8}^{2} q^{61} + 12 q^{67} + ( -3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{71} -2 q^{73} + ( -3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{77} -10 \zeta_{8}^{2} q^{79} + ( 12 \zeta_{8} + 12 \zeta_{8}^{3} ) q^{83} + ( 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{89} -6 q^{91} -10 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q - 20q^{25} - 24q^{43} - 4q^{49} + 48q^{67} - 8q^{73} - 24q^{91} - 40q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$577$$ $$1793$$ $$3781$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2591.1
 0.707107 + 0.707107i −0.707107 − 0.707107i −0.707107 + 0.707107i 0.707107 − 0.707107i
0 0 0 0 0 1.00000i 0 0 0
2591.2 0 0 0 0 0 1.00000i 0 0 0
2591.3 0 0 0 0 0 1.00000i 0 0 0
2591.4 0 0 0 0 0 1.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
24.f even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4032.2.j.b 4
3.b odd 2 1 inner 4032.2.j.b 4
4.b odd 2 1 4032.2.j.c yes 4
8.b even 2 1 4032.2.j.c yes 4
8.d odd 2 1 inner 4032.2.j.b 4
12.b even 2 1 4032.2.j.c yes 4
24.f even 2 1 inner 4032.2.j.b 4
24.h odd 2 1 4032.2.j.c yes 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4032.2.j.b 4 1.a even 1 1 trivial
4032.2.j.b 4 3.b odd 2 1 inner
4032.2.j.b 4 8.d odd 2 1 inner
4032.2.j.b 4 24.f even 2 1 inner
4032.2.j.c yes 4 4.b odd 2 1
4032.2.j.c yes 4 8.b even 2 1
4032.2.j.c yes 4 12.b even 2 1
4032.2.j.c yes 4 24.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4032, [\chi])$$:

 $$T_{5}$$ $$T_{19}$$ $$T_{43} + 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$( 1 + 5 T^{2} )^{4}$$
$7$ $$( 1 + T^{2} )^{2}$$
$11$ $$( 1 - 4 T^{2} + 121 T^{4} )^{2}$$
$13$ $$( 1 - 4 T + 13 T^{2} )^{2}( 1 + 4 T + 13 T^{2} )^{2}$$
$17$ $$( 1 - 17 T^{2} )^{4}$$
$19$ $$( 1 + 19 T^{2} )^{4}$$
$23$ $$( 1 + 28 T^{2} + 529 T^{4} )^{2}$$
$29$ $$( 1 + 40 T^{2} + 841 T^{4} )^{2}$$
$31$ $$( 1 - 46 T^{2} + 961 T^{4} )^{2}$$
$37$ $$( 1 - 38 T^{2} + 1369 T^{4} )^{2}$$
$41$ $$( 1 - 10 T^{2} + 1681 T^{4} )^{2}$$
$43$ $$( 1 + 6 T + 43 T^{2} )^{4}$$
$47$ $$( 1 + 22 T^{2} + 2209 T^{4} )^{2}$$
$53$ $$( 1 - 56 T^{2} + 2809 T^{4} )^{2}$$
$59$ $$( 1 - 46 T^{2} + 3481 T^{4} )^{2}$$
$61$ $$( 1 - 86 T^{2} + 3721 T^{4} )^{2}$$
$67$ $$( 1 - 12 T + 67 T^{2} )^{4}$$
$71$ $$( 1 + 124 T^{2} + 5041 T^{4} )^{2}$$
$73$ $$( 1 + 2 T + 73 T^{2} )^{4}$$
$79$ $$( 1 - 58 T^{2} + 6241 T^{4} )^{2}$$
$83$ $$( 1 + 122 T^{2} + 6889 T^{4} )^{2}$$
$89$ $$( 1 - 106 T^{2} + 7921 T^{4} )^{2}$$
$97$ $$( 1 + 10 T + 97 T^{2} )^{4}$$