Properties

Label 4018.2.a.n
Level 4018
Weight 2
Character orbit 4018.a
Self dual Yes
Analytic conductor 32.084
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4018 = 2 \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4018.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0838915322\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + 4q^{5} + q^{8} - 3q^{9} + O(q^{10}) \) \( q + q^{2} + q^{4} + 4q^{5} + q^{8} - 3q^{9} + 4q^{10} - 2q^{11} + 6q^{13} + q^{16} + 6q^{17} - 3q^{18} - 4q^{19} + 4q^{20} - 2q^{22} + 8q^{23} + 11q^{25} + 6q^{26} - 8q^{29} + q^{32} + 6q^{34} - 3q^{36} - 2q^{37} - 4q^{38} + 4q^{40} + q^{41} - 8q^{43} - 2q^{44} - 12q^{45} + 8q^{46} + 11q^{50} + 6q^{52} - 8q^{55} - 8q^{58} - 2q^{59} + 8q^{61} + q^{64} + 24q^{65} + 10q^{67} + 6q^{68} - 12q^{71} - 3q^{72} - 10q^{73} - 2q^{74} - 4q^{76} + 16q^{79} + 4q^{80} + 9q^{81} + q^{82} + 2q^{83} + 24q^{85} - 8q^{86} - 2q^{88} + 10q^{89} - 12q^{90} + 8q^{92} - 16q^{95} + 2q^{97} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 4.00000 0 0 1.00000 −3.00000 4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(41\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4018))\):

\( T_{3} \)
\( T_{5} - 4 \)
\( T_{11} + 2 \)