Properties

Label 1338.2.a.j.1.3
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(1,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 18x^{5} - 8x^{4} + 51x^{3} + 47x^{2} - 2x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.01465\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.603045 q^{5} -1.00000 q^{6} +4.55050 q^{7} +1.00000 q^{8} +1.00000 q^{9} -0.603045 q^{10} +1.88517 q^{11} -1.00000 q^{12} +0.332889 q^{13} +4.55050 q^{14} +0.603045 q^{15} +1.00000 q^{16} -1.68398 q^{17} +1.00000 q^{18} +2.93007 q^{19} -0.603045 q^{20} -4.55050 q^{21} +1.88517 q^{22} -3.43212 q^{23} -1.00000 q^{24} -4.63634 q^{25} +0.332889 q^{26} -1.00000 q^{27} +4.55050 q^{28} -1.00355 q^{29} +0.603045 q^{30} +4.33956 q^{31} +1.00000 q^{32} -1.88517 q^{33} -1.68398 q^{34} -2.74416 q^{35} +1.00000 q^{36} -4.29279 q^{37} +2.93007 q^{38} -0.332889 q^{39} -0.603045 q^{40} +3.48120 q^{41} -4.55050 q^{42} +12.6586 q^{43} +1.88517 q^{44} -0.603045 q^{45} -3.43212 q^{46} +10.1829 q^{47} -1.00000 q^{48} +13.7071 q^{49} -4.63634 q^{50} +1.68398 q^{51} +0.332889 q^{52} +3.19702 q^{53} -1.00000 q^{54} -1.13684 q^{55} +4.55050 q^{56} -2.93007 q^{57} -1.00355 q^{58} -11.9123 q^{59} +0.603045 q^{60} +5.00355 q^{61} +4.33956 q^{62} +4.55050 q^{63} +1.00000 q^{64} -0.200747 q^{65} -1.88517 q^{66} -0.731176 q^{67} -1.68398 q^{68} +3.43212 q^{69} -2.74416 q^{70} +2.34043 q^{71} +1.00000 q^{72} +11.5553 q^{73} -4.29279 q^{74} +4.63634 q^{75} +2.93007 q^{76} +8.57845 q^{77} -0.332889 q^{78} -6.48581 q^{79} -0.603045 q^{80} +1.00000 q^{81} +3.48120 q^{82} -11.6246 q^{83} -4.55050 q^{84} +1.01551 q^{85} +12.6586 q^{86} +1.00355 q^{87} +1.88517 q^{88} -8.85405 q^{89} -0.603045 q^{90} +1.51481 q^{91} -3.43212 q^{92} -4.33956 q^{93} +10.1829 q^{94} -1.76696 q^{95} -1.00000 q^{96} +7.27938 q^{97} +13.7071 q^{98} +1.88517 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - 7 q^{3} + 7 q^{4} + 6 q^{5} - 7 q^{6} + 3 q^{7} + 7 q^{8} + 7 q^{9} + 6 q^{10} - q^{11} - 7 q^{12} + 8 q^{13} + 3 q^{14} - 6 q^{15} + 7 q^{16} + 16 q^{17} + 7 q^{18} + 2 q^{19} + 6 q^{20}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −0.603045 −0.269690 −0.134845 0.990867i \(-0.543054\pi\)
−0.134845 + 0.990867i \(0.543054\pi\)
\(6\) −1.00000 −0.408248
\(7\) 4.55050 1.71993 0.859964 0.510354i \(-0.170486\pi\)
0.859964 + 0.510354i \(0.170486\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.603045 −0.190700
\(11\) 1.88517 0.568399 0.284199 0.958765i \(-0.408272\pi\)
0.284199 + 0.958765i \(0.408272\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0.332889 0.0923269 0.0461635 0.998934i \(-0.485300\pi\)
0.0461635 + 0.998934i \(0.485300\pi\)
\(14\) 4.55050 1.21617
\(15\) 0.603045 0.155706
\(16\) 1.00000 0.250000
\(17\) −1.68398 −0.408424 −0.204212 0.978927i \(-0.565463\pi\)
−0.204212 + 0.978927i \(0.565463\pi\)
\(18\) 1.00000 0.235702
\(19\) 2.93007 0.672204 0.336102 0.941826i \(-0.390891\pi\)
0.336102 + 0.941826i \(0.390891\pi\)
\(20\) −0.603045 −0.134845
\(21\) −4.55050 −0.993001
\(22\) 1.88517 0.401919
\(23\) −3.43212 −0.715647 −0.357824 0.933789i \(-0.616481\pi\)
−0.357824 + 0.933789i \(0.616481\pi\)
\(24\) −1.00000 −0.204124
\(25\) −4.63634 −0.927267
\(26\) 0.332889 0.0652850
\(27\) −1.00000 −0.192450
\(28\) 4.55050 0.859964
\(29\) −1.00355 −0.186354 −0.0931769 0.995650i \(-0.529702\pi\)
−0.0931769 + 0.995650i \(0.529702\pi\)
\(30\) 0.603045 0.110100
\(31\) 4.33956 0.779409 0.389704 0.920940i \(-0.372577\pi\)
0.389704 + 0.920940i \(0.372577\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.88517 −0.328165
\(34\) −1.68398 −0.288800
\(35\) −2.74416 −0.463847
\(36\) 1.00000 0.166667
\(37\) −4.29279 −0.705730 −0.352865 0.935674i \(-0.614792\pi\)
−0.352865 + 0.935674i \(0.614792\pi\)
\(38\) 2.93007 0.475320
\(39\) −0.332889 −0.0533050
\(40\) −0.603045 −0.0953498
\(41\) 3.48120 0.543672 0.271836 0.962344i \(-0.412369\pi\)
0.271836 + 0.962344i \(0.412369\pi\)
\(42\) −4.55050 −0.702158
\(43\) 12.6586 1.93042 0.965211 0.261471i \(-0.0842075\pi\)
0.965211 + 0.261471i \(0.0842075\pi\)
\(44\) 1.88517 0.284199
\(45\) −0.603045 −0.0898967
\(46\) −3.43212 −0.506039
\(47\) 10.1829 1.48532 0.742661 0.669668i \(-0.233563\pi\)
0.742661 + 0.669668i \(0.233563\pi\)
\(48\) −1.00000 −0.144338
\(49\) 13.7071 1.95815
\(50\) −4.63634 −0.655677
\(51\) 1.68398 0.235804
\(52\) 0.332889 0.0461635
\(53\) 3.19702 0.439144 0.219572 0.975596i \(-0.429534\pi\)
0.219572 + 0.975596i \(0.429534\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.13684 −0.153291
\(56\) 4.55050 0.608087
\(57\) −2.93007 −0.388097
\(58\) −1.00355 −0.131772
\(59\) −11.9123 −1.55084 −0.775422 0.631444i \(-0.782463\pi\)
−0.775422 + 0.631444i \(0.782463\pi\)
\(60\) 0.603045 0.0778528
\(61\) 5.00355 0.640638 0.320319 0.947310i \(-0.396210\pi\)
0.320319 + 0.947310i \(0.396210\pi\)
\(62\) 4.33956 0.551125
\(63\) 4.55050 0.573309
\(64\) 1.00000 0.125000
\(65\) −0.200747 −0.0248996
\(66\) −1.88517 −0.232048
\(67\) −0.731176 −0.0893274 −0.0446637 0.999002i \(-0.514222\pi\)
−0.0446637 + 0.999002i \(0.514222\pi\)
\(68\) −1.68398 −0.204212
\(69\) 3.43212 0.413179
\(70\) −2.74416 −0.327990
\(71\) 2.34043 0.277757 0.138879 0.990309i \(-0.455650\pi\)
0.138879 + 0.990309i \(0.455650\pi\)
\(72\) 1.00000 0.117851
\(73\) 11.5553 1.35245 0.676223 0.736697i \(-0.263616\pi\)
0.676223 + 0.736697i \(0.263616\pi\)
\(74\) −4.29279 −0.499026
\(75\) 4.63634 0.535358
\(76\) 2.93007 0.336102
\(77\) 8.57845 0.977605
\(78\) −0.332889 −0.0376923
\(79\) −6.48581 −0.729711 −0.364856 0.931064i \(-0.618882\pi\)
−0.364856 + 0.931064i \(0.618882\pi\)
\(80\) −0.603045 −0.0674225
\(81\) 1.00000 0.111111
\(82\) 3.48120 0.384434
\(83\) −11.6246 −1.27597 −0.637983 0.770050i \(-0.720231\pi\)
−0.637983 + 0.770050i \(0.720231\pi\)
\(84\) −4.55050 −0.496501
\(85\) 1.01551 0.110148
\(86\) 12.6586 1.36501
\(87\) 1.00355 0.107591
\(88\) 1.88517 0.200959
\(89\) −8.85405 −0.938528 −0.469264 0.883058i \(-0.655481\pi\)
−0.469264 + 0.883058i \(0.655481\pi\)
\(90\) −0.603045 −0.0635665
\(91\) 1.51481 0.158796
\(92\) −3.43212 −0.357824
\(93\) −4.33956 −0.449992
\(94\) 10.1829 1.05028
\(95\) −1.76696 −0.181287
\(96\) −1.00000 −0.102062
\(97\) 7.27938 0.739109 0.369555 0.929209i \(-0.379510\pi\)
0.369555 + 0.929209i \(0.379510\pi\)
\(98\) 13.7071 1.38462
\(99\) 1.88517 0.189466
\(100\) −4.63634 −0.463634
\(101\) 3.91896 0.389952 0.194976 0.980808i \(-0.437537\pi\)
0.194976 + 0.980808i \(0.437537\pi\)
\(102\) 1.68398 0.166739
\(103\) −3.75915 −0.370400 −0.185200 0.982701i \(-0.559293\pi\)
−0.185200 + 0.982701i \(0.559293\pi\)
\(104\) 0.332889 0.0326425
\(105\) 2.74416 0.267802
\(106\) 3.19702 0.310522
\(107\) −13.6322 −1.31788 −0.658939 0.752196i \(-0.728995\pi\)
−0.658939 + 0.752196i \(0.728995\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −12.8655 −1.23229 −0.616144 0.787633i \(-0.711306\pi\)
−0.616144 + 0.787633i \(0.711306\pi\)
\(110\) −1.13684 −0.108393
\(111\) 4.29279 0.407453
\(112\) 4.55050 0.429982
\(113\) 2.44489 0.229995 0.114998 0.993366i \(-0.463314\pi\)
0.114998 + 0.993366i \(0.463314\pi\)
\(114\) −2.93007 −0.274426
\(115\) 2.06972 0.193003
\(116\) −1.00355 −0.0931769
\(117\) 0.332889 0.0307756
\(118\) −11.9123 −1.09661
\(119\) −7.66294 −0.702461
\(120\) 0.603045 0.0550502
\(121\) −7.44615 −0.676923
\(122\) 5.00355 0.453000
\(123\) −3.48120 −0.313889
\(124\) 4.33956 0.389704
\(125\) 5.81115 0.519765
\(126\) 4.55050 0.405391
\(127\) 10.4761 0.929602 0.464801 0.885415i \(-0.346126\pi\)
0.464801 + 0.885415i \(0.346126\pi\)
\(128\) 1.00000 0.0883883
\(129\) −12.6586 −1.11453
\(130\) −0.200747 −0.0176067
\(131\) 13.8235 1.20776 0.603881 0.797075i \(-0.293620\pi\)
0.603881 + 0.797075i \(0.293620\pi\)
\(132\) −1.88517 −0.164083
\(133\) 13.3333 1.15614
\(134\) −0.731176 −0.0631640
\(135\) 0.603045 0.0519019
\(136\) −1.68398 −0.144400
\(137\) 9.36895 0.800443 0.400222 0.916418i \(-0.368933\pi\)
0.400222 + 0.916418i \(0.368933\pi\)
\(138\) 3.43212 0.292162
\(139\) −0.00638381 −0.000541467 0 −0.000270734 1.00000i \(-0.500086\pi\)
−0.000270734 1.00000i \(0.500086\pi\)
\(140\) −2.74416 −0.231924
\(141\) −10.1829 −0.857551
\(142\) 2.34043 0.196404
\(143\) 0.627552 0.0524785
\(144\) 1.00000 0.0833333
\(145\) 0.605183 0.0502577
\(146\) 11.5553 0.956324
\(147\) −13.7071 −1.13054
\(148\) −4.29279 −0.352865
\(149\) 5.33903 0.437391 0.218695 0.975793i \(-0.429820\pi\)
0.218695 + 0.975793i \(0.429820\pi\)
\(150\) 4.63634 0.378555
\(151\) −6.50484 −0.529357 −0.264678 0.964337i \(-0.585266\pi\)
−0.264678 + 0.964337i \(0.585266\pi\)
\(152\) 2.93007 0.237660
\(153\) −1.68398 −0.136141
\(154\) 8.57845 0.691271
\(155\) −2.61695 −0.210199
\(156\) −0.332889 −0.0266525
\(157\) −10.2900 −0.821235 −0.410618 0.911808i \(-0.634687\pi\)
−0.410618 + 0.911808i \(0.634687\pi\)
\(158\) −6.48581 −0.515984
\(159\) −3.19702 −0.253540
\(160\) −0.603045 −0.0476749
\(161\) −15.6179 −1.23086
\(162\) 1.00000 0.0785674
\(163\) −22.8100 −1.78661 −0.893307 0.449447i \(-0.851621\pi\)
−0.893307 + 0.449447i \(0.851621\pi\)
\(164\) 3.48120 0.271836
\(165\) 1.13684 0.0885029
\(166\) −11.6246 −0.902245
\(167\) −7.09832 −0.549285 −0.274642 0.961546i \(-0.588559\pi\)
−0.274642 + 0.961546i \(0.588559\pi\)
\(168\) −4.55050 −0.351079
\(169\) −12.8892 −0.991476
\(170\) 1.01551 0.0778864
\(171\) 2.93007 0.224068
\(172\) 12.6586 0.965211
\(173\) −17.2397 −1.31071 −0.655356 0.755320i \(-0.727481\pi\)
−0.655356 + 0.755320i \(0.727481\pi\)
\(174\) 1.00355 0.0760786
\(175\) −21.0977 −1.59483
\(176\) 1.88517 0.142100
\(177\) 11.9123 0.895380
\(178\) −8.85405 −0.663639
\(179\) −8.87461 −0.663319 −0.331660 0.943399i \(-0.607609\pi\)
−0.331660 + 0.943399i \(0.607609\pi\)
\(180\) −0.603045 −0.0449483
\(181\) −2.91525 −0.216689 −0.108344 0.994113i \(-0.534555\pi\)
−0.108344 + 0.994113i \(0.534555\pi\)
\(182\) 1.51481 0.112286
\(183\) −5.00355 −0.369873
\(184\) −3.43212 −0.253019
\(185\) 2.58874 0.190328
\(186\) −4.33956 −0.318192
\(187\) −3.17457 −0.232148
\(188\) 10.1829 0.742661
\(189\) −4.55050 −0.331000
\(190\) −1.76696 −0.128189
\(191\) −3.79232 −0.274403 −0.137201 0.990543i \(-0.543811\pi\)
−0.137201 + 0.990543i \(0.543811\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −0.652041 −0.0469349 −0.0234675 0.999725i \(-0.507471\pi\)
−0.0234675 + 0.999725i \(0.507471\pi\)
\(194\) 7.27938 0.522629
\(195\) 0.200747 0.0143758
\(196\) 13.7071 0.979077
\(197\) −13.0157 −0.927327 −0.463664 0.886011i \(-0.653465\pi\)
−0.463664 + 0.886011i \(0.653465\pi\)
\(198\) 1.88517 0.133973
\(199\) −2.95663 −0.209590 −0.104795 0.994494i \(-0.533419\pi\)
−0.104795 + 0.994494i \(0.533419\pi\)
\(200\) −4.63634 −0.327839
\(201\) 0.731176 0.0515732
\(202\) 3.91896 0.275737
\(203\) −4.56664 −0.320515
\(204\) 1.68398 0.117902
\(205\) −2.09932 −0.146623
\(206\) −3.75915 −0.261912
\(207\) −3.43212 −0.238549
\(208\) 0.332889 0.0230817
\(209\) 5.52367 0.382080
\(210\) 2.74416 0.189365
\(211\) 8.43942 0.580994 0.290497 0.956876i \(-0.406179\pi\)
0.290497 + 0.956876i \(0.406179\pi\)
\(212\) 3.19702 0.219572
\(213\) −2.34043 −0.160363
\(214\) −13.6322 −0.931881
\(215\) −7.63372 −0.520616
\(216\) −1.00000 −0.0680414
\(217\) 19.7472 1.34053
\(218\) −12.8655 −0.871360
\(219\) −11.5553 −0.780835
\(220\) −1.13684 −0.0766457
\(221\) −0.560578 −0.0377086
\(222\) 4.29279 0.288113
\(223\) −1.00000 −0.0669650
\(224\) 4.55050 0.304043
\(225\) −4.63634 −0.309089
\(226\) 2.44489 0.162631
\(227\) 16.7885 1.11429 0.557147 0.830414i \(-0.311896\pi\)
0.557147 + 0.830414i \(0.311896\pi\)
\(228\) −2.93007 −0.194049
\(229\) 19.3526 1.27886 0.639428 0.768851i \(-0.279171\pi\)
0.639428 + 0.768851i \(0.279171\pi\)
\(230\) 2.06972 0.136474
\(231\) −8.57845 −0.564421
\(232\) −1.00355 −0.0658860
\(233\) 16.7988 1.10052 0.550262 0.834992i \(-0.314528\pi\)
0.550262 + 0.834992i \(0.314528\pi\)
\(234\) 0.332889 0.0217617
\(235\) −6.14072 −0.400576
\(236\) −11.9123 −0.775422
\(237\) 6.48581 0.421299
\(238\) −7.66294 −0.496715
\(239\) −9.59882 −0.620896 −0.310448 0.950590i \(-0.600479\pi\)
−0.310448 + 0.950590i \(0.600479\pi\)
\(240\) 0.603045 0.0389264
\(241\) 26.8255 1.72798 0.863990 0.503508i \(-0.167958\pi\)
0.863990 + 0.503508i \(0.167958\pi\)
\(242\) −7.44615 −0.478657
\(243\) −1.00000 −0.0641500
\(244\) 5.00355 0.320319
\(245\) −8.26599 −0.528094
\(246\) −3.48120 −0.221953
\(247\) 0.975390 0.0620626
\(248\) 4.33956 0.275563
\(249\) 11.6246 0.736680
\(250\) 5.81115 0.367529
\(251\) −8.58922 −0.542147 −0.271073 0.962559i \(-0.587379\pi\)
−0.271073 + 0.962559i \(0.587379\pi\)
\(252\) 4.55050 0.286655
\(253\) −6.47012 −0.406773
\(254\) 10.4761 0.657328
\(255\) −1.01551 −0.0635940
\(256\) 1.00000 0.0625000
\(257\) −14.4827 −0.903408 −0.451704 0.892168i \(-0.649184\pi\)
−0.451704 + 0.892168i \(0.649184\pi\)
\(258\) −12.6586 −0.788092
\(259\) −19.5343 −1.21380
\(260\) −0.200747 −0.0124498
\(261\) −1.00355 −0.0621179
\(262\) 13.8235 0.854016
\(263\) −15.0239 −0.926413 −0.463206 0.886250i \(-0.653301\pi\)
−0.463206 + 0.886250i \(0.653301\pi\)
\(264\) −1.88517 −0.116024
\(265\) −1.92795 −0.118433
\(266\) 13.3333 0.817517
\(267\) 8.85405 0.541859
\(268\) −0.731176 −0.0446637
\(269\) −15.5993 −0.951103 −0.475552 0.879688i \(-0.657752\pi\)
−0.475552 + 0.879688i \(0.657752\pi\)
\(270\) 0.603045 0.0367002
\(271\) 10.4110 0.632423 0.316211 0.948689i \(-0.397589\pi\)
0.316211 + 0.948689i \(0.397589\pi\)
\(272\) −1.68398 −0.102106
\(273\) −1.51481 −0.0916807
\(274\) 9.36895 0.565999
\(275\) −8.74026 −0.527058
\(276\) 3.43212 0.206590
\(277\) −5.58823 −0.335764 −0.167882 0.985807i \(-0.553693\pi\)
−0.167882 + 0.985807i \(0.553693\pi\)
\(278\) −0.00638381 −0.000382875 0
\(279\) 4.33956 0.259803
\(280\) −2.74416 −0.163995
\(281\) −11.0448 −0.658879 −0.329439 0.944177i \(-0.606860\pi\)
−0.329439 + 0.944177i \(0.606860\pi\)
\(282\) −10.1829 −0.606380
\(283\) −10.9022 −0.648071 −0.324035 0.946045i \(-0.605040\pi\)
−0.324035 + 0.946045i \(0.605040\pi\)
\(284\) 2.34043 0.138879
\(285\) 1.76696 0.104666
\(286\) 0.627552 0.0371079
\(287\) 15.8412 0.935077
\(288\) 1.00000 0.0589256
\(289\) −14.1642 −0.833190
\(290\) 0.605183 0.0355376
\(291\) −7.27938 −0.426725
\(292\) 11.5553 0.676223
\(293\) −6.25282 −0.365294 −0.182647 0.983179i \(-0.558467\pi\)
−0.182647 + 0.983179i \(0.558467\pi\)
\(294\) −13.7071 −0.799413
\(295\) 7.18363 0.418247
\(296\) −4.29279 −0.249513
\(297\) −1.88517 −0.109388
\(298\) 5.33903 0.309282
\(299\) −1.14252 −0.0660735
\(300\) 4.63634 0.267679
\(301\) 57.6031 3.32019
\(302\) −6.50484 −0.374312
\(303\) −3.91896 −0.225139
\(304\) 2.93007 0.168051
\(305\) −3.01736 −0.172774
\(306\) −1.68398 −0.0962665
\(307\) −9.92547 −0.566476 −0.283238 0.959050i \(-0.591409\pi\)
−0.283238 + 0.959050i \(0.591409\pi\)
\(308\) 8.57845 0.488803
\(309\) 3.75915 0.213850
\(310\) −2.61695 −0.148633
\(311\) −3.49848 −0.198381 −0.0991903 0.995068i \(-0.531625\pi\)
−0.0991903 + 0.995068i \(0.531625\pi\)
\(312\) −0.332889 −0.0188462
\(313\) 11.6644 0.659310 0.329655 0.944101i \(-0.393068\pi\)
0.329655 + 0.944101i \(0.393068\pi\)
\(314\) −10.2900 −0.580701
\(315\) −2.74416 −0.154616
\(316\) −6.48581 −0.364856
\(317\) −17.6419 −0.990870 −0.495435 0.868645i \(-0.664991\pi\)
−0.495435 + 0.868645i \(0.664991\pi\)
\(318\) −3.19702 −0.179280
\(319\) −1.89185 −0.105923
\(320\) −0.603045 −0.0337112
\(321\) 13.6322 0.760878
\(322\) −15.6179 −0.870351
\(323\) −4.93417 −0.274545
\(324\) 1.00000 0.0555556
\(325\) −1.54339 −0.0856117
\(326\) −22.8100 −1.26333
\(327\) 12.8655 0.711462
\(328\) 3.48120 0.192217
\(329\) 46.3371 2.55465
\(330\) 1.13684 0.0625810
\(331\) −9.07997 −0.499080 −0.249540 0.968364i \(-0.580279\pi\)
−0.249540 + 0.968364i \(0.580279\pi\)
\(332\) −11.6246 −0.637983
\(333\) −4.29279 −0.235243
\(334\) −7.09832 −0.388403
\(335\) 0.440932 0.0240907
\(336\) −4.55050 −0.248250
\(337\) 27.6737 1.50748 0.753741 0.657172i \(-0.228247\pi\)
0.753741 + 0.657172i \(0.228247\pi\)
\(338\) −12.8892 −0.701079
\(339\) −2.44489 −0.132788
\(340\) 1.01551 0.0550740
\(341\) 8.18080 0.443015
\(342\) 2.93007 0.158440
\(343\) 30.5206 1.64796
\(344\) 12.6586 0.682507
\(345\) −2.06972 −0.111430
\(346\) −17.2397 −0.926813
\(347\) −9.40234 −0.504744 −0.252372 0.967630i \(-0.581211\pi\)
−0.252372 + 0.967630i \(0.581211\pi\)
\(348\) 1.00355 0.0537957
\(349\) −9.45111 −0.505906 −0.252953 0.967479i \(-0.581402\pi\)
−0.252953 + 0.967479i \(0.581402\pi\)
\(350\) −21.0977 −1.12772
\(351\) −0.332889 −0.0177683
\(352\) 1.88517 0.100480
\(353\) −16.6377 −0.885537 −0.442769 0.896636i \(-0.646004\pi\)
−0.442769 + 0.896636i \(0.646004\pi\)
\(354\) 11.9123 0.633129
\(355\) −1.41138 −0.0749084
\(356\) −8.85405 −0.469264
\(357\) 7.66294 0.405566
\(358\) −8.87461 −0.469038
\(359\) −30.6733 −1.61888 −0.809438 0.587206i \(-0.800228\pi\)
−0.809438 + 0.587206i \(0.800228\pi\)
\(360\) −0.603045 −0.0317833
\(361\) −10.4147 −0.548141
\(362\) −2.91525 −0.153222
\(363\) 7.44615 0.390822
\(364\) 1.51481 0.0793978
\(365\) −6.96837 −0.364741
\(366\) −5.00355 −0.261540
\(367\) 19.8301 1.03512 0.517561 0.855647i \(-0.326840\pi\)
0.517561 + 0.855647i \(0.326840\pi\)
\(368\) −3.43212 −0.178912
\(369\) 3.48120 0.181224
\(370\) 2.58874 0.134582
\(371\) 14.5480 0.755297
\(372\) −4.33956 −0.224996
\(373\) 27.1464 1.40558 0.702792 0.711395i \(-0.251936\pi\)
0.702792 + 0.711395i \(0.251936\pi\)
\(374\) −3.17457 −0.164153
\(375\) −5.81115 −0.300086
\(376\) 10.1829 0.525141
\(377\) −0.334070 −0.0172055
\(378\) −4.55050 −0.234053
\(379\) −33.9956 −1.74623 −0.873117 0.487510i \(-0.837905\pi\)
−0.873117 + 0.487510i \(0.837905\pi\)
\(380\) −1.76696 −0.0906434
\(381\) −10.4761 −0.536706
\(382\) −3.79232 −0.194032
\(383\) −12.7407 −0.651019 −0.325509 0.945539i \(-0.605536\pi\)
−0.325509 + 0.945539i \(0.605536\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −5.17319 −0.263650
\(386\) −0.652041 −0.0331880
\(387\) 12.6586 0.643474
\(388\) 7.27938 0.369555
\(389\) 16.0790 0.815237 0.407619 0.913152i \(-0.366359\pi\)
0.407619 + 0.913152i \(0.366359\pi\)
\(390\) 0.200747 0.0101652
\(391\) 5.77961 0.292288
\(392\) 13.7071 0.692312
\(393\) −13.8235 −0.697301
\(394\) −13.0157 −0.655719
\(395\) 3.91124 0.196796
\(396\) 1.88517 0.0947331
\(397\) −30.5096 −1.53123 −0.765616 0.643298i \(-0.777566\pi\)
−0.765616 + 0.643298i \(0.777566\pi\)
\(398\) −2.95663 −0.148203
\(399\) −13.3333 −0.667500
\(400\) −4.63634 −0.231817
\(401\) 26.5433 1.32551 0.662755 0.748836i \(-0.269387\pi\)
0.662755 + 0.748836i \(0.269387\pi\)
\(402\) 0.731176 0.0364677
\(403\) 1.44459 0.0719604
\(404\) 3.91896 0.194976
\(405\) −0.603045 −0.0299656
\(406\) −4.56664 −0.226638
\(407\) −8.09261 −0.401136
\(408\) 1.68398 0.0833693
\(409\) 40.2002 1.98777 0.993887 0.110406i \(-0.0352150\pi\)
0.993887 + 0.110406i \(0.0352150\pi\)
\(410\) −2.09932 −0.103678
\(411\) −9.36895 −0.462136
\(412\) −3.75915 −0.185200
\(413\) −54.2068 −2.66734
\(414\) −3.43212 −0.168680
\(415\) 7.01016 0.344115
\(416\) 0.332889 0.0163212
\(417\) 0.00638381 0.000312616 0
\(418\) 5.52367 0.270171
\(419\) 0.648474 0.0316800 0.0158400 0.999875i \(-0.494958\pi\)
0.0158400 + 0.999875i \(0.494958\pi\)
\(420\) 2.74416 0.133901
\(421\) −21.3460 −1.04034 −0.520171 0.854062i \(-0.674132\pi\)
−0.520171 + 0.854062i \(0.674132\pi\)
\(422\) 8.43942 0.410825
\(423\) 10.1829 0.495107
\(424\) 3.19702 0.155261
\(425\) 7.80748 0.378719
\(426\) −2.34043 −0.113394
\(427\) 22.7686 1.10185
\(428\) −13.6322 −0.658939
\(429\) −0.627552 −0.0302985
\(430\) −7.63372 −0.368131
\(431\) −17.4639 −0.841207 −0.420603 0.907245i \(-0.638182\pi\)
−0.420603 + 0.907245i \(0.638182\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −8.87301 −0.426410 −0.213205 0.977008i \(-0.568390\pi\)
−0.213205 + 0.977008i \(0.568390\pi\)
\(434\) 19.7472 0.947896
\(435\) −0.605183 −0.0290163
\(436\) −12.8655 −0.616144
\(437\) −10.0564 −0.481061
\(438\) −11.5553 −0.552134
\(439\) −8.89218 −0.424400 −0.212200 0.977226i \(-0.568063\pi\)
−0.212200 + 0.977226i \(0.568063\pi\)
\(440\) −1.13684 −0.0541967
\(441\) 13.7071 0.652718
\(442\) −0.560578 −0.0266640
\(443\) −7.45500 −0.354198 −0.177099 0.984193i \(-0.556671\pi\)
−0.177099 + 0.984193i \(0.556671\pi\)
\(444\) 4.29279 0.203727
\(445\) 5.33939 0.253112
\(446\) −1.00000 −0.0473514
\(447\) −5.33903 −0.252528
\(448\) 4.55050 0.214991
\(449\) 19.7555 0.932318 0.466159 0.884701i \(-0.345637\pi\)
0.466159 + 0.884701i \(0.345637\pi\)
\(450\) −4.63634 −0.218559
\(451\) 6.56264 0.309022
\(452\) 2.44489 0.114998
\(453\) 6.50484 0.305624
\(454\) 16.7885 0.787925
\(455\) −0.913501 −0.0428256
\(456\) −2.93007 −0.137213
\(457\) 25.8231 1.20795 0.603976 0.797003i \(-0.293582\pi\)
0.603976 + 0.797003i \(0.293582\pi\)
\(458\) 19.3526 0.904287
\(459\) 1.68398 0.0786013
\(460\) 2.06972 0.0965014
\(461\) 42.3213 1.97110 0.985549 0.169388i \(-0.0541791\pi\)
0.985549 + 0.169388i \(0.0541791\pi\)
\(462\) −8.57845 −0.399106
\(463\) 4.10285 0.190675 0.0953377 0.995445i \(-0.469607\pi\)
0.0953377 + 0.995445i \(0.469607\pi\)
\(464\) −1.00355 −0.0465884
\(465\) 2.61695 0.121358
\(466\) 16.7988 0.778188
\(467\) 1.40172 0.0648639 0.0324320 0.999474i \(-0.489675\pi\)
0.0324320 + 0.999474i \(0.489675\pi\)
\(468\) 0.332889 0.0153878
\(469\) −3.32722 −0.153637
\(470\) −6.14072 −0.283250
\(471\) 10.2900 0.474140
\(472\) −11.9123 −0.548306
\(473\) 23.8636 1.09725
\(474\) 6.48581 0.297903
\(475\) −13.5848 −0.623313
\(476\) −7.66294 −0.351230
\(477\) 3.19702 0.146381
\(478\) −9.59882 −0.439040
\(479\) 1.60498 0.0733332 0.0366666 0.999328i \(-0.488326\pi\)
0.0366666 + 0.999328i \(0.488326\pi\)
\(480\) 0.603045 0.0275251
\(481\) −1.42902 −0.0651578
\(482\) 26.8255 1.22187
\(483\) 15.6179 0.710638
\(484\) −7.44615 −0.338461
\(485\) −4.38980 −0.199330
\(486\) −1.00000 −0.0453609
\(487\) −1.70191 −0.0771210 −0.0385605 0.999256i \(-0.512277\pi\)
−0.0385605 + 0.999256i \(0.512277\pi\)
\(488\) 5.00355 0.226500
\(489\) 22.8100 1.03150
\(490\) −8.26599 −0.373419
\(491\) −27.4254 −1.23769 −0.618846 0.785512i \(-0.712400\pi\)
−0.618846 + 0.785512i \(0.712400\pi\)
\(492\) −3.48120 −0.156945
\(493\) 1.68995 0.0761114
\(494\) 0.975390 0.0438849
\(495\) −1.13684 −0.0510972
\(496\) 4.33956 0.194852
\(497\) 10.6501 0.477723
\(498\) 11.6246 0.520911
\(499\) −34.5307 −1.54581 −0.772903 0.634524i \(-0.781196\pi\)
−0.772903 + 0.634524i \(0.781196\pi\)
\(500\) 5.81115 0.259882
\(501\) 7.09832 0.317130
\(502\) −8.58922 −0.383356
\(503\) 22.3773 0.997754 0.498877 0.866673i \(-0.333746\pi\)
0.498877 + 0.866673i \(0.333746\pi\)
\(504\) 4.55050 0.202696
\(505\) −2.36331 −0.105166
\(506\) −6.47012 −0.287632
\(507\) 12.8892 0.572429
\(508\) 10.4761 0.464801
\(509\) 24.9622 1.10643 0.553214 0.833039i \(-0.313401\pi\)
0.553214 + 0.833039i \(0.313401\pi\)
\(510\) −1.01551 −0.0449677
\(511\) 52.5824 2.32611
\(512\) 1.00000 0.0441942
\(513\) −2.93007 −0.129366
\(514\) −14.4827 −0.638806
\(515\) 2.26694 0.0998931
\(516\) −12.6586 −0.557265
\(517\) 19.1964 0.844255
\(518\) −19.5343 −0.858289
\(519\) 17.2397 0.756740
\(520\) −0.200747 −0.00880335
\(521\) −29.1552 −1.27731 −0.638656 0.769492i \(-0.720509\pi\)
−0.638656 + 0.769492i \(0.720509\pi\)
\(522\) −1.00355 −0.0439240
\(523\) −28.0352 −1.22589 −0.612946 0.790125i \(-0.710016\pi\)
−0.612946 + 0.790125i \(0.710016\pi\)
\(524\) 13.8235 0.603881
\(525\) 21.0977 0.920777
\(526\) −15.0239 −0.655073
\(527\) −7.30772 −0.318329
\(528\) −1.88517 −0.0820413
\(529\) −11.2205 −0.487849
\(530\) −1.92795 −0.0837446
\(531\) −11.9123 −0.516948
\(532\) 13.3333 0.578072
\(533\) 1.15885 0.0501955
\(534\) 8.85405 0.383152
\(535\) 8.22086 0.355419
\(536\) −0.731176 −0.0315820
\(537\) 8.87461 0.382968
\(538\) −15.5993 −0.672532
\(539\) 25.8401 1.11301
\(540\) 0.603045 0.0259509
\(541\) 5.54743 0.238503 0.119251 0.992864i \(-0.461951\pi\)
0.119251 + 0.992864i \(0.461951\pi\)
\(542\) 10.4110 0.447191
\(543\) 2.91525 0.125105
\(544\) −1.68398 −0.0721999
\(545\) 7.75846 0.332336
\(546\) −1.51481 −0.0648281
\(547\) −16.3410 −0.698689 −0.349344 0.936994i \(-0.613596\pi\)
−0.349344 + 0.936994i \(0.613596\pi\)
\(548\) 9.36895 0.400222
\(549\) 5.00355 0.213546
\(550\) −8.74026 −0.372686
\(551\) −2.94046 −0.125268
\(552\) 3.43212 0.146081
\(553\) −29.5137 −1.25505
\(554\) −5.58823 −0.237421
\(555\) −2.58874 −0.109886
\(556\) −0.00638381 −0.000270734 0
\(557\) 7.64612 0.323977 0.161988 0.986793i \(-0.448209\pi\)
0.161988 + 0.986793i \(0.448209\pi\)
\(558\) 4.33956 0.183708
\(559\) 4.21392 0.178230
\(560\) −2.74416 −0.115962
\(561\) 3.17457 0.134031
\(562\) −11.0448 −0.465898
\(563\) 23.1760 0.976752 0.488376 0.872633i \(-0.337589\pi\)
0.488376 + 0.872633i \(0.337589\pi\)
\(564\) −10.1829 −0.428775
\(565\) −1.47438 −0.0620275
\(566\) −10.9022 −0.458255
\(567\) 4.55050 0.191103
\(568\) 2.34043 0.0982021
\(569\) −9.86719 −0.413654 −0.206827 0.978378i \(-0.566314\pi\)
−0.206827 + 0.978378i \(0.566314\pi\)
\(570\) 1.76696 0.0740100
\(571\) −15.7512 −0.659168 −0.329584 0.944126i \(-0.606909\pi\)
−0.329584 + 0.944126i \(0.606909\pi\)
\(572\) 0.627552 0.0262393
\(573\) 3.79232 0.158426
\(574\) 15.8412 0.661199
\(575\) 15.9125 0.663596
\(576\) 1.00000 0.0416667
\(577\) 31.8526 1.32604 0.663021 0.748601i \(-0.269274\pi\)
0.663021 + 0.748601i \(0.269274\pi\)
\(578\) −14.1642 −0.589154
\(579\) 0.652041 0.0270979
\(580\) 0.605183 0.0251289
\(581\) −52.8978 −2.19457
\(582\) −7.27938 −0.301740
\(583\) 6.02691 0.249609
\(584\) 11.5553 0.478162
\(585\) −0.200747 −0.00829988
\(586\) −6.25282 −0.258302
\(587\) 6.90003 0.284795 0.142397 0.989810i \(-0.454519\pi\)
0.142397 + 0.989810i \(0.454519\pi\)
\(588\) −13.7071 −0.565270
\(589\) 12.7152 0.523922
\(590\) 7.18363 0.295745
\(591\) 13.0157 0.535393
\(592\) −4.29279 −0.176432
\(593\) 13.2970 0.546044 0.273022 0.962008i \(-0.411977\pi\)
0.273022 + 0.962008i \(0.411977\pi\)
\(594\) −1.88517 −0.0773493
\(595\) 4.62110 0.189447
\(596\) 5.33903 0.218695
\(597\) 2.95663 0.121007
\(598\) −1.14252 −0.0467210
\(599\) −34.6141 −1.41429 −0.707146 0.707067i \(-0.750018\pi\)
−0.707146 + 0.707067i \(0.750018\pi\)
\(600\) 4.63634 0.189278
\(601\) 28.6231 1.16756 0.583781 0.811911i \(-0.301573\pi\)
0.583781 + 0.811911i \(0.301573\pi\)
\(602\) 57.6031 2.34773
\(603\) −0.731176 −0.0297758
\(604\) −6.50484 −0.264678
\(605\) 4.49037 0.182559
\(606\) −3.91896 −0.159197
\(607\) −4.34821 −0.176488 −0.0882442 0.996099i \(-0.528126\pi\)
−0.0882442 + 0.996099i \(0.528126\pi\)
\(608\) 2.93007 0.118830
\(609\) 4.56664 0.185050
\(610\) −3.01736 −0.122169
\(611\) 3.38976 0.137135
\(612\) −1.68398 −0.0680707
\(613\) −21.0395 −0.849777 −0.424889 0.905246i \(-0.639687\pi\)
−0.424889 + 0.905246i \(0.639687\pi\)
\(614\) −9.92547 −0.400559
\(615\) 2.09932 0.0846527
\(616\) 8.57845 0.345636
\(617\) 23.2087 0.934348 0.467174 0.884166i \(-0.345272\pi\)
0.467174 + 0.884166i \(0.345272\pi\)
\(618\) 3.75915 0.151215
\(619\) −17.9895 −0.723060 −0.361530 0.932360i \(-0.617746\pi\)
−0.361530 + 0.932360i \(0.617746\pi\)
\(620\) −2.61695 −0.105099
\(621\) 3.43212 0.137726
\(622\) −3.49848 −0.140276
\(623\) −40.2904 −1.61420
\(624\) −0.332889 −0.0133262
\(625\) 19.6773 0.787092
\(626\) 11.6644 0.466203
\(627\) −5.52367 −0.220594
\(628\) −10.2900 −0.410618
\(629\) 7.22895 0.288237
\(630\) −2.74416 −0.109330
\(631\) 29.6983 1.18227 0.591134 0.806573i \(-0.298680\pi\)
0.591134 + 0.806573i \(0.298680\pi\)
\(632\) −6.48581 −0.257992
\(633\) −8.43942 −0.335437
\(634\) −17.6419 −0.700651
\(635\) −6.31755 −0.250704
\(636\) −3.19702 −0.126770
\(637\) 4.56294 0.180790
\(638\) −1.89185 −0.0748991
\(639\) 2.34043 0.0925858
\(640\) −0.603045 −0.0238375
\(641\) −44.9700 −1.77621 −0.888103 0.459644i \(-0.847977\pi\)
−0.888103 + 0.459644i \(0.847977\pi\)
\(642\) 13.6322 0.538022
\(643\) −18.2522 −0.719798 −0.359899 0.932991i \(-0.617189\pi\)
−0.359899 + 0.932991i \(0.617189\pi\)
\(644\) −15.6179 −0.615431
\(645\) 7.63372 0.300578
\(646\) −4.93417 −0.194132
\(647\) 25.6912 1.01002 0.505012 0.863112i \(-0.331488\pi\)
0.505012 + 0.863112i \(0.331488\pi\)
\(648\) 1.00000 0.0392837
\(649\) −22.4566 −0.881498
\(650\) −1.54339 −0.0605366
\(651\) −19.7472 −0.773954
\(652\) −22.8100 −0.893307
\(653\) −39.6426 −1.55134 −0.775668 0.631141i \(-0.782587\pi\)
−0.775668 + 0.631141i \(0.782587\pi\)
\(654\) 12.8655 0.503080
\(655\) −8.33617 −0.325721
\(656\) 3.48120 0.135918
\(657\) 11.5553 0.450815
\(658\) 46.3371 1.80641
\(659\) −11.9261 −0.464576 −0.232288 0.972647i \(-0.574621\pi\)
−0.232288 + 0.972647i \(0.574621\pi\)
\(660\) 1.13684 0.0442514
\(661\) −10.6868 −0.415667 −0.207833 0.978164i \(-0.566641\pi\)
−0.207833 + 0.978164i \(0.566641\pi\)
\(662\) −9.07997 −0.352903
\(663\) 0.560578 0.0217710
\(664\) −11.6246 −0.451122
\(665\) −8.04058 −0.311800
\(666\) −4.29279 −0.166342
\(667\) 3.44429 0.133364
\(668\) −7.09832 −0.274642
\(669\) 1.00000 0.0386622
\(670\) 0.440932 0.0170347
\(671\) 9.43251 0.364138
\(672\) −4.55050 −0.175539
\(673\) 13.8040 0.532106 0.266053 0.963958i \(-0.414280\pi\)
0.266053 + 0.963958i \(0.414280\pi\)
\(674\) 27.6737 1.06595
\(675\) 4.63634 0.178453
\(676\) −12.8892 −0.495738
\(677\) −24.6499 −0.947373 −0.473687 0.880693i \(-0.657077\pi\)
−0.473687 + 0.880693i \(0.657077\pi\)
\(678\) −2.44489 −0.0938952
\(679\) 33.1248 1.27122
\(680\) 1.01551 0.0389432
\(681\) −16.7885 −0.643338
\(682\) 8.18080 0.313259
\(683\) 25.3859 0.971366 0.485683 0.874135i \(-0.338571\pi\)
0.485683 + 0.874135i \(0.338571\pi\)
\(684\) 2.93007 0.112034
\(685\) −5.64990 −0.215872
\(686\) 30.5206 1.16528
\(687\) −19.3526 −0.738347
\(688\) 12.6586 0.482606
\(689\) 1.06425 0.0405448
\(690\) −2.06972 −0.0787931
\(691\) 19.8537 0.755271 0.377635 0.925954i \(-0.376737\pi\)
0.377635 + 0.925954i \(0.376737\pi\)
\(692\) −17.2397 −0.655356
\(693\) 8.57845 0.325868
\(694\) −9.40234 −0.356908
\(695\) 0.00384972 0.000146028 0
\(696\) 1.00355 0.0380393
\(697\) −5.86226 −0.222049
\(698\) −9.45111 −0.357730
\(699\) −16.7988 −0.635388
\(700\) −21.0977 −0.797417
\(701\) 45.1071 1.70367 0.851836 0.523809i \(-0.175489\pi\)
0.851836 + 0.523809i \(0.175489\pi\)
\(702\) −0.332889 −0.0125641
\(703\) −12.5782 −0.474394
\(704\) 1.88517 0.0710499
\(705\) 6.14072 0.231273
\(706\) −16.6377 −0.626169
\(707\) 17.8333 0.670689
\(708\) 11.9123 0.447690
\(709\) −1.83520 −0.0689225 −0.0344612 0.999406i \(-0.510972\pi\)
−0.0344612 + 0.999406i \(0.510972\pi\)
\(710\) −1.41138 −0.0529682
\(711\) −6.48581 −0.243237
\(712\) −8.85405 −0.331820
\(713\) −14.8939 −0.557782
\(714\) 7.66294 0.286778
\(715\) −0.378442 −0.0141529
\(716\) −8.87461 −0.331660
\(717\) 9.59882 0.358475
\(718\) −30.6733 −1.14472
\(719\) 42.7799 1.59542 0.797711 0.603040i \(-0.206044\pi\)
0.797711 + 0.603040i \(0.206044\pi\)
\(720\) −0.603045 −0.0224742
\(721\) −17.1060 −0.637061
\(722\) −10.4147 −0.387594
\(723\) −26.8255 −0.997650
\(724\) −2.91525 −0.108344
\(725\) 4.65278 0.172800
\(726\) 7.44615 0.276353
\(727\) 38.7699 1.43790 0.718948 0.695064i \(-0.244624\pi\)
0.718948 + 0.695064i \(0.244624\pi\)
\(728\) 1.51481 0.0561428
\(729\) 1.00000 0.0370370
\(730\) −6.96837 −0.257911
\(731\) −21.3168 −0.788432
\(732\) −5.00355 −0.184936
\(733\) 9.59371 0.354352 0.177176 0.984179i \(-0.443304\pi\)
0.177176 + 0.984179i \(0.443304\pi\)
\(734\) 19.8301 0.731941
\(735\) 8.26599 0.304895
\(736\) −3.43212 −0.126510
\(737\) −1.37839 −0.0507736
\(738\) 3.48120 0.128145
\(739\) 38.5762 1.41905 0.709525 0.704680i \(-0.248910\pi\)
0.709525 + 0.704680i \(0.248910\pi\)
\(740\) 2.58874 0.0951641
\(741\) −0.975390 −0.0358318
\(742\) 14.5480 0.534075
\(743\) 7.58479 0.278259 0.139129 0.990274i \(-0.455570\pi\)
0.139129 + 0.990274i \(0.455570\pi\)
\(744\) −4.33956 −0.159096
\(745\) −3.21968 −0.117960
\(746\) 27.1464 0.993898
\(747\) −11.6246 −0.425322
\(748\) −3.17457 −0.116074
\(749\) −62.0336 −2.26666
\(750\) −5.81115 −0.212193
\(751\) −32.2006 −1.17502 −0.587509 0.809217i \(-0.699891\pi\)
−0.587509 + 0.809217i \(0.699891\pi\)
\(752\) 10.1829 0.371330
\(753\) 8.58922 0.313008
\(754\) −0.334070 −0.0121661
\(755\) 3.92271 0.142762
\(756\) −4.55050 −0.165500
\(757\) −50.1275 −1.82192 −0.910958 0.412499i \(-0.864656\pi\)
−0.910958 + 0.412499i \(0.864656\pi\)
\(758\) −33.9956 −1.23477
\(759\) 6.47012 0.234850
\(760\) −1.76696 −0.0640946
\(761\) −11.9580 −0.433477 −0.216739 0.976230i \(-0.569542\pi\)
−0.216739 + 0.976230i \(0.569542\pi\)
\(762\) −10.4761 −0.379508
\(763\) −58.5444 −2.11945
\(764\) −3.79232 −0.137201
\(765\) 1.01551 0.0367160
\(766\) −12.7407 −0.460340
\(767\) −3.96546 −0.143185
\(768\) −1.00000 −0.0360844
\(769\) −2.70203 −0.0974376 −0.0487188 0.998813i \(-0.515514\pi\)
−0.0487188 + 0.998813i \(0.515514\pi\)
\(770\) −5.17319 −0.186429
\(771\) 14.4827 0.521583
\(772\) −0.652041 −0.0234675
\(773\) 46.4393 1.67031 0.835153 0.550018i \(-0.185379\pi\)
0.835153 + 0.550018i \(0.185379\pi\)
\(774\) 12.6586 0.455005
\(775\) −20.1197 −0.722720
\(776\) 7.27938 0.261315
\(777\) 19.5343 0.700790
\(778\) 16.0790 0.576460
\(779\) 10.2002 0.365459
\(780\) 0.200747 0.00718791
\(781\) 4.41209 0.157877
\(782\) 5.77961 0.206679
\(783\) 1.00355 0.0358638
\(784\) 13.7071 0.489538
\(785\) 6.20536 0.221479
\(786\) −13.8235 −0.493067
\(787\) −16.2157 −0.578028 −0.289014 0.957325i \(-0.593327\pi\)
−0.289014 + 0.957325i \(0.593327\pi\)
\(788\) −13.0157 −0.463664
\(789\) 15.0239 0.534865
\(790\) 3.91124 0.139156
\(791\) 11.1255 0.395576
\(792\) 1.88517 0.0669864
\(793\) 1.66563 0.0591482
\(794\) −30.5096 −1.08274
\(795\) 1.92795 0.0683772
\(796\) −2.95663 −0.104795
\(797\) 16.9400 0.600044 0.300022 0.953932i \(-0.403006\pi\)
0.300022 + 0.953932i \(0.403006\pi\)
\(798\) −13.3333 −0.471994
\(799\) −17.1477 −0.606642
\(800\) −4.63634 −0.163919
\(801\) −8.85405 −0.312843
\(802\) 26.5433 0.937277
\(803\) 21.7837 0.768729
\(804\) 0.731176 0.0257866
\(805\) 9.41829 0.331951
\(806\) 1.44459 0.0508837
\(807\) 15.5993 0.549120
\(808\) 3.91896 0.137869
\(809\) −11.7475 −0.413019 −0.206510 0.978445i \(-0.566210\pi\)
−0.206510 + 0.978445i \(0.566210\pi\)
\(810\) −0.603045 −0.0211888
\(811\) 41.3075 1.45050 0.725251 0.688485i \(-0.241724\pi\)
0.725251 + 0.688485i \(0.241724\pi\)
\(812\) −4.56664 −0.160258
\(813\) −10.4110 −0.365130
\(814\) −8.09261 −0.283646
\(815\) 13.7554 0.481832
\(816\) 1.68398 0.0589510
\(817\) 37.0907 1.29764
\(818\) 40.2002 1.40557
\(819\) 1.51481 0.0529319
\(820\) −2.09932 −0.0733114
\(821\) 14.0695 0.491029 0.245515 0.969393i \(-0.421043\pi\)
0.245515 + 0.969393i \(0.421043\pi\)
\(822\) −9.36895 −0.326780
\(823\) 25.0661 0.873751 0.436876 0.899522i \(-0.356085\pi\)
0.436876 + 0.899522i \(0.356085\pi\)
\(824\) −3.75915 −0.130956
\(825\) 8.74026 0.304297
\(826\) −54.2068 −1.88609
\(827\) 52.7969 1.83593 0.917965 0.396662i \(-0.129831\pi\)
0.917965 + 0.396662i \(0.129831\pi\)
\(828\) −3.43212 −0.119275
\(829\) −17.3437 −0.602371 −0.301186 0.953566i \(-0.597382\pi\)
−0.301186 + 0.953566i \(0.597382\pi\)
\(830\) 7.01016 0.243326
\(831\) 5.58823 0.193854
\(832\) 0.332889 0.0115409
\(833\) −23.0824 −0.799758
\(834\) 0.00638381 0.000221053 0
\(835\) 4.28061 0.148137
\(836\) 5.52367 0.191040
\(837\) −4.33956 −0.149997
\(838\) 0.648474 0.0224012
\(839\) −15.0814 −0.520669 −0.260335 0.965518i \(-0.583833\pi\)
−0.260335 + 0.965518i \(0.583833\pi\)
\(840\) 2.74416 0.0946825
\(841\) −27.9929 −0.965272
\(842\) −21.3460 −0.735632
\(843\) 11.0448 0.380404
\(844\) 8.43942 0.290497
\(845\) 7.77276 0.267391
\(846\) 10.1829 0.350094
\(847\) −33.8837 −1.16426
\(848\) 3.19702 0.109786
\(849\) 10.9022 0.374164
\(850\) 7.80748 0.267794
\(851\) 14.7334 0.505053
\(852\) −2.34043 −0.0801816
\(853\) −45.9297 −1.57260 −0.786302 0.617843i \(-0.788007\pi\)
−0.786302 + 0.617843i \(0.788007\pi\)
\(854\) 22.7686 0.779127
\(855\) −1.76696 −0.0604289
\(856\) −13.6322 −0.465941
\(857\) −11.7131 −0.400112 −0.200056 0.979784i \(-0.564112\pi\)
−0.200056 + 0.979784i \(0.564112\pi\)
\(858\) −0.627552 −0.0214243
\(859\) 1.69590 0.0578633 0.0289317 0.999581i \(-0.490789\pi\)
0.0289317 + 0.999581i \(0.490789\pi\)
\(860\) −7.63372 −0.260308
\(861\) −15.8412 −0.539867
\(862\) −17.4639 −0.594823
\(863\) 33.6266 1.14466 0.572331 0.820023i \(-0.306039\pi\)
0.572331 + 0.820023i \(0.306039\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 10.3963 0.353486
\(866\) −8.87301 −0.301517
\(867\) 14.1642 0.481042
\(868\) 19.7472 0.670264
\(869\) −12.2268 −0.414767
\(870\) −0.605183 −0.0205176
\(871\) −0.243401 −0.00824732
\(872\) −12.8655 −0.435680
\(873\) 7.27938 0.246370
\(874\) −10.0564 −0.340162
\(875\) 26.4436 0.893958
\(876\) −11.5553 −0.390417
\(877\) 13.1145 0.442846 0.221423 0.975178i \(-0.428930\pi\)
0.221423 + 0.975178i \(0.428930\pi\)
\(878\) −8.89218 −0.300096
\(879\) 6.25282 0.210902
\(880\) −1.13684 −0.0383229
\(881\) −30.7658 −1.03653 −0.518263 0.855221i \(-0.673421\pi\)
−0.518263 + 0.855221i \(0.673421\pi\)
\(882\) 13.7071 0.461541
\(883\) 15.9997 0.538433 0.269216 0.963080i \(-0.413235\pi\)
0.269216 + 0.963080i \(0.413235\pi\)
\(884\) −0.560578 −0.0188543
\(885\) −7.18363 −0.241475
\(886\) −7.45500 −0.250456
\(887\) 23.3155 0.782859 0.391430 0.920208i \(-0.371981\pi\)
0.391430 + 0.920208i \(0.371981\pi\)
\(888\) 4.29279 0.144056
\(889\) 47.6714 1.59885
\(890\) 5.33939 0.178977
\(891\) 1.88517 0.0631554
\(892\) −1.00000 −0.0334825
\(893\) 29.8365 0.998440
\(894\) −5.33903 −0.178564
\(895\) 5.35179 0.178891
\(896\) 4.55050 0.152022
\(897\) 1.14252 0.0381475
\(898\) 19.7555 0.659248
\(899\) −4.35495 −0.145246
\(900\) −4.63634 −0.154545
\(901\) −5.38370 −0.179357
\(902\) 6.56264 0.218512
\(903\) −57.6031 −1.91691
\(904\) 2.44489 0.0813157
\(905\) 1.75803 0.0584388
\(906\) 6.50484 0.216109
\(907\) −23.5650 −0.782463 −0.391232 0.920292i \(-0.627951\pi\)
−0.391232 + 0.920292i \(0.627951\pi\)
\(908\) 16.7885 0.557147
\(909\) 3.91896 0.129984
\(910\) −0.913501 −0.0302823
\(911\) 12.2454 0.405709 0.202854 0.979209i \(-0.434978\pi\)
0.202854 + 0.979209i \(0.434978\pi\)
\(912\) −2.93007 −0.0970243
\(913\) −21.9143 −0.725258
\(914\) 25.8231 0.854151
\(915\) 3.01736 0.0997510
\(916\) 19.3526 0.639428
\(917\) 62.9037 2.07726
\(918\) 1.68398 0.0555795
\(919\) −3.89961 −0.128636 −0.0643181 0.997929i \(-0.520487\pi\)
−0.0643181 + 0.997929i \(0.520487\pi\)
\(920\) 2.06972 0.0682368
\(921\) 9.92547 0.327055
\(922\) 42.3213 1.39378
\(923\) 0.779103 0.0256445
\(924\) −8.57845 −0.282210
\(925\) 19.9028 0.654400
\(926\) 4.10285 0.134828
\(927\) −3.75915 −0.123467
\(928\) −1.00355 −0.0329430
\(929\) −0.784472 −0.0257377 −0.0128688 0.999917i \(-0.504096\pi\)
−0.0128688 + 0.999917i \(0.504096\pi\)
\(930\) 2.61695 0.0858133
\(931\) 40.1627 1.31628
\(932\) 16.7988 0.550262
\(933\) 3.49848 0.114535
\(934\) 1.40172 0.0458657
\(935\) 1.91441 0.0626080
\(936\) 0.332889 0.0108808
\(937\) −0.197469 −0.00645102 −0.00322551 0.999995i \(-0.501027\pi\)
−0.00322551 + 0.999995i \(0.501027\pi\)
\(938\) −3.32722 −0.108638
\(939\) −11.6644 −0.380653
\(940\) −6.14072 −0.200288
\(941\) −40.6552 −1.32532 −0.662660 0.748920i \(-0.730573\pi\)
−0.662660 + 0.748920i \(0.730573\pi\)
\(942\) 10.2900 0.335268
\(943\) −11.9479 −0.389077
\(944\) −11.9123 −0.387711
\(945\) 2.74416 0.0892675
\(946\) 23.8636 0.775873
\(947\) 34.3853 1.11737 0.558686 0.829379i \(-0.311306\pi\)
0.558686 + 0.829379i \(0.311306\pi\)
\(948\) 6.48581 0.210649
\(949\) 3.84664 0.124867
\(950\) −13.5848 −0.440749
\(951\) 17.6419 0.572079
\(952\) −7.66294 −0.248357
\(953\) 51.8834 1.68067 0.840334 0.542069i \(-0.182359\pi\)
0.840334 + 0.542069i \(0.182359\pi\)
\(954\) 3.19702 0.103507
\(955\) 2.28694 0.0740036
\(956\) −9.59882 −0.310448
\(957\) 1.89185 0.0611548
\(958\) 1.60498 0.0518544
\(959\) 42.6334 1.37671
\(960\) 0.603045 0.0194632
\(961\) −12.1682 −0.392522
\(962\) −1.42902 −0.0460735
\(963\) −13.6322 −0.439293
\(964\) 26.8255 0.863990
\(965\) 0.393210 0.0126579
\(966\) 15.6179 0.502497
\(967\) 30.3219 0.975087 0.487544 0.873099i \(-0.337893\pi\)
0.487544 + 0.873099i \(0.337893\pi\)
\(968\) −7.44615 −0.239328
\(969\) 4.93417 0.158508
\(970\) −4.38980 −0.140948
\(971\) 4.91934 0.157869 0.0789345 0.996880i \(-0.474848\pi\)
0.0789345 + 0.996880i \(0.474848\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −0.0290495 −0.000931285 0
\(974\) −1.70191 −0.0545328
\(975\) 1.54339 0.0494280
\(976\) 5.00355 0.160160
\(977\) −19.5573 −0.625694 −0.312847 0.949804i \(-0.601283\pi\)
−0.312847 + 0.949804i \(0.601283\pi\)
\(978\) 22.8100 0.729382
\(979\) −16.6914 −0.533458
\(980\) −8.26599 −0.264047
\(981\) −12.8655 −0.410763
\(982\) −27.4254 −0.875181
\(983\) 37.0151 1.18060 0.590299 0.807185i \(-0.299010\pi\)
0.590299 + 0.807185i \(0.299010\pi\)
\(984\) −3.48120 −0.110977
\(985\) 7.84903 0.250091
\(986\) 1.68995 0.0538189
\(987\) −46.3371 −1.47493
\(988\) 0.975390 0.0310313
\(989\) −43.4460 −1.38150
\(990\) −1.13684 −0.0361311
\(991\) −27.3983 −0.870335 −0.435168 0.900349i \(-0.643311\pi\)
−0.435168 + 0.900349i \(0.643311\pi\)
\(992\) 4.33956 0.137781
\(993\) 9.07997 0.288144
\(994\) 10.6501 0.337801
\(995\) 1.78298 0.0565244
\(996\) 11.6246 0.368340
\(997\) 50.7751 1.60806 0.804032 0.594586i \(-0.202684\pi\)
0.804032 + 0.594586i \(0.202684\pi\)
\(998\) −34.5307 −1.09305
\(999\) 4.29279 0.135818
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.j.1.3 7
3.2 odd 2 4014.2.a.v.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.j.1.3 7 1.1 even 1 trivial
4014.2.a.v.1.5 7 3.2 odd 2