Properties

Label 4018.2.a
Level 4018
Weight 2
Character orbit a
Rep. character \(\chi_{4018}(1,\cdot)\)
Character field \(\Q\)
Dimension 138
Newforms 47
Sturm bound 1176
Trace bound 5

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 4018 = 2 \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4018.a (trivial)
Character field: \(\Q\)
Newforms: \( 47 \)
Sturm bound: \(1176\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4018))\).

Total New Old
Modular forms 604 138 466
Cusp forms 573 138 435
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(41\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(18\)
\(+\)\(+\)\(-\)\(-\)\(16\)
\(+\)\(-\)\(+\)\(-\)\(16\)
\(+\)\(-\)\(-\)\(+\)\(19\)
\(-\)\(+\)\(+\)\(-\)\(20\)
\(-\)\(+\)\(-\)\(+\)\(14\)
\(-\)\(-\)\(+\)\(+\)\(13\)
\(-\)\(-\)\(-\)\(-\)\(22\)
Plus space\(+\)\(64\)
Minus space\(-\)\(74\)

Trace form

\( 138q - 2q^{3} + 138q^{4} + 2q^{6} + 146q^{9} + O(q^{10}) \) \( 138q - 2q^{3} + 138q^{4} + 2q^{6} + 146q^{9} + 4q^{10} + 10q^{11} - 2q^{12} + 10q^{13} + 12q^{15} + 138q^{16} + 8q^{17} + 16q^{18} + 14q^{19} + 6q^{22} + 2q^{24} + 142q^{25} + 10q^{26} + 4q^{27} + 2q^{29} + 4q^{30} - 8q^{31} - 8q^{33} - 4q^{34} + 146q^{36} - 60q^{37} + 2q^{38} - 8q^{39} + 4q^{40} + 4q^{41} - 16q^{43} + 10q^{44} - 24q^{45} - 8q^{46} - 16q^{47} - 2q^{48} + 24q^{50} + 4q^{51} + 10q^{52} - 10q^{53} - 4q^{54} - 4q^{55} - 56q^{57} + 10q^{58} - 4q^{59} + 12q^{60} + 8q^{61} + 138q^{64} - 28q^{65} - 8q^{66} - 46q^{67} + 8q^{68} - 16q^{69} - 4q^{71} + 16q^{72} + 40q^{73} - 6q^{75} + 14q^{76} + 186q^{81} + 2q^{82} - 16q^{83} + 72q^{85} + 48q^{87} + 6q^{88} - 60q^{89} + 44q^{90} - 40q^{93} + 76q^{95} + 2q^{96} + 16q^{97} + 66q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4018))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 7 41
4018.2.a.a \(1\) \(32.084\) \(\Q\) None \(-1\) \(-3\) \(-1\) \(0\) \(+\) \(+\) \(+\) \(q-q^{2}-3q^{3}+q^{4}-q^{5}+3q^{6}-q^{8}+\cdots\)
4018.2.a.b \(1\) \(32.084\) \(\Q\) None \(-1\) \(-3\) \(1\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}-3q^{3}+q^{4}+q^{5}+3q^{6}-q^{8}+\cdots\)
4018.2.a.c \(1\) \(32.084\) \(\Q\) None \(-1\) \(-2\) \(-2\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}-2q^{3}+q^{4}-2q^{5}+2q^{6}-q^{8}+\cdots\)
4018.2.a.d \(1\) \(32.084\) \(\Q\) None \(-1\) \(-2\) \(2\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}-2q^{3}+q^{4}+2q^{5}+2q^{6}-q^{8}+\cdots\)
4018.2.a.e \(1\) \(32.084\) \(\Q\) None \(-1\) \(-1\) \(-1\) \(0\) \(+\) \(+\) \(+\) \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\)
4018.2.a.f \(1\) \(32.084\) \(\Q\) None \(-1\) \(-1\) \(3\) \(0\) \(+\) \(-\) \(+\) \(q-q^{2}-q^{3}+q^{4}+3q^{5}+q^{6}-q^{8}+\cdots\)
4018.2.a.g \(1\) \(32.084\) \(\Q\) None \(-1\) \(1\) \(-1\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\)
4018.2.a.h \(1\) \(32.084\) \(\Q\) None \(-1\) \(1\) \(1\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\)
4018.2.a.i \(1\) \(32.084\) \(\Q\) None \(-1\) \(2\) \(-4\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}+2q^{3}+q^{4}-4q^{5}-2q^{6}-q^{8}+\cdots\)
4018.2.a.j \(1\) \(32.084\) \(\Q\) None \(-1\) \(2\) \(2\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}+2q^{3}+q^{4}+2q^{5}-2q^{6}-q^{8}+\cdots\)
4018.2.a.k \(1\) \(32.084\) \(\Q\) None \(-1\) \(3\) \(1\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}+3q^{3}+q^{4}+q^{5}-3q^{6}-q^{8}+\cdots\)
4018.2.a.l \(1\) \(32.084\) \(\Q\) None \(1\) \(-2\) \(2\) \(0\) \(-\) \(-\) \(+\) \(q+q^{2}-2q^{3}+q^{4}+2q^{5}-2q^{6}+q^{8}+\cdots\)
4018.2.a.m \(1\) \(32.084\) \(\Q\) None \(1\) \(-1\) \(-3\) \(0\) \(-\) \(-\) \(+\) \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}+q^{8}+\cdots\)
4018.2.a.n \(1\) \(32.084\) \(\Q\) None \(1\) \(0\) \(4\) \(0\) \(-\) \(-\) \(-\) \(q+q^{2}+q^{4}+4q^{5}+q^{8}-3q^{9}+4q^{10}+\cdots\)
4018.2.a.o \(1\) \(32.084\) \(\Q\) None \(1\) \(1\) \(-1\) \(0\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\)
4018.2.a.p \(1\) \(32.084\) \(\Q\) None \(1\) \(1\) \(1\) \(0\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\)
4018.2.a.q \(1\) \(32.084\) \(\Q\) None \(1\) \(1\) \(3\) \(0\) \(-\) \(-\) \(-\) \(q+q^{2}+q^{3}+q^{4}+3q^{5}+q^{6}+q^{8}+\cdots\)
4018.2.a.r \(1\) \(32.084\) \(\Q\) None \(1\) \(2\) \(-2\) \(0\) \(-\) \(+\) \(-\) \(q+q^{2}+2q^{3}+q^{4}-2q^{5}+2q^{6}+q^{8}+\cdots\)
4018.2.a.s \(1\) \(32.084\) \(\Q\) None \(1\) \(3\) \(1\) \(0\) \(-\) \(-\) \(-\) \(q+q^{2}+3q^{3}+q^{4}+q^{5}+3q^{6}+q^{8}+\cdots\)
4018.2.a.t \(2\) \(32.084\) \(\Q(\sqrt{5}) \) None \(-2\) \(-2\) \(0\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}-q^{3}+q^{4}+\beta q^{5}+q^{6}-q^{8}+\cdots\)
4018.2.a.u \(2\) \(32.084\) \(\Q(\sqrt{33}) \) None \(-2\) \(-1\) \(1\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}-\beta q^{3}+q^{4}+\beta q^{5}+\beta q^{6}-q^{8}+\cdots\)
4018.2.a.v \(2\) \(32.084\) \(\Q(\sqrt{33}) \) None \(-2\) \(1\) \(-1\) \(0\) \(+\) \(+\) \(+\) \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{5}-\beta q^{6}-q^{8}+\cdots\)
4018.2.a.w \(2\) \(32.084\) \(\Q(\sqrt{5}) \) None \(-2\) \(2\) \(0\) \(0\) \(+\) \(-\) \(+\) \(q-q^{2}+q^{3}+q^{4}+\beta q^{5}-q^{6}-q^{8}+\cdots\)
4018.2.a.x \(2\) \(32.084\) \(\Q(\sqrt{3}) \) None \(2\) \(-4\) \(-2\) \(0\) \(-\) \(-\) \(+\) \(q+q^{2}-2q^{3}+q^{4}+(-1-\beta )q^{5}-2q^{6}+\cdots\)
4018.2.a.y \(2\) \(32.084\) \(\Q(\sqrt{2}) \) None \(2\) \(-2\) \(-2\) \(0\) \(-\) \(+\) \(-\) \(q+q^{2}+(-1+\beta )q^{3}+q^{4}+(-1+2\beta )q^{5}+\cdots\)
4018.2.a.z \(2\) \(32.084\) \(\Q(\sqrt{2}) \) None \(2\) \(-2\) \(2\) \(0\) \(-\) \(+\) \(-\) \(q+q^{2}+(-1+\beta )q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
4018.2.a.ba \(2\) \(32.084\) \(\Q(\sqrt{2}) \) None \(2\) \(0\) \(0\) \(0\) \(-\) \(-\) \(-\) \(q+q^{2}+\beta q^{3}+q^{4}-2\beta q^{5}+\beta q^{6}+\cdots\)
4018.2.a.bb \(2\) \(32.084\) \(\Q(\sqrt{2}) \) None \(2\) \(2\) \(-2\) \(0\) \(-\) \(+\) \(+\) \(q+q^{2}+(1+\beta )q^{3}+q^{4}-q^{5}+(1+\beta )q^{6}+\cdots\)
4018.2.a.bc \(2\) \(32.084\) \(\Q(\sqrt{2}) \) None \(2\) \(2\) \(2\) \(0\) \(-\) \(+\) \(+\) \(q+q^{2}+(1+\beta )q^{3}+q^{4}+(1+2\beta )q^{5}+\cdots\)
4018.2.a.bd \(3\) \(32.084\) 3.3.404.1 None \(-3\) \(0\) \(-2\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}+(\beta _{1}-\beta _{2})q^{3}+q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)
4018.2.a.be \(3\) \(32.084\) 3.3.404.1 None \(-3\) \(0\) \(2\) \(0\) \(+\) \(-\) \(+\) \(q-q^{2}+(-\beta _{1}+\beta _{2})q^{3}+q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
4018.2.a.bf \(3\) \(32.084\) 3.3.321.1 None \(3\) \(-3\) \(4\) \(0\) \(-\) \(+\) \(-\) \(q+q^{2}-q^{3}+q^{4}+(1-\beta _{2})q^{5}-q^{6}+\cdots\)
4018.2.a.bg \(3\) \(32.084\) 3.3.568.1 None \(3\) \(-1\) \(-1\) \(0\) \(-\) \(-\) \(-\) \(q+q^{2}+\beta _{2}q^{3}+q^{4}-\beta _{1}q^{5}+\beta _{2}q^{6}+\cdots\)
4018.2.a.bh \(3\) \(32.084\) 3.3.321.1 None \(3\) \(3\) \(-4\) \(0\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}+(-1+\beta _{2})q^{5}+q^{6}+\cdots\)
4018.2.a.bi \(4\) \(32.084\) 4.4.113481.1 None \(-4\) \(-4\) \(-3\) \(0\) \(+\) \(-\) \(-\) \(q-q^{2}-q^{3}+q^{4}+(-1+\beta _{3})q^{5}+q^{6}+\cdots\)
4018.2.a.bj \(4\) \(32.084\) 4.4.11348.1 None \(-4\) \(1\) \(-3\) \(0\) \(+\) \(-\) \(+\) \(q-q^{2}+\beta _{2}q^{3}+q^{4}+(-1+\beta _{2}-\beta _{3})q^{5}+\cdots\)
4018.2.a.bk \(4\) \(32.084\) 4.4.113481.1 None \(-4\) \(4\) \(3\) \(0\) \(+\) \(+\) \(+\) \(q-q^{2}+q^{3}+q^{4}+(1-\beta _{3})q^{5}-q^{6}+\cdots\)
4018.2.a.bl \(4\) \(32.084\) 4.4.37108.1 None \(4\) \(-3\) \(-3\) \(0\) \(-\) \(-\) \(+\) \(q+q^{2}+(-1-\beta _{2})q^{3}+q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)
4018.2.a.bm \(4\) \(32.084\) 4.4.37108.1 None \(4\) \(3\) \(3\) \(0\) \(-\) \(-\) \(-\) \(q+q^{2}+(1+\beta _{2})q^{3}+q^{4}+(1-\beta _{1})q^{5}+\cdots\)
4018.2.a.bn \(6\) \(32.084\) 6.6.52046292.1 None \(-6\) \(-1\) \(0\) \(0\) \(+\) \(-\) \(+\) \(q-q^{2}+\beta _{3}q^{3}+q^{4}+\beta _{4}q^{5}-\beta _{3}q^{6}+\cdots\)
4018.2.a.bo \(6\) \(32.084\) 6.6.52046292.1 None \(-6\) \(1\) \(0\) \(0\) \(+\) \(+\) \(-\) \(q-q^{2}-\beta _{3}q^{3}+q^{4}-\beta _{4}q^{5}+\beta _{3}q^{6}+\cdots\)
4018.2.a.bp \(6\) \(32.084\) 6.6.5163008.1 None \(6\) \(-4\) \(-12\) \(0\) \(-\) \(+\) \(-\) \(q+q^{2}+(-1-\beta _{2}-\beta _{3}+\beta _{4})q^{3}+q^{4}+\cdots\)
4018.2.a.bq \(6\) \(32.084\) 6.6.5163008.1 None \(6\) \(4\) \(12\) \(0\) \(-\) \(+\) \(+\) \(q+q^{2}+(1+\beta _{2}+\beta _{3}-\beta _{4})q^{3}+q^{4}+\cdots\)
4018.2.a.br \(10\) \(32.084\) \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(-10\) \(-4\) \(-4\) \(0\) \(+\) \(+\) \(+\) \(q-q^{2}+\beta _{3}q^{3}+q^{4}-\beta _{2}q^{5}-\beta _{3}q^{6}+\cdots\)
4018.2.a.bs \(10\) \(32.084\) \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(-10\) \(4\) \(4\) \(0\) \(+\) \(+\) \(-\) \(q-q^{2}-\beta _{3}q^{3}+q^{4}+\beta _{2}q^{5}+\beta _{3}q^{6}+\cdots\)
4018.2.a.bt \(10\) \(32.084\) \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(10\) \(-1\) \(2\) \(0\) \(-\) \(+\) \(+\) \(q+q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{4}q^{5}-\beta _{1}q^{6}+\cdots\)
4018.2.a.bu \(10\) \(32.084\) \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(10\) \(1\) \(-2\) \(0\) \(-\) \(-\) \(-\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{4}q^{5}+\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4018))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4018)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(41))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(82))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(287))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(574))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2009))\)\(^{\oplus 2}\)