Properties

Label 4014.2.a.v.1.5
Level $4014$
Weight $2$
Character 4014.1
Self dual yes
Analytic conductor $32.052$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4014,2,Mod(1,4014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4014, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4014.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4014 = 2 \cdot 3^{2} \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4014.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-7,0,7,-6,0,3,-7,0,6,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.0519513713\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 18x^{5} - 8x^{4} + 51x^{3} + 47x^{2} - 2x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1338)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(4.01465\) of defining polynomial
Character \(\chi\) \(=\) 4014.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +0.603045 q^{5} +4.55050 q^{7} -1.00000 q^{8} -0.603045 q^{10} -1.88517 q^{11} +0.332889 q^{13} -4.55050 q^{14} +1.00000 q^{16} +1.68398 q^{17} +2.93007 q^{19} +0.603045 q^{20} +1.88517 q^{22} +3.43212 q^{23} -4.63634 q^{25} -0.332889 q^{26} +4.55050 q^{28} +1.00355 q^{29} +4.33956 q^{31} -1.00000 q^{32} -1.68398 q^{34} +2.74416 q^{35} -4.29279 q^{37} -2.93007 q^{38} -0.603045 q^{40} -3.48120 q^{41} +12.6586 q^{43} -1.88517 q^{44} -3.43212 q^{46} -10.1829 q^{47} +13.7071 q^{49} +4.63634 q^{50} +0.332889 q^{52} -3.19702 q^{53} -1.13684 q^{55} -4.55050 q^{56} -1.00355 q^{58} +11.9123 q^{59} +5.00355 q^{61} -4.33956 q^{62} +1.00000 q^{64} +0.200747 q^{65} -0.731176 q^{67} +1.68398 q^{68} -2.74416 q^{70} -2.34043 q^{71} +11.5553 q^{73} +4.29279 q^{74} +2.93007 q^{76} -8.57845 q^{77} -6.48581 q^{79} +0.603045 q^{80} +3.48120 q^{82} +11.6246 q^{83} +1.01551 q^{85} -12.6586 q^{86} +1.88517 q^{88} +8.85405 q^{89} +1.51481 q^{91} +3.43212 q^{92} +10.1829 q^{94} +1.76696 q^{95} +7.27938 q^{97} -13.7071 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} + 7 q^{4} - 6 q^{5} + 3 q^{7} - 7 q^{8} + 6 q^{10} + q^{11} + 8 q^{13} - 3 q^{14} + 7 q^{16} - 16 q^{17} + 2 q^{19} - 6 q^{20} - q^{22} - 8 q^{23} + 19 q^{25} - 8 q^{26} + 3 q^{28} - 4 q^{29}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.603045 0.269690 0.134845 0.990867i \(-0.456946\pi\)
0.134845 + 0.990867i \(0.456946\pi\)
\(6\) 0 0
\(7\) 4.55050 1.71993 0.859964 0.510354i \(-0.170486\pi\)
0.859964 + 0.510354i \(0.170486\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.603045 −0.190700
\(11\) −1.88517 −0.568399 −0.284199 0.958765i \(-0.591728\pi\)
−0.284199 + 0.958765i \(0.591728\pi\)
\(12\) 0 0
\(13\) 0.332889 0.0923269 0.0461635 0.998934i \(-0.485300\pi\)
0.0461635 + 0.998934i \(0.485300\pi\)
\(14\) −4.55050 −1.21617
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.68398 0.408424 0.204212 0.978927i \(-0.434537\pi\)
0.204212 + 0.978927i \(0.434537\pi\)
\(18\) 0 0
\(19\) 2.93007 0.672204 0.336102 0.941826i \(-0.390891\pi\)
0.336102 + 0.941826i \(0.390891\pi\)
\(20\) 0.603045 0.134845
\(21\) 0 0
\(22\) 1.88517 0.401919
\(23\) 3.43212 0.715647 0.357824 0.933789i \(-0.383519\pi\)
0.357824 + 0.933789i \(0.383519\pi\)
\(24\) 0 0
\(25\) −4.63634 −0.927267
\(26\) −0.332889 −0.0652850
\(27\) 0 0
\(28\) 4.55050 0.859964
\(29\) 1.00355 0.186354 0.0931769 0.995650i \(-0.470298\pi\)
0.0931769 + 0.995650i \(0.470298\pi\)
\(30\) 0 0
\(31\) 4.33956 0.779409 0.389704 0.920940i \(-0.372577\pi\)
0.389704 + 0.920940i \(0.372577\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.68398 −0.288800
\(35\) 2.74416 0.463847
\(36\) 0 0
\(37\) −4.29279 −0.705730 −0.352865 0.935674i \(-0.614792\pi\)
−0.352865 + 0.935674i \(0.614792\pi\)
\(38\) −2.93007 −0.475320
\(39\) 0 0
\(40\) −0.603045 −0.0953498
\(41\) −3.48120 −0.543672 −0.271836 0.962344i \(-0.587631\pi\)
−0.271836 + 0.962344i \(0.587631\pi\)
\(42\) 0 0
\(43\) 12.6586 1.93042 0.965211 0.261471i \(-0.0842075\pi\)
0.965211 + 0.261471i \(0.0842075\pi\)
\(44\) −1.88517 −0.284199
\(45\) 0 0
\(46\) −3.43212 −0.506039
\(47\) −10.1829 −1.48532 −0.742661 0.669668i \(-0.766437\pi\)
−0.742661 + 0.669668i \(0.766437\pi\)
\(48\) 0 0
\(49\) 13.7071 1.95815
\(50\) 4.63634 0.655677
\(51\) 0 0
\(52\) 0.332889 0.0461635
\(53\) −3.19702 −0.439144 −0.219572 0.975596i \(-0.570466\pi\)
−0.219572 + 0.975596i \(0.570466\pi\)
\(54\) 0 0
\(55\) −1.13684 −0.153291
\(56\) −4.55050 −0.608087
\(57\) 0 0
\(58\) −1.00355 −0.131772
\(59\) 11.9123 1.55084 0.775422 0.631444i \(-0.217537\pi\)
0.775422 + 0.631444i \(0.217537\pi\)
\(60\) 0 0
\(61\) 5.00355 0.640638 0.320319 0.947310i \(-0.396210\pi\)
0.320319 + 0.947310i \(0.396210\pi\)
\(62\) −4.33956 −0.551125
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.200747 0.0248996
\(66\) 0 0
\(67\) −0.731176 −0.0893274 −0.0446637 0.999002i \(-0.514222\pi\)
−0.0446637 + 0.999002i \(0.514222\pi\)
\(68\) 1.68398 0.204212
\(69\) 0 0
\(70\) −2.74416 −0.327990
\(71\) −2.34043 −0.277757 −0.138879 0.990309i \(-0.544350\pi\)
−0.138879 + 0.990309i \(0.544350\pi\)
\(72\) 0 0
\(73\) 11.5553 1.35245 0.676223 0.736697i \(-0.263616\pi\)
0.676223 + 0.736697i \(0.263616\pi\)
\(74\) 4.29279 0.499026
\(75\) 0 0
\(76\) 2.93007 0.336102
\(77\) −8.57845 −0.977605
\(78\) 0 0
\(79\) −6.48581 −0.729711 −0.364856 0.931064i \(-0.618882\pi\)
−0.364856 + 0.931064i \(0.618882\pi\)
\(80\) 0.603045 0.0674225
\(81\) 0 0
\(82\) 3.48120 0.384434
\(83\) 11.6246 1.27597 0.637983 0.770050i \(-0.279769\pi\)
0.637983 + 0.770050i \(0.279769\pi\)
\(84\) 0 0
\(85\) 1.01551 0.110148
\(86\) −12.6586 −1.36501
\(87\) 0 0
\(88\) 1.88517 0.200959
\(89\) 8.85405 0.938528 0.469264 0.883058i \(-0.344519\pi\)
0.469264 + 0.883058i \(0.344519\pi\)
\(90\) 0 0
\(91\) 1.51481 0.158796
\(92\) 3.43212 0.357824
\(93\) 0 0
\(94\) 10.1829 1.05028
\(95\) 1.76696 0.181287
\(96\) 0 0
\(97\) 7.27938 0.739109 0.369555 0.929209i \(-0.379510\pi\)
0.369555 + 0.929209i \(0.379510\pi\)
\(98\) −13.7071 −1.38462
\(99\) 0 0
\(100\) −4.63634 −0.463634
\(101\) −3.91896 −0.389952 −0.194976 0.980808i \(-0.562463\pi\)
−0.194976 + 0.980808i \(0.562463\pi\)
\(102\) 0 0
\(103\) −3.75915 −0.370400 −0.185200 0.982701i \(-0.559293\pi\)
−0.185200 + 0.982701i \(0.559293\pi\)
\(104\) −0.332889 −0.0326425
\(105\) 0 0
\(106\) 3.19702 0.310522
\(107\) 13.6322 1.31788 0.658939 0.752196i \(-0.271005\pi\)
0.658939 + 0.752196i \(0.271005\pi\)
\(108\) 0 0
\(109\) −12.8655 −1.23229 −0.616144 0.787633i \(-0.711306\pi\)
−0.616144 + 0.787633i \(0.711306\pi\)
\(110\) 1.13684 0.108393
\(111\) 0 0
\(112\) 4.55050 0.429982
\(113\) −2.44489 −0.229995 −0.114998 0.993366i \(-0.536686\pi\)
−0.114998 + 0.993366i \(0.536686\pi\)
\(114\) 0 0
\(115\) 2.06972 0.193003
\(116\) 1.00355 0.0931769
\(117\) 0 0
\(118\) −11.9123 −1.09661
\(119\) 7.66294 0.702461
\(120\) 0 0
\(121\) −7.44615 −0.676923
\(122\) −5.00355 −0.453000
\(123\) 0 0
\(124\) 4.33956 0.389704
\(125\) −5.81115 −0.519765
\(126\) 0 0
\(127\) 10.4761 0.929602 0.464801 0.885415i \(-0.346126\pi\)
0.464801 + 0.885415i \(0.346126\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −0.200747 −0.0176067
\(131\) −13.8235 −1.20776 −0.603881 0.797075i \(-0.706380\pi\)
−0.603881 + 0.797075i \(0.706380\pi\)
\(132\) 0 0
\(133\) 13.3333 1.15614
\(134\) 0.731176 0.0631640
\(135\) 0 0
\(136\) −1.68398 −0.144400
\(137\) −9.36895 −0.800443 −0.400222 0.916418i \(-0.631067\pi\)
−0.400222 + 0.916418i \(0.631067\pi\)
\(138\) 0 0
\(139\) −0.00638381 −0.000541467 0 −0.000270734 1.00000i \(-0.500086\pi\)
−0.000270734 1.00000i \(0.500086\pi\)
\(140\) 2.74416 0.231924
\(141\) 0 0
\(142\) 2.34043 0.196404
\(143\) −0.627552 −0.0524785
\(144\) 0 0
\(145\) 0.605183 0.0502577
\(146\) −11.5553 −0.956324
\(147\) 0 0
\(148\) −4.29279 −0.352865
\(149\) −5.33903 −0.437391 −0.218695 0.975793i \(-0.570180\pi\)
−0.218695 + 0.975793i \(0.570180\pi\)
\(150\) 0 0
\(151\) −6.50484 −0.529357 −0.264678 0.964337i \(-0.585266\pi\)
−0.264678 + 0.964337i \(0.585266\pi\)
\(152\) −2.93007 −0.237660
\(153\) 0 0
\(154\) 8.57845 0.691271
\(155\) 2.61695 0.210199
\(156\) 0 0
\(157\) −10.2900 −0.821235 −0.410618 0.911808i \(-0.634687\pi\)
−0.410618 + 0.911808i \(0.634687\pi\)
\(158\) 6.48581 0.515984
\(159\) 0 0
\(160\) −0.603045 −0.0476749
\(161\) 15.6179 1.23086
\(162\) 0 0
\(163\) −22.8100 −1.78661 −0.893307 0.449447i \(-0.851621\pi\)
−0.893307 + 0.449447i \(0.851621\pi\)
\(164\) −3.48120 −0.271836
\(165\) 0 0
\(166\) −11.6246 −0.902245
\(167\) 7.09832 0.549285 0.274642 0.961546i \(-0.411441\pi\)
0.274642 + 0.961546i \(0.411441\pi\)
\(168\) 0 0
\(169\) −12.8892 −0.991476
\(170\) −1.01551 −0.0778864
\(171\) 0 0
\(172\) 12.6586 0.965211
\(173\) 17.2397 1.31071 0.655356 0.755320i \(-0.272519\pi\)
0.655356 + 0.755320i \(0.272519\pi\)
\(174\) 0 0
\(175\) −21.0977 −1.59483
\(176\) −1.88517 −0.142100
\(177\) 0 0
\(178\) −8.85405 −0.663639
\(179\) 8.87461 0.663319 0.331660 0.943399i \(-0.392391\pi\)
0.331660 + 0.943399i \(0.392391\pi\)
\(180\) 0 0
\(181\) −2.91525 −0.216689 −0.108344 0.994113i \(-0.534555\pi\)
−0.108344 + 0.994113i \(0.534555\pi\)
\(182\) −1.51481 −0.112286
\(183\) 0 0
\(184\) −3.43212 −0.253019
\(185\) −2.58874 −0.190328
\(186\) 0 0
\(187\) −3.17457 −0.232148
\(188\) −10.1829 −0.742661
\(189\) 0 0
\(190\) −1.76696 −0.128189
\(191\) 3.79232 0.274403 0.137201 0.990543i \(-0.456189\pi\)
0.137201 + 0.990543i \(0.456189\pi\)
\(192\) 0 0
\(193\) −0.652041 −0.0469349 −0.0234675 0.999725i \(-0.507471\pi\)
−0.0234675 + 0.999725i \(0.507471\pi\)
\(194\) −7.27938 −0.522629
\(195\) 0 0
\(196\) 13.7071 0.979077
\(197\) 13.0157 0.927327 0.463664 0.886011i \(-0.346535\pi\)
0.463664 + 0.886011i \(0.346535\pi\)
\(198\) 0 0
\(199\) −2.95663 −0.209590 −0.104795 0.994494i \(-0.533419\pi\)
−0.104795 + 0.994494i \(0.533419\pi\)
\(200\) 4.63634 0.327839
\(201\) 0 0
\(202\) 3.91896 0.275737
\(203\) 4.56664 0.320515
\(204\) 0 0
\(205\) −2.09932 −0.146623
\(206\) 3.75915 0.261912
\(207\) 0 0
\(208\) 0.332889 0.0230817
\(209\) −5.52367 −0.382080
\(210\) 0 0
\(211\) 8.43942 0.580994 0.290497 0.956876i \(-0.406179\pi\)
0.290497 + 0.956876i \(0.406179\pi\)
\(212\) −3.19702 −0.219572
\(213\) 0 0
\(214\) −13.6322 −0.931881
\(215\) 7.63372 0.520616
\(216\) 0 0
\(217\) 19.7472 1.34053
\(218\) 12.8655 0.871360
\(219\) 0 0
\(220\) −1.13684 −0.0766457
\(221\) 0.560578 0.0377086
\(222\) 0 0
\(223\) −1.00000 −0.0669650
\(224\) −4.55050 −0.304043
\(225\) 0 0
\(226\) 2.44489 0.162631
\(227\) −16.7885 −1.11429 −0.557147 0.830414i \(-0.688104\pi\)
−0.557147 + 0.830414i \(0.688104\pi\)
\(228\) 0 0
\(229\) 19.3526 1.27886 0.639428 0.768851i \(-0.279171\pi\)
0.639428 + 0.768851i \(0.279171\pi\)
\(230\) −2.06972 −0.136474
\(231\) 0 0
\(232\) −1.00355 −0.0658860
\(233\) −16.7988 −1.10052 −0.550262 0.834992i \(-0.685472\pi\)
−0.550262 + 0.834992i \(0.685472\pi\)
\(234\) 0 0
\(235\) −6.14072 −0.400576
\(236\) 11.9123 0.775422
\(237\) 0 0
\(238\) −7.66294 −0.496715
\(239\) 9.59882 0.620896 0.310448 0.950590i \(-0.399521\pi\)
0.310448 + 0.950590i \(0.399521\pi\)
\(240\) 0 0
\(241\) 26.8255 1.72798 0.863990 0.503508i \(-0.167958\pi\)
0.863990 + 0.503508i \(0.167958\pi\)
\(242\) 7.44615 0.478657
\(243\) 0 0
\(244\) 5.00355 0.320319
\(245\) 8.26599 0.528094
\(246\) 0 0
\(247\) 0.975390 0.0620626
\(248\) −4.33956 −0.275563
\(249\) 0 0
\(250\) 5.81115 0.367529
\(251\) 8.58922 0.542147 0.271073 0.962559i \(-0.412621\pi\)
0.271073 + 0.962559i \(0.412621\pi\)
\(252\) 0 0
\(253\) −6.47012 −0.406773
\(254\) −10.4761 −0.657328
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.4827 0.903408 0.451704 0.892168i \(-0.350816\pi\)
0.451704 + 0.892168i \(0.350816\pi\)
\(258\) 0 0
\(259\) −19.5343 −1.21380
\(260\) 0.200747 0.0124498
\(261\) 0 0
\(262\) 13.8235 0.854016
\(263\) 15.0239 0.926413 0.463206 0.886250i \(-0.346699\pi\)
0.463206 + 0.886250i \(0.346699\pi\)
\(264\) 0 0
\(265\) −1.92795 −0.118433
\(266\) −13.3333 −0.817517
\(267\) 0 0
\(268\) −0.731176 −0.0446637
\(269\) 15.5993 0.951103 0.475552 0.879688i \(-0.342248\pi\)
0.475552 + 0.879688i \(0.342248\pi\)
\(270\) 0 0
\(271\) 10.4110 0.632423 0.316211 0.948689i \(-0.397589\pi\)
0.316211 + 0.948689i \(0.397589\pi\)
\(272\) 1.68398 0.102106
\(273\) 0 0
\(274\) 9.36895 0.565999
\(275\) 8.74026 0.527058
\(276\) 0 0
\(277\) −5.58823 −0.335764 −0.167882 0.985807i \(-0.553693\pi\)
−0.167882 + 0.985807i \(0.553693\pi\)
\(278\) 0.00638381 0.000382875 0
\(279\) 0 0
\(280\) −2.74416 −0.163995
\(281\) 11.0448 0.658879 0.329439 0.944177i \(-0.393140\pi\)
0.329439 + 0.944177i \(0.393140\pi\)
\(282\) 0 0
\(283\) −10.9022 −0.648071 −0.324035 0.946045i \(-0.605040\pi\)
−0.324035 + 0.946045i \(0.605040\pi\)
\(284\) −2.34043 −0.138879
\(285\) 0 0
\(286\) 0.627552 0.0371079
\(287\) −15.8412 −0.935077
\(288\) 0 0
\(289\) −14.1642 −0.833190
\(290\) −0.605183 −0.0355376
\(291\) 0 0
\(292\) 11.5553 0.676223
\(293\) 6.25282 0.365294 0.182647 0.983179i \(-0.441533\pi\)
0.182647 + 0.983179i \(0.441533\pi\)
\(294\) 0 0
\(295\) 7.18363 0.418247
\(296\) 4.29279 0.249513
\(297\) 0 0
\(298\) 5.33903 0.309282
\(299\) 1.14252 0.0660735
\(300\) 0 0
\(301\) 57.6031 3.32019
\(302\) 6.50484 0.374312
\(303\) 0 0
\(304\) 2.93007 0.168051
\(305\) 3.01736 0.172774
\(306\) 0 0
\(307\) −9.92547 −0.566476 −0.283238 0.959050i \(-0.591409\pi\)
−0.283238 + 0.959050i \(0.591409\pi\)
\(308\) −8.57845 −0.488803
\(309\) 0 0
\(310\) −2.61695 −0.148633
\(311\) 3.49848 0.198381 0.0991903 0.995068i \(-0.468375\pi\)
0.0991903 + 0.995068i \(0.468375\pi\)
\(312\) 0 0
\(313\) 11.6644 0.659310 0.329655 0.944101i \(-0.393068\pi\)
0.329655 + 0.944101i \(0.393068\pi\)
\(314\) 10.2900 0.580701
\(315\) 0 0
\(316\) −6.48581 −0.364856
\(317\) 17.6419 0.990870 0.495435 0.868645i \(-0.335009\pi\)
0.495435 + 0.868645i \(0.335009\pi\)
\(318\) 0 0
\(319\) −1.89185 −0.105923
\(320\) 0.603045 0.0337112
\(321\) 0 0
\(322\) −15.6179 −0.870351
\(323\) 4.93417 0.274545
\(324\) 0 0
\(325\) −1.54339 −0.0856117
\(326\) 22.8100 1.26333
\(327\) 0 0
\(328\) 3.48120 0.192217
\(329\) −46.3371 −2.55465
\(330\) 0 0
\(331\) −9.07997 −0.499080 −0.249540 0.968364i \(-0.580279\pi\)
−0.249540 + 0.968364i \(0.580279\pi\)
\(332\) 11.6246 0.637983
\(333\) 0 0
\(334\) −7.09832 −0.388403
\(335\) −0.440932 −0.0240907
\(336\) 0 0
\(337\) 27.6737 1.50748 0.753741 0.657172i \(-0.228247\pi\)
0.753741 + 0.657172i \(0.228247\pi\)
\(338\) 12.8892 0.701079
\(339\) 0 0
\(340\) 1.01551 0.0550740
\(341\) −8.18080 −0.443015
\(342\) 0 0
\(343\) 30.5206 1.64796
\(344\) −12.6586 −0.682507
\(345\) 0 0
\(346\) −17.2397 −0.926813
\(347\) 9.40234 0.504744 0.252372 0.967630i \(-0.418789\pi\)
0.252372 + 0.967630i \(0.418789\pi\)
\(348\) 0 0
\(349\) −9.45111 −0.505906 −0.252953 0.967479i \(-0.581402\pi\)
−0.252953 + 0.967479i \(0.581402\pi\)
\(350\) 21.0977 1.12772
\(351\) 0 0
\(352\) 1.88517 0.100480
\(353\) 16.6377 0.885537 0.442769 0.896636i \(-0.353996\pi\)
0.442769 + 0.896636i \(0.353996\pi\)
\(354\) 0 0
\(355\) −1.41138 −0.0749084
\(356\) 8.85405 0.469264
\(357\) 0 0
\(358\) −8.87461 −0.469038
\(359\) 30.6733 1.61888 0.809438 0.587206i \(-0.199772\pi\)
0.809438 + 0.587206i \(0.199772\pi\)
\(360\) 0 0
\(361\) −10.4147 −0.548141
\(362\) 2.91525 0.153222
\(363\) 0 0
\(364\) 1.51481 0.0793978
\(365\) 6.96837 0.364741
\(366\) 0 0
\(367\) 19.8301 1.03512 0.517561 0.855647i \(-0.326840\pi\)
0.517561 + 0.855647i \(0.326840\pi\)
\(368\) 3.43212 0.178912
\(369\) 0 0
\(370\) 2.58874 0.134582
\(371\) −14.5480 −0.755297
\(372\) 0 0
\(373\) 27.1464 1.40558 0.702792 0.711395i \(-0.251936\pi\)
0.702792 + 0.711395i \(0.251936\pi\)
\(374\) 3.17457 0.164153
\(375\) 0 0
\(376\) 10.1829 0.525141
\(377\) 0.334070 0.0172055
\(378\) 0 0
\(379\) −33.9956 −1.74623 −0.873117 0.487510i \(-0.837905\pi\)
−0.873117 + 0.487510i \(0.837905\pi\)
\(380\) 1.76696 0.0906434
\(381\) 0 0
\(382\) −3.79232 −0.194032
\(383\) 12.7407 0.651019 0.325509 0.945539i \(-0.394464\pi\)
0.325509 + 0.945539i \(0.394464\pi\)
\(384\) 0 0
\(385\) −5.17319 −0.263650
\(386\) 0.652041 0.0331880
\(387\) 0 0
\(388\) 7.27938 0.369555
\(389\) −16.0790 −0.815237 −0.407619 0.913152i \(-0.633641\pi\)
−0.407619 + 0.913152i \(0.633641\pi\)
\(390\) 0 0
\(391\) 5.77961 0.292288
\(392\) −13.7071 −0.692312
\(393\) 0 0
\(394\) −13.0157 −0.655719
\(395\) −3.91124 −0.196796
\(396\) 0 0
\(397\) −30.5096 −1.53123 −0.765616 0.643298i \(-0.777566\pi\)
−0.765616 + 0.643298i \(0.777566\pi\)
\(398\) 2.95663 0.148203
\(399\) 0 0
\(400\) −4.63634 −0.231817
\(401\) −26.5433 −1.32551 −0.662755 0.748836i \(-0.730613\pi\)
−0.662755 + 0.748836i \(0.730613\pi\)
\(402\) 0 0
\(403\) 1.44459 0.0719604
\(404\) −3.91896 −0.194976
\(405\) 0 0
\(406\) −4.56664 −0.226638
\(407\) 8.09261 0.401136
\(408\) 0 0
\(409\) 40.2002 1.98777 0.993887 0.110406i \(-0.0352150\pi\)
0.993887 + 0.110406i \(0.0352150\pi\)
\(410\) 2.09932 0.103678
\(411\) 0 0
\(412\) −3.75915 −0.185200
\(413\) 54.2068 2.66734
\(414\) 0 0
\(415\) 7.01016 0.344115
\(416\) −0.332889 −0.0163212
\(417\) 0 0
\(418\) 5.52367 0.270171
\(419\) −0.648474 −0.0316800 −0.0158400 0.999875i \(-0.505042\pi\)
−0.0158400 + 0.999875i \(0.505042\pi\)
\(420\) 0 0
\(421\) −21.3460 −1.04034 −0.520171 0.854062i \(-0.674132\pi\)
−0.520171 + 0.854062i \(0.674132\pi\)
\(422\) −8.43942 −0.410825
\(423\) 0 0
\(424\) 3.19702 0.155261
\(425\) −7.80748 −0.378719
\(426\) 0 0
\(427\) 22.7686 1.10185
\(428\) 13.6322 0.658939
\(429\) 0 0
\(430\) −7.63372 −0.368131
\(431\) 17.4639 0.841207 0.420603 0.907245i \(-0.361818\pi\)
0.420603 + 0.907245i \(0.361818\pi\)
\(432\) 0 0
\(433\) −8.87301 −0.426410 −0.213205 0.977008i \(-0.568390\pi\)
−0.213205 + 0.977008i \(0.568390\pi\)
\(434\) −19.7472 −0.947896
\(435\) 0 0
\(436\) −12.8655 −0.616144
\(437\) 10.0564 0.481061
\(438\) 0 0
\(439\) −8.89218 −0.424400 −0.212200 0.977226i \(-0.568063\pi\)
−0.212200 + 0.977226i \(0.568063\pi\)
\(440\) 1.13684 0.0541967
\(441\) 0 0
\(442\) −0.560578 −0.0266640
\(443\) 7.45500 0.354198 0.177099 0.984193i \(-0.443329\pi\)
0.177099 + 0.984193i \(0.443329\pi\)
\(444\) 0 0
\(445\) 5.33939 0.253112
\(446\) 1.00000 0.0473514
\(447\) 0 0
\(448\) 4.55050 0.214991
\(449\) −19.7555 −0.932318 −0.466159 0.884701i \(-0.654363\pi\)
−0.466159 + 0.884701i \(0.654363\pi\)
\(450\) 0 0
\(451\) 6.56264 0.309022
\(452\) −2.44489 −0.114998
\(453\) 0 0
\(454\) 16.7885 0.787925
\(455\) 0.913501 0.0428256
\(456\) 0 0
\(457\) 25.8231 1.20795 0.603976 0.797003i \(-0.293582\pi\)
0.603976 + 0.797003i \(0.293582\pi\)
\(458\) −19.3526 −0.904287
\(459\) 0 0
\(460\) 2.06972 0.0965014
\(461\) −42.3213 −1.97110 −0.985549 0.169388i \(-0.945821\pi\)
−0.985549 + 0.169388i \(0.945821\pi\)
\(462\) 0 0
\(463\) 4.10285 0.190675 0.0953377 0.995445i \(-0.469607\pi\)
0.0953377 + 0.995445i \(0.469607\pi\)
\(464\) 1.00355 0.0465884
\(465\) 0 0
\(466\) 16.7988 0.778188
\(467\) −1.40172 −0.0648639 −0.0324320 0.999474i \(-0.510325\pi\)
−0.0324320 + 0.999474i \(0.510325\pi\)
\(468\) 0 0
\(469\) −3.32722 −0.153637
\(470\) 6.14072 0.283250
\(471\) 0 0
\(472\) −11.9123 −0.548306
\(473\) −23.8636 −1.09725
\(474\) 0 0
\(475\) −13.5848 −0.623313
\(476\) 7.66294 0.351230
\(477\) 0 0
\(478\) −9.59882 −0.439040
\(479\) −1.60498 −0.0733332 −0.0366666 0.999328i \(-0.511674\pi\)
−0.0366666 + 0.999328i \(0.511674\pi\)
\(480\) 0 0
\(481\) −1.42902 −0.0651578
\(482\) −26.8255 −1.22187
\(483\) 0 0
\(484\) −7.44615 −0.338461
\(485\) 4.38980 0.199330
\(486\) 0 0
\(487\) −1.70191 −0.0771210 −0.0385605 0.999256i \(-0.512277\pi\)
−0.0385605 + 0.999256i \(0.512277\pi\)
\(488\) −5.00355 −0.226500
\(489\) 0 0
\(490\) −8.26599 −0.373419
\(491\) 27.4254 1.23769 0.618846 0.785512i \(-0.287600\pi\)
0.618846 + 0.785512i \(0.287600\pi\)
\(492\) 0 0
\(493\) 1.68995 0.0761114
\(494\) −0.975390 −0.0438849
\(495\) 0 0
\(496\) 4.33956 0.194852
\(497\) −10.6501 −0.477723
\(498\) 0 0
\(499\) −34.5307 −1.54581 −0.772903 0.634524i \(-0.781196\pi\)
−0.772903 + 0.634524i \(0.781196\pi\)
\(500\) −5.81115 −0.259882
\(501\) 0 0
\(502\) −8.58922 −0.383356
\(503\) −22.3773 −0.997754 −0.498877 0.866673i \(-0.666254\pi\)
−0.498877 + 0.866673i \(0.666254\pi\)
\(504\) 0 0
\(505\) −2.36331 −0.105166
\(506\) 6.47012 0.287632
\(507\) 0 0
\(508\) 10.4761 0.464801
\(509\) −24.9622 −1.10643 −0.553214 0.833039i \(-0.686599\pi\)
−0.553214 + 0.833039i \(0.686599\pi\)
\(510\) 0 0
\(511\) 52.5824 2.32611
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −14.4827 −0.638806
\(515\) −2.26694 −0.0998931
\(516\) 0 0
\(517\) 19.1964 0.844255
\(518\) 19.5343 0.858289
\(519\) 0 0
\(520\) −0.200747 −0.00880335
\(521\) 29.1552 1.27731 0.638656 0.769492i \(-0.279491\pi\)
0.638656 + 0.769492i \(0.279491\pi\)
\(522\) 0 0
\(523\) −28.0352 −1.22589 −0.612946 0.790125i \(-0.710016\pi\)
−0.612946 + 0.790125i \(0.710016\pi\)
\(524\) −13.8235 −0.603881
\(525\) 0 0
\(526\) −15.0239 −0.655073
\(527\) 7.30772 0.318329
\(528\) 0 0
\(529\) −11.2205 −0.487849
\(530\) 1.92795 0.0837446
\(531\) 0 0
\(532\) 13.3333 0.578072
\(533\) −1.15885 −0.0501955
\(534\) 0 0
\(535\) 8.22086 0.355419
\(536\) 0.731176 0.0315820
\(537\) 0 0
\(538\) −15.5993 −0.672532
\(539\) −25.8401 −1.11301
\(540\) 0 0
\(541\) 5.54743 0.238503 0.119251 0.992864i \(-0.461951\pi\)
0.119251 + 0.992864i \(0.461951\pi\)
\(542\) −10.4110 −0.447191
\(543\) 0 0
\(544\) −1.68398 −0.0721999
\(545\) −7.75846 −0.332336
\(546\) 0 0
\(547\) −16.3410 −0.698689 −0.349344 0.936994i \(-0.613596\pi\)
−0.349344 + 0.936994i \(0.613596\pi\)
\(548\) −9.36895 −0.400222
\(549\) 0 0
\(550\) −8.74026 −0.372686
\(551\) 2.94046 0.125268
\(552\) 0 0
\(553\) −29.5137 −1.25505
\(554\) 5.58823 0.237421
\(555\) 0 0
\(556\) −0.00638381 −0.000270734 0
\(557\) −7.64612 −0.323977 −0.161988 0.986793i \(-0.551791\pi\)
−0.161988 + 0.986793i \(0.551791\pi\)
\(558\) 0 0
\(559\) 4.21392 0.178230
\(560\) 2.74416 0.115962
\(561\) 0 0
\(562\) −11.0448 −0.465898
\(563\) −23.1760 −0.976752 −0.488376 0.872633i \(-0.662411\pi\)
−0.488376 + 0.872633i \(0.662411\pi\)
\(564\) 0 0
\(565\) −1.47438 −0.0620275
\(566\) 10.9022 0.458255
\(567\) 0 0
\(568\) 2.34043 0.0982021
\(569\) 9.86719 0.413654 0.206827 0.978378i \(-0.433686\pi\)
0.206827 + 0.978378i \(0.433686\pi\)
\(570\) 0 0
\(571\) −15.7512 −0.659168 −0.329584 0.944126i \(-0.606909\pi\)
−0.329584 + 0.944126i \(0.606909\pi\)
\(572\) −0.627552 −0.0262393
\(573\) 0 0
\(574\) 15.8412 0.661199
\(575\) −15.9125 −0.663596
\(576\) 0 0
\(577\) 31.8526 1.32604 0.663021 0.748601i \(-0.269274\pi\)
0.663021 + 0.748601i \(0.269274\pi\)
\(578\) 14.1642 0.589154
\(579\) 0 0
\(580\) 0.605183 0.0251289
\(581\) 52.8978 2.19457
\(582\) 0 0
\(583\) 6.02691 0.249609
\(584\) −11.5553 −0.478162
\(585\) 0 0
\(586\) −6.25282 −0.258302
\(587\) −6.90003 −0.284795 −0.142397 0.989810i \(-0.545481\pi\)
−0.142397 + 0.989810i \(0.545481\pi\)
\(588\) 0 0
\(589\) 12.7152 0.523922
\(590\) −7.18363 −0.295745
\(591\) 0 0
\(592\) −4.29279 −0.176432
\(593\) −13.2970 −0.546044 −0.273022 0.962008i \(-0.588023\pi\)
−0.273022 + 0.962008i \(0.588023\pi\)
\(594\) 0 0
\(595\) 4.62110 0.189447
\(596\) −5.33903 −0.218695
\(597\) 0 0
\(598\) −1.14252 −0.0467210
\(599\) 34.6141 1.41429 0.707146 0.707067i \(-0.249982\pi\)
0.707146 + 0.707067i \(0.249982\pi\)
\(600\) 0 0
\(601\) 28.6231 1.16756 0.583781 0.811911i \(-0.301573\pi\)
0.583781 + 0.811911i \(0.301573\pi\)
\(602\) −57.6031 −2.34773
\(603\) 0 0
\(604\) −6.50484 −0.264678
\(605\) −4.49037 −0.182559
\(606\) 0 0
\(607\) −4.34821 −0.176488 −0.0882442 0.996099i \(-0.528126\pi\)
−0.0882442 + 0.996099i \(0.528126\pi\)
\(608\) −2.93007 −0.118830
\(609\) 0 0
\(610\) −3.01736 −0.122169
\(611\) −3.38976 −0.137135
\(612\) 0 0
\(613\) −21.0395 −0.849777 −0.424889 0.905246i \(-0.639687\pi\)
−0.424889 + 0.905246i \(0.639687\pi\)
\(614\) 9.92547 0.400559
\(615\) 0 0
\(616\) 8.57845 0.345636
\(617\) −23.2087 −0.934348 −0.467174 0.884166i \(-0.654728\pi\)
−0.467174 + 0.884166i \(0.654728\pi\)
\(618\) 0 0
\(619\) −17.9895 −0.723060 −0.361530 0.932360i \(-0.617746\pi\)
−0.361530 + 0.932360i \(0.617746\pi\)
\(620\) 2.61695 0.105099
\(621\) 0 0
\(622\) −3.49848 −0.140276
\(623\) 40.2904 1.61420
\(624\) 0 0
\(625\) 19.6773 0.787092
\(626\) −11.6644 −0.466203
\(627\) 0 0
\(628\) −10.2900 −0.410618
\(629\) −7.22895 −0.288237
\(630\) 0 0
\(631\) 29.6983 1.18227 0.591134 0.806573i \(-0.298680\pi\)
0.591134 + 0.806573i \(0.298680\pi\)
\(632\) 6.48581 0.257992
\(633\) 0 0
\(634\) −17.6419 −0.700651
\(635\) 6.31755 0.250704
\(636\) 0 0
\(637\) 4.56294 0.180790
\(638\) 1.89185 0.0748991
\(639\) 0 0
\(640\) −0.603045 −0.0238375
\(641\) 44.9700 1.77621 0.888103 0.459644i \(-0.152023\pi\)
0.888103 + 0.459644i \(0.152023\pi\)
\(642\) 0 0
\(643\) −18.2522 −0.719798 −0.359899 0.932991i \(-0.617189\pi\)
−0.359899 + 0.932991i \(0.617189\pi\)
\(644\) 15.6179 0.615431
\(645\) 0 0
\(646\) −4.93417 −0.194132
\(647\) −25.6912 −1.01002 −0.505012 0.863112i \(-0.668512\pi\)
−0.505012 + 0.863112i \(0.668512\pi\)
\(648\) 0 0
\(649\) −22.4566 −0.881498
\(650\) 1.54339 0.0605366
\(651\) 0 0
\(652\) −22.8100 −0.893307
\(653\) 39.6426 1.55134 0.775668 0.631141i \(-0.217413\pi\)
0.775668 + 0.631141i \(0.217413\pi\)
\(654\) 0 0
\(655\) −8.33617 −0.325721
\(656\) −3.48120 −0.135918
\(657\) 0 0
\(658\) 46.3371 1.80641
\(659\) 11.9261 0.464576 0.232288 0.972647i \(-0.425379\pi\)
0.232288 + 0.972647i \(0.425379\pi\)
\(660\) 0 0
\(661\) −10.6868 −0.415667 −0.207833 0.978164i \(-0.566641\pi\)
−0.207833 + 0.978164i \(0.566641\pi\)
\(662\) 9.07997 0.352903
\(663\) 0 0
\(664\) −11.6246 −0.451122
\(665\) 8.04058 0.311800
\(666\) 0 0
\(667\) 3.44429 0.133364
\(668\) 7.09832 0.274642
\(669\) 0 0
\(670\) 0.440932 0.0170347
\(671\) −9.43251 −0.364138
\(672\) 0 0
\(673\) 13.8040 0.532106 0.266053 0.963958i \(-0.414280\pi\)
0.266053 + 0.963958i \(0.414280\pi\)
\(674\) −27.6737 −1.06595
\(675\) 0 0
\(676\) −12.8892 −0.495738
\(677\) 24.6499 0.947373 0.473687 0.880693i \(-0.342923\pi\)
0.473687 + 0.880693i \(0.342923\pi\)
\(678\) 0 0
\(679\) 33.1248 1.27122
\(680\) −1.01551 −0.0389432
\(681\) 0 0
\(682\) 8.18080 0.313259
\(683\) −25.3859 −0.971366 −0.485683 0.874135i \(-0.661429\pi\)
−0.485683 + 0.874135i \(0.661429\pi\)
\(684\) 0 0
\(685\) −5.64990 −0.215872
\(686\) −30.5206 −1.16528
\(687\) 0 0
\(688\) 12.6586 0.482606
\(689\) −1.06425 −0.0405448
\(690\) 0 0
\(691\) 19.8537 0.755271 0.377635 0.925954i \(-0.376737\pi\)
0.377635 + 0.925954i \(0.376737\pi\)
\(692\) 17.2397 0.655356
\(693\) 0 0
\(694\) −9.40234 −0.356908
\(695\) −0.00384972 −0.000146028 0
\(696\) 0 0
\(697\) −5.86226 −0.222049
\(698\) 9.45111 0.357730
\(699\) 0 0
\(700\) −21.0977 −0.797417
\(701\) −45.1071 −1.70367 −0.851836 0.523809i \(-0.824511\pi\)
−0.851836 + 0.523809i \(0.824511\pi\)
\(702\) 0 0
\(703\) −12.5782 −0.474394
\(704\) −1.88517 −0.0710499
\(705\) 0 0
\(706\) −16.6377 −0.626169
\(707\) −17.8333 −0.670689
\(708\) 0 0
\(709\) −1.83520 −0.0689225 −0.0344612 0.999406i \(-0.510972\pi\)
−0.0344612 + 0.999406i \(0.510972\pi\)
\(710\) 1.41138 0.0529682
\(711\) 0 0
\(712\) −8.85405 −0.331820
\(713\) 14.8939 0.557782
\(714\) 0 0
\(715\) −0.378442 −0.0141529
\(716\) 8.87461 0.331660
\(717\) 0 0
\(718\) −30.6733 −1.14472
\(719\) −42.7799 −1.59542 −0.797711 0.603040i \(-0.793956\pi\)
−0.797711 + 0.603040i \(0.793956\pi\)
\(720\) 0 0
\(721\) −17.1060 −0.637061
\(722\) 10.4147 0.387594
\(723\) 0 0
\(724\) −2.91525 −0.108344
\(725\) −4.65278 −0.172800
\(726\) 0 0
\(727\) 38.7699 1.43790 0.718948 0.695064i \(-0.244624\pi\)
0.718948 + 0.695064i \(0.244624\pi\)
\(728\) −1.51481 −0.0561428
\(729\) 0 0
\(730\) −6.96837 −0.257911
\(731\) 21.3168 0.788432
\(732\) 0 0
\(733\) 9.59371 0.354352 0.177176 0.984179i \(-0.443304\pi\)
0.177176 + 0.984179i \(0.443304\pi\)
\(734\) −19.8301 −0.731941
\(735\) 0 0
\(736\) −3.43212 −0.126510
\(737\) 1.37839 0.0507736
\(738\) 0 0
\(739\) 38.5762 1.41905 0.709525 0.704680i \(-0.248910\pi\)
0.709525 + 0.704680i \(0.248910\pi\)
\(740\) −2.58874 −0.0951641
\(741\) 0 0
\(742\) 14.5480 0.534075
\(743\) −7.58479 −0.278259 −0.139129 0.990274i \(-0.544430\pi\)
−0.139129 + 0.990274i \(0.544430\pi\)
\(744\) 0 0
\(745\) −3.21968 −0.117960
\(746\) −27.1464 −0.993898
\(747\) 0 0
\(748\) −3.17457 −0.116074
\(749\) 62.0336 2.26666
\(750\) 0 0
\(751\) −32.2006 −1.17502 −0.587509 0.809217i \(-0.699891\pi\)
−0.587509 + 0.809217i \(0.699891\pi\)
\(752\) −10.1829 −0.371330
\(753\) 0 0
\(754\) −0.334070 −0.0121661
\(755\) −3.92271 −0.142762
\(756\) 0 0
\(757\) −50.1275 −1.82192 −0.910958 0.412499i \(-0.864656\pi\)
−0.910958 + 0.412499i \(0.864656\pi\)
\(758\) 33.9956 1.23477
\(759\) 0 0
\(760\) −1.76696 −0.0640946
\(761\) 11.9580 0.433477 0.216739 0.976230i \(-0.430458\pi\)
0.216739 + 0.976230i \(0.430458\pi\)
\(762\) 0 0
\(763\) −58.5444 −2.11945
\(764\) 3.79232 0.137201
\(765\) 0 0
\(766\) −12.7407 −0.460340
\(767\) 3.96546 0.143185
\(768\) 0 0
\(769\) −2.70203 −0.0974376 −0.0487188 0.998813i \(-0.515514\pi\)
−0.0487188 + 0.998813i \(0.515514\pi\)
\(770\) 5.17319 0.186429
\(771\) 0 0
\(772\) −0.652041 −0.0234675
\(773\) −46.4393 −1.67031 −0.835153 0.550018i \(-0.814621\pi\)
−0.835153 + 0.550018i \(0.814621\pi\)
\(774\) 0 0
\(775\) −20.1197 −0.722720
\(776\) −7.27938 −0.261315
\(777\) 0 0
\(778\) 16.0790 0.576460
\(779\) −10.2002 −0.365459
\(780\) 0 0
\(781\) 4.41209 0.157877
\(782\) −5.77961 −0.206679
\(783\) 0 0
\(784\) 13.7071 0.489538
\(785\) −6.20536 −0.221479
\(786\) 0 0
\(787\) −16.2157 −0.578028 −0.289014 0.957325i \(-0.593327\pi\)
−0.289014 + 0.957325i \(0.593327\pi\)
\(788\) 13.0157 0.463664
\(789\) 0 0
\(790\) 3.91124 0.139156
\(791\) −11.1255 −0.395576
\(792\) 0 0
\(793\) 1.66563 0.0591482
\(794\) 30.5096 1.08274
\(795\) 0 0
\(796\) −2.95663 −0.104795
\(797\) −16.9400 −0.600044 −0.300022 0.953932i \(-0.596994\pi\)
−0.300022 + 0.953932i \(0.596994\pi\)
\(798\) 0 0
\(799\) −17.1477 −0.606642
\(800\) 4.63634 0.163919
\(801\) 0 0
\(802\) 26.5433 0.937277
\(803\) −21.7837 −0.768729
\(804\) 0 0
\(805\) 9.41829 0.331951
\(806\) −1.44459 −0.0508837
\(807\) 0 0
\(808\) 3.91896 0.137869
\(809\) 11.7475 0.413019 0.206510 0.978445i \(-0.433790\pi\)
0.206510 + 0.978445i \(0.433790\pi\)
\(810\) 0 0
\(811\) 41.3075 1.45050 0.725251 0.688485i \(-0.241724\pi\)
0.725251 + 0.688485i \(0.241724\pi\)
\(812\) 4.56664 0.160258
\(813\) 0 0
\(814\) −8.09261 −0.283646
\(815\) −13.7554 −0.481832
\(816\) 0 0
\(817\) 37.0907 1.29764
\(818\) −40.2002 −1.40557
\(819\) 0 0
\(820\) −2.09932 −0.0733114
\(821\) −14.0695 −0.491029 −0.245515 0.969393i \(-0.578957\pi\)
−0.245515 + 0.969393i \(0.578957\pi\)
\(822\) 0 0
\(823\) 25.0661 0.873751 0.436876 0.899522i \(-0.356085\pi\)
0.436876 + 0.899522i \(0.356085\pi\)
\(824\) 3.75915 0.130956
\(825\) 0 0
\(826\) −54.2068 −1.88609
\(827\) −52.7969 −1.83593 −0.917965 0.396662i \(-0.870169\pi\)
−0.917965 + 0.396662i \(0.870169\pi\)
\(828\) 0 0
\(829\) −17.3437 −0.602371 −0.301186 0.953566i \(-0.597382\pi\)
−0.301186 + 0.953566i \(0.597382\pi\)
\(830\) −7.01016 −0.243326
\(831\) 0 0
\(832\) 0.332889 0.0115409
\(833\) 23.0824 0.799758
\(834\) 0 0
\(835\) 4.28061 0.148137
\(836\) −5.52367 −0.191040
\(837\) 0 0
\(838\) 0.648474 0.0224012
\(839\) 15.0814 0.520669 0.260335 0.965518i \(-0.416167\pi\)
0.260335 + 0.965518i \(0.416167\pi\)
\(840\) 0 0
\(841\) −27.9929 −0.965272
\(842\) 21.3460 0.735632
\(843\) 0 0
\(844\) 8.43942 0.290497
\(845\) −7.77276 −0.267391
\(846\) 0 0
\(847\) −33.8837 −1.16426
\(848\) −3.19702 −0.109786
\(849\) 0 0
\(850\) 7.80748 0.267794
\(851\) −14.7334 −0.505053
\(852\) 0 0
\(853\) −45.9297 −1.57260 −0.786302 0.617843i \(-0.788007\pi\)
−0.786302 + 0.617843i \(0.788007\pi\)
\(854\) −22.7686 −0.779127
\(855\) 0 0
\(856\) −13.6322 −0.465941
\(857\) 11.7131 0.400112 0.200056 0.979784i \(-0.435888\pi\)
0.200056 + 0.979784i \(0.435888\pi\)
\(858\) 0 0
\(859\) 1.69590 0.0578633 0.0289317 0.999581i \(-0.490789\pi\)
0.0289317 + 0.999581i \(0.490789\pi\)
\(860\) 7.63372 0.260308
\(861\) 0 0
\(862\) −17.4639 −0.594823
\(863\) −33.6266 −1.14466 −0.572331 0.820023i \(-0.693961\pi\)
−0.572331 + 0.820023i \(0.693961\pi\)
\(864\) 0 0
\(865\) 10.3963 0.353486
\(866\) 8.87301 0.301517
\(867\) 0 0
\(868\) 19.7472 0.670264
\(869\) 12.2268 0.414767
\(870\) 0 0
\(871\) −0.243401 −0.00824732
\(872\) 12.8655 0.435680
\(873\) 0 0
\(874\) −10.0564 −0.340162
\(875\) −26.4436 −0.893958
\(876\) 0 0
\(877\) 13.1145 0.442846 0.221423 0.975178i \(-0.428930\pi\)
0.221423 + 0.975178i \(0.428930\pi\)
\(878\) 8.89218 0.300096
\(879\) 0 0
\(880\) −1.13684 −0.0383229
\(881\) 30.7658 1.03653 0.518263 0.855221i \(-0.326579\pi\)
0.518263 + 0.855221i \(0.326579\pi\)
\(882\) 0 0
\(883\) 15.9997 0.538433 0.269216 0.963080i \(-0.413235\pi\)
0.269216 + 0.963080i \(0.413235\pi\)
\(884\) 0.560578 0.0188543
\(885\) 0 0
\(886\) −7.45500 −0.250456
\(887\) −23.3155 −0.782859 −0.391430 0.920208i \(-0.628019\pi\)
−0.391430 + 0.920208i \(0.628019\pi\)
\(888\) 0 0
\(889\) 47.6714 1.59885
\(890\) −5.33939 −0.178977
\(891\) 0 0
\(892\) −1.00000 −0.0334825
\(893\) −29.8365 −0.998440
\(894\) 0 0
\(895\) 5.35179 0.178891
\(896\) −4.55050 −0.152022
\(897\) 0 0
\(898\) 19.7555 0.659248
\(899\) 4.35495 0.145246
\(900\) 0 0
\(901\) −5.38370 −0.179357
\(902\) −6.56264 −0.218512
\(903\) 0 0
\(904\) 2.44489 0.0813157
\(905\) −1.75803 −0.0584388
\(906\) 0 0
\(907\) −23.5650 −0.782463 −0.391232 0.920292i \(-0.627951\pi\)
−0.391232 + 0.920292i \(0.627951\pi\)
\(908\) −16.7885 −0.557147
\(909\) 0 0
\(910\) −0.913501 −0.0302823
\(911\) −12.2454 −0.405709 −0.202854 0.979209i \(-0.565022\pi\)
−0.202854 + 0.979209i \(0.565022\pi\)
\(912\) 0 0
\(913\) −21.9143 −0.725258
\(914\) −25.8231 −0.854151
\(915\) 0 0
\(916\) 19.3526 0.639428
\(917\) −62.9037 −2.07726
\(918\) 0 0
\(919\) −3.89961 −0.128636 −0.0643181 0.997929i \(-0.520487\pi\)
−0.0643181 + 0.997929i \(0.520487\pi\)
\(920\) −2.06972 −0.0682368
\(921\) 0 0
\(922\) 42.3213 1.39378
\(923\) −0.779103 −0.0256445
\(924\) 0 0
\(925\) 19.9028 0.654400
\(926\) −4.10285 −0.134828
\(927\) 0 0
\(928\) −1.00355 −0.0329430
\(929\) 0.784472 0.0257377 0.0128688 0.999917i \(-0.495904\pi\)
0.0128688 + 0.999917i \(0.495904\pi\)
\(930\) 0 0
\(931\) 40.1627 1.31628
\(932\) −16.7988 −0.550262
\(933\) 0 0
\(934\) 1.40172 0.0458657
\(935\) −1.91441 −0.0626080
\(936\) 0 0
\(937\) −0.197469 −0.00645102 −0.00322551 0.999995i \(-0.501027\pi\)
−0.00322551 + 0.999995i \(0.501027\pi\)
\(938\) 3.32722 0.108638
\(939\) 0 0
\(940\) −6.14072 −0.200288
\(941\) 40.6552 1.32532 0.662660 0.748920i \(-0.269427\pi\)
0.662660 + 0.748920i \(0.269427\pi\)
\(942\) 0 0
\(943\) −11.9479 −0.389077
\(944\) 11.9123 0.387711
\(945\) 0 0
\(946\) 23.8636 0.775873
\(947\) −34.3853 −1.11737 −0.558686 0.829379i \(-0.688694\pi\)
−0.558686 + 0.829379i \(0.688694\pi\)
\(948\) 0 0
\(949\) 3.84664 0.124867
\(950\) 13.5848 0.440749
\(951\) 0 0
\(952\) −7.66294 −0.248357
\(953\) −51.8834 −1.68067 −0.840334 0.542069i \(-0.817641\pi\)
−0.840334 + 0.542069i \(0.817641\pi\)
\(954\) 0 0
\(955\) 2.28694 0.0740036
\(956\) 9.59882 0.310448
\(957\) 0 0
\(958\) 1.60498 0.0518544
\(959\) −42.6334 −1.37671
\(960\) 0 0
\(961\) −12.1682 −0.392522
\(962\) 1.42902 0.0460735
\(963\) 0 0
\(964\) 26.8255 0.863990
\(965\) −0.393210 −0.0126579
\(966\) 0 0
\(967\) 30.3219 0.975087 0.487544 0.873099i \(-0.337893\pi\)
0.487544 + 0.873099i \(0.337893\pi\)
\(968\) 7.44615 0.239328
\(969\) 0 0
\(970\) −4.38980 −0.140948
\(971\) −4.91934 −0.157869 −0.0789345 0.996880i \(-0.525152\pi\)
−0.0789345 + 0.996880i \(0.525152\pi\)
\(972\) 0 0
\(973\) −0.0290495 −0.000931285 0
\(974\) 1.70191 0.0545328
\(975\) 0 0
\(976\) 5.00355 0.160160
\(977\) 19.5573 0.625694 0.312847 0.949804i \(-0.398717\pi\)
0.312847 + 0.949804i \(0.398717\pi\)
\(978\) 0 0
\(979\) −16.6914 −0.533458
\(980\) 8.26599 0.264047
\(981\) 0 0
\(982\) −27.4254 −0.875181
\(983\) −37.0151 −1.18060 −0.590299 0.807185i \(-0.700990\pi\)
−0.590299 + 0.807185i \(0.700990\pi\)
\(984\) 0 0
\(985\) 7.84903 0.250091
\(986\) −1.68995 −0.0538189
\(987\) 0 0
\(988\) 0.975390 0.0310313
\(989\) 43.4460 1.38150
\(990\) 0 0
\(991\) −27.3983 −0.870335 −0.435168 0.900349i \(-0.643311\pi\)
−0.435168 + 0.900349i \(0.643311\pi\)
\(992\) −4.33956 −0.137781
\(993\) 0 0
\(994\) 10.6501 0.337801
\(995\) −1.78298 −0.0565244
\(996\) 0 0
\(997\) 50.7751 1.60806 0.804032 0.594586i \(-0.202684\pi\)
0.804032 + 0.594586i \(0.202684\pi\)
\(998\) 34.5307 1.09305
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4014.2.a.v.1.5 7
3.2 odd 2 1338.2.a.j.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.j.1.3 7 3.2 odd 2
4014.2.a.v.1.5 7 1.1 even 1 trivial