Properties

Label 4014.2.a.n.1.1
Level $4014$
Weight $2$
Character 4014.1
Self dual yes
Analytic conductor $32.052$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4014,2,Mod(1,4014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4014, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4014.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4014 = 2 \cdot 3^{2} \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4014.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,7,0,-9,-3,0,-7,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.0519513713\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1338)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 4014.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +0.753020 q^{5} -4.69202 q^{7} -1.00000 q^{8} -0.753020 q^{10} +5.51573 q^{11} -4.13706 q^{13} +4.69202 q^{14} +1.00000 q^{16} -4.34481 q^{17} +5.65279 q^{19} +0.753020 q^{20} -5.51573 q^{22} +5.69202 q^{23} -4.43296 q^{25} +4.13706 q^{26} -4.69202 q^{28} +0.417895 q^{29} -1.55496 q^{31} -1.00000 q^{32} +4.34481 q^{34} -3.53319 q^{35} -8.89977 q^{37} -5.65279 q^{38} -0.753020 q^{40} +9.36658 q^{41} +1.04892 q^{43} +5.51573 q^{44} -5.69202 q^{46} -2.57673 q^{47} +15.0151 q^{49} +4.43296 q^{50} -4.13706 q^{52} +8.32304 q^{53} +4.15346 q^{55} +4.69202 q^{56} -0.417895 q^{58} -13.0586 q^{59} -15.5036 q^{61} +1.55496 q^{62} +1.00000 q^{64} -3.11529 q^{65} +11.5646 q^{67} -4.34481 q^{68} +3.53319 q^{70} -10.0858 q^{71} +1.53319 q^{73} +8.89977 q^{74} +5.65279 q^{76} -25.8799 q^{77} +6.46011 q^{79} +0.753020 q^{80} -9.36658 q^{82} -2.93900 q^{83} -3.27173 q^{85} -1.04892 q^{86} -5.51573 q^{88} +4.59419 q^{89} +19.4112 q^{91} +5.69202 q^{92} +2.57673 q^{94} +4.25667 q^{95} +3.37867 q^{97} -15.0151 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} + 7 q^{5} - 9 q^{7} - 3 q^{8} - 7 q^{10} + 4 q^{11} - 7 q^{13} + 9 q^{14} + 3 q^{16} + 10 q^{17} - q^{19} + 7 q^{20} - 4 q^{22} + 12 q^{23} + 6 q^{25} + 7 q^{26} - 9 q^{28} + 7 q^{29}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.753020 0.336761 0.168380 0.985722i \(-0.446146\pi\)
0.168380 + 0.985722i \(0.446146\pi\)
\(6\) 0 0
\(7\) −4.69202 −1.77342 −0.886709 0.462329i \(-0.847014\pi\)
−0.886709 + 0.462329i \(0.847014\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.753020 −0.238126
\(11\) 5.51573 1.66306 0.831528 0.555484i \(-0.187467\pi\)
0.831528 + 0.555484i \(0.187467\pi\)
\(12\) 0 0
\(13\) −4.13706 −1.14741 −0.573707 0.819060i \(-0.694495\pi\)
−0.573707 + 0.819060i \(0.694495\pi\)
\(14\) 4.69202 1.25400
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.34481 −1.05377 −0.526886 0.849936i \(-0.676641\pi\)
−0.526886 + 0.849936i \(0.676641\pi\)
\(18\) 0 0
\(19\) 5.65279 1.29684 0.648420 0.761283i \(-0.275430\pi\)
0.648420 + 0.761283i \(0.275430\pi\)
\(20\) 0.753020 0.168380
\(21\) 0 0
\(22\) −5.51573 −1.17596
\(23\) 5.69202 1.18687 0.593434 0.804882i \(-0.297772\pi\)
0.593434 + 0.804882i \(0.297772\pi\)
\(24\) 0 0
\(25\) −4.43296 −0.886592
\(26\) 4.13706 0.811345
\(27\) 0 0
\(28\) −4.69202 −0.886709
\(29\) 0.417895 0.0776011 0.0388006 0.999247i \(-0.487646\pi\)
0.0388006 + 0.999247i \(0.487646\pi\)
\(30\) 0 0
\(31\) −1.55496 −0.279279 −0.139639 0.990202i \(-0.544594\pi\)
−0.139639 + 0.990202i \(0.544594\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.34481 0.745130
\(35\) −3.53319 −0.597218
\(36\) 0 0
\(37\) −8.89977 −1.46311 −0.731557 0.681781i \(-0.761206\pi\)
−0.731557 + 0.681781i \(0.761206\pi\)
\(38\) −5.65279 −0.917004
\(39\) 0 0
\(40\) −0.753020 −0.119063
\(41\) 9.36658 1.46281 0.731407 0.681941i \(-0.238864\pi\)
0.731407 + 0.681941i \(0.238864\pi\)
\(42\) 0 0
\(43\) 1.04892 0.159958 0.0799792 0.996797i \(-0.474515\pi\)
0.0799792 + 0.996797i \(0.474515\pi\)
\(44\) 5.51573 0.831528
\(45\) 0 0
\(46\) −5.69202 −0.839243
\(47\) −2.57673 −0.375854 −0.187927 0.982183i \(-0.560177\pi\)
−0.187927 + 0.982183i \(0.560177\pi\)
\(48\) 0 0
\(49\) 15.0151 2.14501
\(50\) 4.43296 0.626915
\(51\) 0 0
\(52\) −4.13706 −0.573707
\(53\) 8.32304 1.14326 0.571629 0.820512i \(-0.306312\pi\)
0.571629 + 0.820512i \(0.306312\pi\)
\(54\) 0 0
\(55\) 4.15346 0.560052
\(56\) 4.69202 0.626998
\(57\) 0 0
\(58\) −0.417895 −0.0548723
\(59\) −13.0586 −1.70009 −0.850043 0.526714i \(-0.823424\pi\)
−0.850043 + 0.526714i \(0.823424\pi\)
\(60\) 0 0
\(61\) −15.5036 −1.98504 −0.992519 0.122087i \(-0.961041\pi\)
−0.992519 + 0.122087i \(0.961041\pi\)
\(62\) 1.55496 0.197480
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.11529 −0.386405
\(66\) 0 0
\(67\) 11.5646 1.41285 0.706423 0.707790i \(-0.250308\pi\)
0.706423 + 0.707790i \(0.250308\pi\)
\(68\) −4.34481 −0.526886
\(69\) 0 0
\(70\) 3.53319 0.422297
\(71\) −10.0858 −1.19696 −0.598479 0.801138i \(-0.704228\pi\)
−0.598479 + 0.801138i \(0.704228\pi\)
\(72\) 0 0
\(73\) 1.53319 0.179446 0.0897230 0.995967i \(-0.471402\pi\)
0.0897230 + 0.995967i \(0.471402\pi\)
\(74\) 8.89977 1.03458
\(75\) 0 0
\(76\) 5.65279 0.648420
\(77\) −25.8799 −2.94929
\(78\) 0 0
\(79\) 6.46011 0.726819 0.363409 0.931630i \(-0.381613\pi\)
0.363409 + 0.931630i \(0.381613\pi\)
\(80\) 0.753020 0.0841902
\(81\) 0 0
\(82\) −9.36658 −1.03437
\(83\) −2.93900 −0.322597 −0.161299 0.986906i \(-0.551568\pi\)
−0.161299 + 0.986906i \(0.551568\pi\)
\(84\) 0 0
\(85\) −3.27173 −0.354869
\(86\) −1.04892 −0.113108
\(87\) 0 0
\(88\) −5.51573 −0.587979
\(89\) 4.59419 0.486983 0.243491 0.969903i \(-0.421707\pi\)
0.243491 + 0.969903i \(0.421707\pi\)
\(90\) 0 0
\(91\) 19.4112 2.03485
\(92\) 5.69202 0.593434
\(93\) 0 0
\(94\) 2.57673 0.265769
\(95\) 4.25667 0.436725
\(96\) 0 0
\(97\) 3.37867 0.343052 0.171526 0.985180i \(-0.445130\pi\)
0.171526 + 0.985180i \(0.445130\pi\)
\(98\) −15.0151 −1.51675
\(99\) 0 0
\(100\) −4.43296 −0.443296
\(101\) 5.85623 0.582717 0.291358 0.956614i \(-0.405893\pi\)
0.291358 + 0.956614i \(0.405893\pi\)
\(102\) 0 0
\(103\) 3.34050 0.329149 0.164575 0.986365i \(-0.447375\pi\)
0.164575 + 0.986365i \(0.447375\pi\)
\(104\) 4.13706 0.405672
\(105\) 0 0
\(106\) −8.32304 −0.808405
\(107\) 16.0248 1.54917 0.774586 0.632469i \(-0.217958\pi\)
0.774586 + 0.632469i \(0.217958\pi\)
\(108\) 0 0
\(109\) 15.9705 1.52969 0.764846 0.644213i \(-0.222815\pi\)
0.764846 + 0.644213i \(0.222815\pi\)
\(110\) −4.15346 −0.396017
\(111\) 0 0
\(112\) −4.69202 −0.443354
\(113\) 15.7778 1.48425 0.742124 0.670263i \(-0.233818\pi\)
0.742124 + 0.670263i \(0.233818\pi\)
\(114\) 0 0
\(115\) 4.28621 0.399691
\(116\) 0.417895 0.0388006
\(117\) 0 0
\(118\) 13.0586 1.20214
\(119\) 20.3860 1.86878
\(120\) 0 0
\(121\) 19.4233 1.76575
\(122\) 15.5036 1.40363
\(123\) 0 0
\(124\) −1.55496 −0.139639
\(125\) −7.10321 −0.635331
\(126\) 0 0
\(127\) −1.66487 −0.147734 −0.0738669 0.997268i \(-0.523534\pi\)
−0.0738669 + 0.997268i \(0.523534\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 3.11529 0.273229
\(131\) −9.21983 −0.805541 −0.402770 0.915301i \(-0.631953\pi\)
−0.402770 + 0.915301i \(0.631953\pi\)
\(132\) 0 0
\(133\) −26.5230 −2.29984
\(134\) −11.5646 −0.999033
\(135\) 0 0
\(136\) 4.34481 0.372565
\(137\) 18.6286 1.59155 0.795776 0.605592i \(-0.207063\pi\)
0.795776 + 0.605592i \(0.207063\pi\)
\(138\) 0 0
\(139\) 8.46681 0.718146 0.359073 0.933310i \(-0.383093\pi\)
0.359073 + 0.933310i \(0.383093\pi\)
\(140\) −3.53319 −0.298609
\(141\) 0 0
\(142\) 10.0858 0.846378
\(143\) −22.8189 −1.90821
\(144\) 0 0
\(145\) 0.314683 0.0261330
\(146\) −1.53319 −0.126888
\(147\) 0 0
\(148\) −8.89977 −0.731557
\(149\) 3.73125 0.305676 0.152838 0.988251i \(-0.451159\pi\)
0.152838 + 0.988251i \(0.451159\pi\)
\(150\) 0 0
\(151\) −0.146752 −0.0119425 −0.00597125 0.999982i \(-0.501901\pi\)
−0.00597125 + 0.999982i \(0.501901\pi\)
\(152\) −5.65279 −0.458502
\(153\) 0 0
\(154\) 25.8799 2.08546
\(155\) −1.17092 −0.0940502
\(156\) 0 0
\(157\) 8.85623 0.706804 0.353402 0.935472i \(-0.385025\pi\)
0.353402 + 0.935472i \(0.385025\pi\)
\(158\) −6.46011 −0.513939
\(159\) 0 0
\(160\) −0.753020 −0.0595315
\(161\) −26.7071 −2.10481
\(162\) 0 0
\(163\) 18.6112 1.45774 0.728870 0.684652i \(-0.240046\pi\)
0.728870 + 0.684652i \(0.240046\pi\)
\(164\) 9.36658 0.731407
\(165\) 0 0
\(166\) 2.93900 0.228111
\(167\) −15.9933 −1.23760 −0.618799 0.785549i \(-0.712381\pi\)
−0.618799 + 0.785549i \(0.712381\pi\)
\(168\) 0 0
\(169\) 4.11529 0.316561
\(170\) 3.27173 0.250931
\(171\) 0 0
\(172\) 1.04892 0.0799792
\(173\) 2.14914 0.163396 0.0816982 0.996657i \(-0.473966\pi\)
0.0816982 + 0.996657i \(0.473966\pi\)
\(174\) 0 0
\(175\) 20.7995 1.57230
\(176\) 5.51573 0.415764
\(177\) 0 0
\(178\) −4.59419 −0.344349
\(179\) 21.3032 1.59228 0.796138 0.605116i \(-0.206873\pi\)
0.796138 + 0.605116i \(0.206873\pi\)
\(180\) 0 0
\(181\) −1.76510 −0.131199 −0.0655995 0.997846i \(-0.520896\pi\)
−0.0655995 + 0.997846i \(0.520896\pi\)
\(182\) −19.4112 −1.43885
\(183\) 0 0
\(184\) −5.69202 −0.419621
\(185\) −6.70171 −0.492720
\(186\) 0 0
\(187\) −23.9648 −1.75248
\(188\) −2.57673 −0.187927
\(189\) 0 0
\(190\) −4.25667 −0.308811
\(191\) 18.9933 1.37431 0.687153 0.726512i \(-0.258860\pi\)
0.687153 + 0.726512i \(0.258860\pi\)
\(192\) 0 0
\(193\) −24.8635 −1.78972 −0.894858 0.446351i \(-0.852723\pi\)
−0.894858 + 0.446351i \(0.852723\pi\)
\(194\) −3.37867 −0.242574
\(195\) 0 0
\(196\) 15.0151 1.07250
\(197\) 0.0706876 0.00503628 0.00251814 0.999997i \(-0.499198\pi\)
0.00251814 + 0.999997i \(0.499198\pi\)
\(198\) 0 0
\(199\) −11.7041 −0.829682 −0.414841 0.909894i \(-0.636163\pi\)
−0.414841 + 0.909894i \(0.636163\pi\)
\(200\) 4.43296 0.313458
\(201\) 0 0
\(202\) −5.85623 −0.412043
\(203\) −1.96077 −0.137619
\(204\) 0 0
\(205\) 7.05323 0.492619
\(206\) −3.34050 −0.232744
\(207\) 0 0
\(208\) −4.13706 −0.286854
\(209\) 31.1793 2.15672
\(210\) 0 0
\(211\) −9.29350 −0.639791 −0.319896 0.947453i \(-0.603648\pi\)
−0.319896 + 0.947453i \(0.603648\pi\)
\(212\) 8.32304 0.571629
\(213\) 0 0
\(214\) −16.0248 −1.09543
\(215\) 0.789856 0.0538677
\(216\) 0 0
\(217\) 7.29590 0.495278
\(218\) −15.9705 −1.08166
\(219\) 0 0
\(220\) 4.15346 0.280026
\(221\) 17.9748 1.20911
\(222\) 0 0
\(223\) −1.00000 −0.0669650
\(224\) 4.69202 0.313499
\(225\) 0 0
\(226\) −15.7778 −1.04952
\(227\) 9.17390 0.608893 0.304447 0.952529i \(-0.401529\pi\)
0.304447 + 0.952529i \(0.401529\pi\)
\(228\) 0 0
\(229\) 21.5308 1.42279 0.711397 0.702790i \(-0.248063\pi\)
0.711397 + 0.702790i \(0.248063\pi\)
\(230\) −4.28621 −0.282624
\(231\) 0 0
\(232\) −0.417895 −0.0274361
\(233\) −15.6082 −1.02253 −0.511263 0.859424i \(-0.670822\pi\)
−0.511263 + 0.859424i \(0.670822\pi\)
\(234\) 0 0
\(235\) −1.94033 −0.126573
\(236\) −13.0586 −0.850043
\(237\) 0 0
\(238\) −20.3860 −1.32143
\(239\) 18.7506 1.21288 0.606439 0.795130i \(-0.292598\pi\)
0.606439 + 0.795130i \(0.292598\pi\)
\(240\) 0 0
\(241\) 4.61463 0.297254 0.148627 0.988893i \(-0.452515\pi\)
0.148627 + 0.988893i \(0.452515\pi\)
\(242\) −19.4233 −1.24858
\(243\) 0 0
\(244\) −15.5036 −0.992519
\(245\) 11.3067 0.722355
\(246\) 0 0
\(247\) −23.3860 −1.48801
\(248\) 1.55496 0.0987399
\(249\) 0 0
\(250\) 7.10321 0.449247
\(251\) 16.8280 1.06218 0.531088 0.847317i \(-0.321784\pi\)
0.531088 + 0.847317i \(0.321784\pi\)
\(252\) 0 0
\(253\) 31.3957 1.97383
\(254\) 1.66487 0.104464
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 11.0513 0.689362 0.344681 0.938720i \(-0.387987\pi\)
0.344681 + 0.938720i \(0.387987\pi\)
\(258\) 0 0
\(259\) 41.7579 2.59471
\(260\) −3.11529 −0.193202
\(261\) 0 0
\(262\) 9.21983 0.569603
\(263\) −6.92261 −0.426866 −0.213433 0.976958i \(-0.568465\pi\)
−0.213433 + 0.976958i \(0.568465\pi\)
\(264\) 0 0
\(265\) 6.26742 0.385005
\(266\) 26.5230 1.62623
\(267\) 0 0
\(268\) 11.5646 0.706423
\(269\) 16.4330 1.00194 0.500968 0.865466i \(-0.332978\pi\)
0.500968 + 0.865466i \(0.332978\pi\)
\(270\) 0 0
\(271\) 5.65817 0.343709 0.171855 0.985122i \(-0.445024\pi\)
0.171855 + 0.985122i \(0.445024\pi\)
\(272\) −4.34481 −0.263443
\(273\) 0 0
\(274\) −18.6286 −1.12540
\(275\) −24.4510 −1.47445
\(276\) 0 0
\(277\) −2.23191 −0.134103 −0.0670514 0.997750i \(-0.521359\pi\)
−0.0670514 + 0.997750i \(0.521359\pi\)
\(278\) −8.46681 −0.507806
\(279\) 0 0
\(280\) 3.53319 0.211148
\(281\) −18.6015 −1.10967 −0.554836 0.831960i \(-0.687219\pi\)
−0.554836 + 0.831960i \(0.687219\pi\)
\(282\) 0 0
\(283\) −5.78017 −0.343595 −0.171798 0.985132i \(-0.554958\pi\)
−0.171798 + 0.985132i \(0.554958\pi\)
\(284\) −10.0858 −0.598479
\(285\) 0 0
\(286\) 22.8189 1.34931
\(287\) −43.9482 −2.59418
\(288\) 0 0
\(289\) 1.87741 0.110436
\(290\) −0.314683 −0.0184788
\(291\) 0 0
\(292\) 1.53319 0.0897230
\(293\) 10.5875 0.618527 0.309264 0.950976i \(-0.399917\pi\)
0.309264 + 0.950976i \(0.399917\pi\)
\(294\) 0 0
\(295\) −9.83340 −0.572522
\(296\) 8.89977 0.517289
\(297\) 0 0
\(298\) −3.73125 −0.216146
\(299\) −23.5483 −1.36183
\(300\) 0 0
\(301\) −4.92154 −0.283673
\(302\) 0.146752 0.00844463
\(303\) 0 0
\(304\) 5.65279 0.324210
\(305\) −11.6746 −0.668484
\(306\) 0 0
\(307\) −27.3478 −1.56082 −0.780411 0.625267i \(-0.784990\pi\)
−0.780411 + 0.625267i \(0.784990\pi\)
\(308\) −25.8799 −1.47465
\(309\) 0 0
\(310\) 1.17092 0.0665035
\(311\) 4.63102 0.262601 0.131301 0.991343i \(-0.458085\pi\)
0.131301 + 0.991343i \(0.458085\pi\)
\(312\) 0 0
\(313\) −21.1709 −1.19665 −0.598325 0.801253i \(-0.704167\pi\)
−0.598325 + 0.801253i \(0.704167\pi\)
\(314\) −8.85623 −0.499786
\(315\) 0 0
\(316\) 6.46011 0.363409
\(317\) 1.68127 0.0944294 0.0472147 0.998885i \(-0.484966\pi\)
0.0472147 + 0.998885i \(0.484966\pi\)
\(318\) 0 0
\(319\) 2.30499 0.129055
\(320\) 0.753020 0.0420951
\(321\) 0 0
\(322\) 26.7071 1.48833
\(323\) −24.5603 −1.36657
\(324\) 0 0
\(325\) 18.3394 1.01729
\(326\) −18.6112 −1.03078
\(327\) 0 0
\(328\) −9.36658 −0.517183
\(329\) 12.0901 0.666547
\(330\) 0 0
\(331\) 24.3394 1.33782 0.668908 0.743345i \(-0.266762\pi\)
0.668908 + 0.743345i \(0.266762\pi\)
\(332\) −2.93900 −0.161299
\(333\) 0 0
\(334\) 15.9933 0.875114
\(335\) 8.70841 0.475792
\(336\) 0 0
\(337\) 28.9922 1.57931 0.789654 0.613553i \(-0.210260\pi\)
0.789654 + 0.613553i \(0.210260\pi\)
\(338\) −4.11529 −0.223842
\(339\) 0 0
\(340\) −3.27173 −0.177435
\(341\) −8.57673 −0.464456
\(342\) 0 0
\(343\) −37.6069 −2.03058
\(344\) −1.04892 −0.0565538
\(345\) 0 0
\(346\) −2.14914 −0.115539
\(347\) 28.8442 1.54844 0.774218 0.632920i \(-0.218144\pi\)
0.774218 + 0.632920i \(0.218144\pi\)
\(348\) 0 0
\(349\) 19.4795 1.04271 0.521356 0.853339i \(-0.325426\pi\)
0.521356 + 0.853339i \(0.325426\pi\)
\(350\) −20.7995 −1.11178
\(351\) 0 0
\(352\) −5.51573 −0.293989
\(353\) 34.7657 1.85039 0.925196 0.379491i \(-0.123901\pi\)
0.925196 + 0.379491i \(0.123901\pi\)
\(354\) 0 0
\(355\) −7.59478 −0.403089
\(356\) 4.59419 0.243491
\(357\) 0 0
\(358\) −21.3032 −1.12591
\(359\) −12.9530 −0.683633 −0.341817 0.939767i \(-0.611042\pi\)
−0.341817 + 0.939767i \(0.611042\pi\)
\(360\) 0 0
\(361\) 12.9541 0.681793
\(362\) 1.76510 0.0927717
\(363\) 0 0
\(364\) 19.4112 1.01742
\(365\) 1.15452 0.0604304
\(366\) 0 0
\(367\) −23.5265 −1.22807 −0.614036 0.789278i \(-0.710455\pi\)
−0.614036 + 0.789278i \(0.710455\pi\)
\(368\) 5.69202 0.296717
\(369\) 0 0
\(370\) 6.70171 0.348405
\(371\) −39.0519 −2.02747
\(372\) 0 0
\(373\) 26.4959 1.37190 0.685952 0.727647i \(-0.259386\pi\)
0.685952 + 0.727647i \(0.259386\pi\)
\(374\) 23.9648 1.23919
\(375\) 0 0
\(376\) 2.57673 0.132885
\(377\) −1.72886 −0.0890407
\(378\) 0 0
\(379\) −35.3642 −1.81654 −0.908268 0.418388i \(-0.862595\pi\)
−0.908268 + 0.418388i \(0.862595\pi\)
\(380\) 4.25667 0.218362
\(381\) 0 0
\(382\) −18.9933 −0.971782
\(383\) 17.8834 0.913798 0.456899 0.889519i \(-0.348960\pi\)
0.456899 + 0.889519i \(0.348960\pi\)
\(384\) 0 0
\(385\) −19.4881 −0.993206
\(386\) 24.8635 1.26552
\(387\) 0 0
\(388\) 3.37867 0.171526
\(389\) 12.6063 0.639163 0.319582 0.947559i \(-0.396458\pi\)
0.319582 + 0.947559i \(0.396458\pi\)
\(390\) 0 0
\(391\) −24.7308 −1.25069
\(392\) −15.0151 −0.758375
\(393\) 0 0
\(394\) −0.0706876 −0.00356119
\(395\) 4.86459 0.244764
\(396\) 0 0
\(397\) 10.2567 0.514767 0.257384 0.966309i \(-0.417140\pi\)
0.257384 + 0.966309i \(0.417140\pi\)
\(398\) 11.7041 0.586674
\(399\) 0 0
\(400\) −4.43296 −0.221648
\(401\) 15.3690 0.767490 0.383745 0.923439i \(-0.374634\pi\)
0.383745 + 0.923439i \(0.374634\pi\)
\(402\) 0 0
\(403\) 6.43296 0.320449
\(404\) 5.85623 0.291358
\(405\) 0 0
\(406\) 1.96077 0.0973114
\(407\) −49.0887 −2.43324
\(408\) 0 0
\(409\) 34.6819 1.71491 0.857454 0.514561i \(-0.172045\pi\)
0.857454 + 0.514561i \(0.172045\pi\)
\(410\) −7.05323 −0.348334
\(411\) 0 0
\(412\) 3.34050 0.164575
\(413\) 61.2713 3.01496
\(414\) 0 0
\(415\) −2.21313 −0.108638
\(416\) 4.13706 0.202836
\(417\) 0 0
\(418\) −31.1793 −1.52503
\(419\) −15.1250 −0.738904 −0.369452 0.929250i \(-0.620455\pi\)
−0.369452 + 0.929250i \(0.620455\pi\)
\(420\) 0 0
\(421\) 33.2707 1.62151 0.810757 0.585383i \(-0.199056\pi\)
0.810757 + 0.585383i \(0.199056\pi\)
\(422\) 9.29350 0.452401
\(423\) 0 0
\(424\) −8.32304 −0.404203
\(425\) 19.2604 0.934266
\(426\) 0 0
\(427\) 72.7434 3.52030
\(428\) 16.0248 0.774586
\(429\) 0 0
\(430\) −0.789856 −0.0380902
\(431\) −20.0465 −0.965607 −0.482804 0.875729i \(-0.660381\pi\)
−0.482804 + 0.875729i \(0.660381\pi\)
\(432\) 0 0
\(433\) −25.9734 −1.24820 −0.624102 0.781343i \(-0.714535\pi\)
−0.624102 + 0.781343i \(0.714535\pi\)
\(434\) −7.29590 −0.350214
\(435\) 0 0
\(436\) 15.9705 0.764846
\(437\) 32.1758 1.53918
\(438\) 0 0
\(439\) −14.7705 −0.704956 −0.352478 0.935820i \(-0.614661\pi\)
−0.352478 + 0.935820i \(0.614661\pi\)
\(440\) −4.15346 −0.198008
\(441\) 0 0
\(442\) −17.9748 −0.854973
\(443\) 1.89440 0.0900055 0.0450027 0.998987i \(-0.485670\pi\)
0.0450027 + 0.998987i \(0.485670\pi\)
\(444\) 0 0
\(445\) 3.45952 0.163997
\(446\) 1.00000 0.0473514
\(447\) 0 0
\(448\) −4.69202 −0.221677
\(449\) −14.4142 −0.680247 −0.340123 0.940381i \(-0.610469\pi\)
−0.340123 + 0.940381i \(0.610469\pi\)
\(450\) 0 0
\(451\) 51.6635 2.43274
\(452\) 15.7778 0.742124
\(453\) 0 0
\(454\) −9.17390 −0.430552
\(455\) 14.6170 0.685257
\(456\) 0 0
\(457\) 6.65817 0.311456 0.155728 0.987800i \(-0.450228\pi\)
0.155728 + 0.987800i \(0.450228\pi\)
\(458\) −21.5308 −1.00607
\(459\) 0 0
\(460\) 4.28621 0.199845
\(461\) 8.91723 0.415317 0.207658 0.978201i \(-0.433416\pi\)
0.207658 + 0.978201i \(0.433416\pi\)
\(462\) 0 0
\(463\) 11.0271 0.512475 0.256237 0.966614i \(-0.417517\pi\)
0.256237 + 0.966614i \(0.417517\pi\)
\(464\) 0.417895 0.0194003
\(465\) 0 0
\(466\) 15.6082 0.723035
\(467\) −30.5478 −1.41358 −0.706791 0.707422i \(-0.749858\pi\)
−0.706791 + 0.707422i \(0.749858\pi\)
\(468\) 0 0
\(469\) −54.2616 −2.50557
\(470\) 1.94033 0.0895007
\(471\) 0 0
\(472\) 13.0586 0.601071
\(473\) 5.78554 0.266020
\(474\) 0 0
\(475\) −25.0586 −1.14977
\(476\) 20.3860 0.934389
\(477\) 0 0
\(478\) −18.7506 −0.857634
\(479\) −10.1032 −0.461628 −0.230814 0.972998i \(-0.574139\pi\)
−0.230814 + 0.972998i \(0.574139\pi\)
\(480\) 0 0
\(481\) 36.8189 1.67880
\(482\) −4.61463 −0.210191
\(483\) 0 0
\(484\) 19.4233 0.882876
\(485\) 2.54420 0.115526
\(486\) 0 0
\(487\) −17.5961 −0.797356 −0.398678 0.917091i \(-0.630531\pi\)
−0.398678 + 0.917091i \(0.630531\pi\)
\(488\) 15.5036 0.701817
\(489\) 0 0
\(490\) −11.3067 −0.510782
\(491\) 22.9758 1.03689 0.518443 0.855112i \(-0.326512\pi\)
0.518443 + 0.855112i \(0.326512\pi\)
\(492\) 0 0
\(493\) −1.81568 −0.0817739
\(494\) 23.3860 1.05218
\(495\) 0 0
\(496\) −1.55496 −0.0698197
\(497\) 47.3226 2.12271
\(498\) 0 0
\(499\) 29.5200 1.32150 0.660749 0.750607i \(-0.270239\pi\)
0.660749 + 0.750607i \(0.270239\pi\)
\(500\) −7.10321 −0.317665
\(501\) 0 0
\(502\) −16.8280 −0.751071
\(503\) 23.4741 1.04666 0.523329 0.852130i \(-0.324690\pi\)
0.523329 + 0.852130i \(0.324690\pi\)
\(504\) 0 0
\(505\) 4.40986 0.196236
\(506\) −31.3957 −1.39571
\(507\) 0 0
\(508\) −1.66487 −0.0738669
\(509\) 37.2078 1.64920 0.824602 0.565713i \(-0.191399\pi\)
0.824602 + 0.565713i \(0.191399\pi\)
\(510\) 0 0
\(511\) −7.19375 −0.318233
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −11.0513 −0.487452
\(515\) 2.51547 0.110845
\(516\) 0 0
\(517\) −14.2125 −0.625067
\(518\) −41.7579 −1.83474
\(519\) 0 0
\(520\) 3.11529 0.136615
\(521\) −6.82430 −0.298978 −0.149489 0.988763i \(-0.547763\pi\)
−0.149489 + 0.988763i \(0.547763\pi\)
\(522\) 0 0
\(523\) −19.1879 −0.839028 −0.419514 0.907749i \(-0.637800\pi\)
−0.419514 + 0.907749i \(0.637800\pi\)
\(524\) −9.21983 −0.402770
\(525\) 0 0
\(526\) 6.92261 0.301840
\(527\) 6.75600 0.294296
\(528\) 0 0
\(529\) 9.39911 0.408657
\(530\) −6.26742 −0.272239
\(531\) 0 0
\(532\) −26.5230 −1.14992
\(533\) −38.7502 −1.67846
\(534\) 0 0
\(535\) 12.0670 0.521700
\(536\) −11.5646 −0.499517
\(537\) 0 0
\(538\) −16.4330 −0.708475
\(539\) 82.8190 3.56727
\(540\) 0 0
\(541\) −17.2271 −0.740652 −0.370326 0.928902i \(-0.620754\pi\)
−0.370326 + 0.928902i \(0.620754\pi\)
\(542\) −5.65817 −0.243039
\(543\) 0 0
\(544\) 4.34481 0.186282
\(545\) 12.0261 0.515141
\(546\) 0 0
\(547\) −11.4125 −0.487964 −0.243982 0.969780i \(-0.578454\pi\)
−0.243982 + 0.969780i \(0.578454\pi\)
\(548\) 18.6286 0.795776
\(549\) 0 0
\(550\) 24.4510 1.04259
\(551\) 2.36227 0.100636
\(552\) 0 0
\(553\) −30.3110 −1.28895
\(554\) 2.23191 0.0948249
\(555\) 0 0
\(556\) 8.46681 0.359073
\(557\) −16.0392 −0.679604 −0.339802 0.940497i \(-0.610360\pi\)
−0.339802 + 0.940497i \(0.610360\pi\)
\(558\) 0 0
\(559\) −4.33944 −0.183539
\(560\) −3.53319 −0.149304
\(561\) 0 0
\(562\) 18.6015 0.784656
\(563\) −16.4517 −0.693358 −0.346679 0.937984i \(-0.612691\pi\)
−0.346679 + 0.937984i \(0.612691\pi\)
\(564\) 0 0
\(565\) 11.8810 0.499837
\(566\) 5.78017 0.242959
\(567\) 0 0
\(568\) 10.0858 0.423189
\(569\) −6.44026 −0.269990 −0.134995 0.990846i \(-0.543102\pi\)
−0.134995 + 0.990846i \(0.543102\pi\)
\(570\) 0 0
\(571\) −23.3260 −0.976164 −0.488082 0.872798i \(-0.662303\pi\)
−0.488082 + 0.872798i \(0.662303\pi\)
\(572\) −22.8189 −0.954107
\(573\) 0 0
\(574\) 43.9482 1.83436
\(575\) −25.2325 −1.05227
\(576\) 0 0
\(577\) 7.17092 0.298529 0.149265 0.988797i \(-0.452309\pi\)
0.149265 + 0.988797i \(0.452309\pi\)
\(578\) −1.87741 −0.0780900
\(579\) 0 0
\(580\) 0.314683 0.0130665
\(581\) 13.7899 0.572100
\(582\) 0 0
\(583\) 45.9077 1.90130
\(584\) −1.53319 −0.0634438
\(585\) 0 0
\(586\) −10.5875 −0.437365
\(587\) 43.0097 1.77520 0.887600 0.460615i \(-0.152371\pi\)
0.887600 + 0.460615i \(0.152371\pi\)
\(588\) 0 0
\(589\) −8.78986 −0.362180
\(590\) 9.83340 0.404835
\(591\) 0 0
\(592\) −8.89977 −0.365778
\(593\) −14.2155 −0.583761 −0.291881 0.956455i \(-0.594281\pi\)
−0.291881 + 0.956455i \(0.594281\pi\)
\(594\) 0 0
\(595\) 15.3510 0.629331
\(596\) 3.73125 0.152838
\(597\) 0 0
\(598\) 23.5483 0.962960
\(599\) −17.2338 −0.704155 −0.352078 0.935971i \(-0.614525\pi\)
−0.352078 + 0.935971i \(0.614525\pi\)
\(600\) 0 0
\(601\) −12.4722 −0.508751 −0.254376 0.967106i \(-0.581870\pi\)
−0.254376 + 0.967106i \(0.581870\pi\)
\(602\) 4.92154 0.200587
\(603\) 0 0
\(604\) −0.146752 −0.00597125
\(605\) 14.6261 0.594636
\(606\) 0 0
\(607\) 36.6558 1.48781 0.743906 0.668284i \(-0.232971\pi\)
0.743906 + 0.668284i \(0.232971\pi\)
\(608\) −5.65279 −0.229251
\(609\) 0 0
\(610\) 11.6746 0.472689
\(611\) 10.6601 0.431261
\(612\) 0 0
\(613\) 21.6775 0.875548 0.437774 0.899085i \(-0.355767\pi\)
0.437774 + 0.899085i \(0.355767\pi\)
\(614\) 27.3478 1.10367
\(615\) 0 0
\(616\) 25.8799 1.04273
\(617\) 29.6329 1.19298 0.596489 0.802622i \(-0.296562\pi\)
0.596489 + 0.802622i \(0.296562\pi\)
\(618\) 0 0
\(619\) 26.8291 1.07835 0.539176 0.842193i \(-0.318736\pi\)
0.539176 + 0.842193i \(0.318736\pi\)
\(620\) −1.17092 −0.0470251
\(621\) 0 0
\(622\) −4.63102 −0.185687
\(623\) −21.5560 −0.863624
\(624\) 0 0
\(625\) 16.8159 0.672638
\(626\) 21.1709 0.846160
\(627\) 0 0
\(628\) 8.85623 0.353402
\(629\) 38.6679 1.54179
\(630\) 0 0
\(631\) −9.14005 −0.363860 −0.181930 0.983312i \(-0.558234\pi\)
−0.181930 + 0.983312i \(0.558234\pi\)
\(632\) −6.46011 −0.256969
\(633\) 0 0
\(634\) −1.68127 −0.0667717
\(635\) −1.25368 −0.0497509
\(636\) 0 0
\(637\) −62.1183 −2.46122
\(638\) −2.30499 −0.0912556
\(639\) 0 0
\(640\) −0.753020 −0.0297657
\(641\) −1.45606 −0.0575109 −0.0287554 0.999586i \(-0.509154\pi\)
−0.0287554 + 0.999586i \(0.509154\pi\)
\(642\) 0 0
\(643\) −19.0562 −0.751504 −0.375752 0.926720i \(-0.622615\pi\)
−0.375752 + 0.926720i \(0.622615\pi\)
\(644\) −26.7071 −1.05241
\(645\) 0 0
\(646\) 24.5603 0.966313
\(647\) −21.2373 −0.834924 −0.417462 0.908694i \(-0.637080\pi\)
−0.417462 + 0.908694i \(0.637080\pi\)
\(648\) 0 0
\(649\) −72.0277 −2.82734
\(650\) −18.3394 −0.719332
\(651\) 0 0
\(652\) 18.6112 0.728870
\(653\) 3.11662 0.121963 0.0609814 0.998139i \(-0.480577\pi\)
0.0609814 + 0.998139i \(0.480577\pi\)
\(654\) 0 0
\(655\) −6.94272 −0.271275
\(656\) 9.36658 0.365704
\(657\) 0 0
\(658\) −12.0901 −0.471320
\(659\) 17.5429 0.683373 0.341687 0.939814i \(-0.389002\pi\)
0.341687 + 0.939814i \(0.389002\pi\)
\(660\) 0 0
\(661\) −38.7482 −1.50713 −0.753566 0.657372i \(-0.771668\pi\)
−0.753566 + 0.657372i \(0.771668\pi\)
\(662\) −24.3394 −0.945979
\(663\) 0 0
\(664\) 2.93900 0.114055
\(665\) −19.9724 −0.774496
\(666\) 0 0
\(667\) 2.37867 0.0921023
\(668\) −15.9933 −0.618799
\(669\) 0 0
\(670\) −8.70841 −0.336435
\(671\) −85.5139 −3.30123
\(672\) 0 0
\(673\) −2.55629 −0.0985376 −0.0492688 0.998786i \(-0.515689\pi\)
−0.0492688 + 0.998786i \(0.515689\pi\)
\(674\) −28.9922 −1.11674
\(675\) 0 0
\(676\) 4.11529 0.158281
\(677\) 48.9874 1.88274 0.941370 0.337375i \(-0.109539\pi\)
0.941370 + 0.337375i \(0.109539\pi\)
\(678\) 0 0
\(679\) −15.8528 −0.608374
\(680\) 3.27173 0.125465
\(681\) 0 0
\(682\) 8.57673 0.328420
\(683\) −23.4077 −0.895672 −0.447836 0.894116i \(-0.647805\pi\)
−0.447836 + 0.894116i \(0.647805\pi\)
\(684\) 0 0
\(685\) 14.0277 0.535972
\(686\) 37.6069 1.43584
\(687\) 0 0
\(688\) 1.04892 0.0399896
\(689\) −34.4330 −1.31179
\(690\) 0 0
\(691\) 48.5357 1.84638 0.923192 0.384338i \(-0.125570\pi\)
0.923192 + 0.384338i \(0.125570\pi\)
\(692\) 2.14914 0.0816982
\(693\) 0 0
\(694\) −28.8442 −1.09491
\(695\) 6.37568 0.241843
\(696\) 0 0
\(697\) −40.6961 −1.54147
\(698\) −19.4795 −0.737309
\(699\) 0 0
\(700\) 20.7995 0.786149
\(701\) −14.1860 −0.535797 −0.267899 0.963447i \(-0.586329\pi\)
−0.267899 + 0.963447i \(0.586329\pi\)
\(702\) 0 0
\(703\) −50.3086 −1.89742
\(704\) 5.51573 0.207882
\(705\) 0 0
\(706\) −34.7657 −1.30842
\(707\) −27.4776 −1.03340
\(708\) 0 0
\(709\) −33.9439 −1.27479 −0.637395 0.770537i \(-0.719988\pi\)
−0.637395 + 0.770537i \(0.719988\pi\)
\(710\) 7.59478 0.285027
\(711\) 0 0
\(712\) −4.59419 −0.172174
\(713\) −8.85086 −0.331467
\(714\) 0 0
\(715\) −17.1831 −0.642612
\(716\) 21.3032 0.796138
\(717\) 0 0
\(718\) 12.9530 0.483402
\(719\) 10.4964 0.391448 0.195724 0.980659i \(-0.437294\pi\)
0.195724 + 0.980659i \(0.437294\pi\)
\(720\) 0 0
\(721\) −15.6737 −0.583719
\(722\) −12.9541 −0.482100
\(723\) 0 0
\(724\) −1.76510 −0.0655995
\(725\) −1.85251 −0.0688005
\(726\) 0 0
\(727\) −27.3274 −1.01352 −0.506758 0.862088i \(-0.669156\pi\)
−0.506758 + 0.862088i \(0.669156\pi\)
\(728\) −19.4112 −0.719427
\(729\) 0 0
\(730\) −1.15452 −0.0427308
\(731\) −4.55735 −0.168560
\(732\) 0 0
\(733\) −36.3588 −1.34294 −0.671472 0.741030i \(-0.734338\pi\)
−0.671472 + 0.741030i \(0.734338\pi\)
\(734\) 23.5265 0.868378
\(735\) 0 0
\(736\) −5.69202 −0.209811
\(737\) 63.7875 2.34964
\(738\) 0 0
\(739\) 34.7644 1.27883 0.639414 0.768863i \(-0.279177\pi\)
0.639414 + 0.768863i \(0.279177\pi\)
\(740\) −6.70171 −0.246360
\(741\) 0 0
\(742\) 39.0519 1.43364
\(743\) −17.2591 −0.633174 −0.316587 0.948564i \(-0.602537\pi\)
−0.316587 + 0.948564i \(0.602537\pi\)
\(744\) 0 0
\(745\) 2.80971 0.102940
\(746\) −26.4959 −0.970083
\(747\) 0 0
\(748\) −23.9648 −0.876241
\(749\) −75.1885 −2.74733
\(750\) 0 0
\(751\) 12.8431 0.468651 0.234325 0.972158i \(-0.424712\pi\)
0.234325 + 0.972158i \(0.424712\pi\)
\(752\) −2.57673 −0.0939636
\(753\) 0 0
\(754\) 1.72886 0.0629613
\(755\) −0.110507 −0.00402177
\(756\) 0 0
\(757\) 2.04221 0.0742255 0.0371127 0.999311i \(-0.488184\pi\)
0.0371127 + 0.999311i \(0.488184\pi\)
\(758\) 35.3642 1.28449
\(759\) 0 0
\(760\) −4.25667 −0.154406
\(761\) 45.6902 1.65627 0.828135 0.560529i \(-0.189402\pi\)
0.828135 + 0.560529i \(0.189402\pi\)
\(762\) 0 0
\(763\) −74.9337 −2.71278
\(764\) 18.9933 0.687153
\(765\) 0 0
\(766\) −17.8834 −0.646153
\(767\) 54.0243 1.95070
\(768\) 0 0
\(769\) −35.7743 −1.29005 −0.645027 0.764159i \(-0.723154\pi\)
−0.645027 + 0.764159i \(0.723154\pi\)
\(770\) 19.4881 0.702303
\(771\) 0 0
\(772\) −24.8635 −0.894858
\(773\) −23.9782 −0.862437 −0.431218 0.902248i \(-0.641916\pi\)
−0.431218 + 0.902248i \(0.641916\pi\)
\(774\) 0 0
\(775\) 6.89307 0.247606
\(776\) −3.37867 −0.121287
\(777\) 0 0
\(778\) −12.6063 −0.451957
\(779\) 52.9474 1.89704
\(780\) 0 0
\(781\) −55.6303 −1.99061
\(782\) 24.7308 0.884371
\(783\) 0 0
\(784\) 15.0151 0.536252
\(785\) 6.66892 0.238024
\(786\) 0 0
\(787\) −50.4626 −1.79880 −0.899399 0.437129i \(-0.855995\pi\)
−0.899399 + 0.437129i \(0.855995\pi\)
\(788\) 0.0706876 0.00251814
\(789\) 0 0
\(790\) −4.86459 −0.173074
\(791\) −74.0297 −2.63219
\(792\) 0 0
\(793\) 64.1396 2.27766
\(794\) −10.2567 −0.363996
\(795\) 0 0
\(796\) −11.7041 −0.414841
\(797\) 15.3026 0.542046 0.271023 0.962573i \(-0.412638\pi\)
0.271023 + 0.962573i \(0.412638\pi\)
\(798\) 0 0
\(799\) 11.1954 0.396065
\(800\) 4.43296 0.156729
\(801\) 0 0
\(802\) −15.3690 −0.542697
\(803\) 8.45665 0.298429
\(804\) 0 0
\(805\) −20.1110 −0.708819
\(806\) −6.43296 −0.226591
\(807\) 0 0
\(808\) −5.85623 −0.206022
\(809\) −17.5636 −0.617503 −0.308751 0.951143i \(-0.599911\pi\)
−0.308751 + 0.951143i \(0.599911\pi\)
\(810\) 0 0
\(811\) −0.443977 −0.0155901 −0.00779507 0.999970i \(-0.502481\pi\)
−0.00779507 + 0.999970i \(0.502481\pi\)
\(812\) −1.96077 −0.0688096
\(813\) 0 0
\(814\) 49.0887 1.72056
\(815\) 14.0146 0.490910
\(816\) 0 0
\(817\) 5.92931 0.207440
\(818\) −34.6819 −1.21262
\(819\) 0 0
\(820\) 7.05323 0.246309
\(821\) −16.4510 −0.574144 −0.287072 0.957909i \(-0.592682\pi\)
−0.287072 + 0.957909i \(0.592682\pi\)
\(822\) 0 0
\(823\) 44.1309 1.53831 0.769154 0.639063i \(-0.220678\pi\)
0.769154 + 0.639063i \(0.220678\pi\)
\(824\) −3.34050 −0.116372
\(825\) 0 0
\(826\) −61.2713 −2.13190
\(827\) −5.58748 −0.194296 −0.0971479 0.995270i \(-0.530972\pi\)
−0.0971479 + 0.995270i \(0.530972\pi\)
\(828\) 0 0
\(829\) 36.7754 1.27726 0.638631 0.769513i \(-0.279501\pi\)
0.638631 + 0.769513i \(0.279501\pi\)
\(830\) 2.21313 0.0768188
\(831\) 0 0
\(832\) −4.13706 −0.143427
\(833\) −65.2377 −2.26035
\(834\) 0 0
\(835\) −12.0433 −0.416775
\(836\) 31.1793 1.07836
\(837\) 0 0
\(838\) 15.1250 0.522484
\(839\) 15.2892 0.527842 0.263921 0.964544i \(-0.414984\pi\)
0.263921 + 0.964544i \(0.414984\pi\)
\(840\) 0 0
\(841\) −28.8254 −0.993978
\(842\) −33.2707 −1.14658
\(843\) 0 0
\(844\) −9.29350 −0.319896
\(845\) 3.09890 0.106605
\(846\) 0 0
\(847\) −91.1344 −3.13142
\(848\) 8.32304 0.285815
\(849\) 0 0
\(850\) −19.2604 −0.660626
\(851\) −50.6577 −1.73652
\(852\) 0 0
\(853\) 20.7090 0.709063 0.354531 0.935044i \(-0.384640\pi\)
0.354531 + 0.935044i \(0.384640\pi\)
\(854\) −72.7434 −2.48923
\(855\) 0 0
\(856\) −16.0248 −0.547715
\(857\) −37.2368 −1.27199 −0.635993 0.771695i \(-0.719409\pi\)
−0.635993 + 0.771695i \(0.719409\pi\)
\(858\) 0 0
\(859\) −1.71273 −0.0584375 −0.0292187 0.999573i \(-0.509302\pi\)
−0.0292187 + 0.999573i \(0.509302\pi\)
\(860\) 0.789856 0.0269339
\(861\) 0 0
\(862\) 20.0465 0.682787
\(863\) −15.0731 −0.513094 −0.256547 0.966532i \(-0.582585\pi\)
−0.256547 + 0.966532i \(0.582585\pi\)
\(864\) 0 0
\(865\) 1.61835 0.0550255
\(866\) 25.9734 0.882614
\(867\) 0 0
\(868\) 7.29590 0.247639
\(869\) 35.6322 1.20874
\(870\) 0 0
\(871\) −47.8437 −1.62112
\(872\) −15.9705 −0.540828
\(873\) 0 0
\(874\) −32.1758 −1.08836
\(875\) 33.3284 1.12671
\(876\) 0 0
\(877\) −38.7536 −1.30862 −0.654308 0.756228i \(-0.727040\pi\)
−0.654308 + 0.756228i \(0.727040\pi\)
\(878\) 14.7705 0.498480
\(879\) 0 0
\(880\) 4.15346 0.140013
\(881\) −19.8358 −0.668285 −0.334142 0.942523i \(-0.608447\pi\)
−0.334142 + 0.942523i \(0.608447\pi\)
\(882\) 0 0
\(883\) −35.0258 −1.17871 −0.589356 0.807873i \(-0.700619\pi\)
−0.589356 + 0.807873i \(0.700619\pi\)
\(884\) 17.9748 0.604557
\(885\) 0 0
\(886\) −1.89440 −0.0636435
\(887\) −31.7875 −1.06732 −0.533659 0.845700i \(-0.679184\pi\)
−0.533659 + 0.845700i \(0.679184\pi\)
\(888\) 0 0
\(889\) 7.81163 0.261994
\(890\) −3.45952 −0.115963
\(891\) 0 0
\(892\) −1.00000 −0.0334825
\(893\) −14.5657 −0.487423
\(894\) 0 0
\(895\) 16.0417 0.536216
\(896\) 4.69202 0.156749
\(897\) 0 0
\(898\) 14.4142 0.481007
\(899\) −0.649809 −0.0216723
\(900\) 0 0
\(901\) −36.1621 −1.20473
\(902\) −51.6635 −1.72021
\(903\) 0 0
\(904\) −15.7778 −0.524761
\(905\) −1.32916 −0.0441827
\(906\) 0 0
\(907\) 8.45042 0.280592 0.140296 0.990110i \(-0.455195\pi\)
0.140296 + 0.990110i \(0.455195\pi\)
\(908\) 9.17390 0.304447
\(909\) 0 0
\(910\) −14.6170 −0.484550
\(911\) 9.38106 0.310808 0.155404 0.987851i \(-0.450332\pi\)
0.155404 + 0.987851i \(0.450332\pi\)
\(912\) 0 0
\(913\) −16.2107 −0.536497
\(914\) −6.65817 −0.220233
\(915\) 0 0
\(916\) 21.5308 0.711397
\(917\) 43.2597 1.42856
\(918\) 0 0
\(919\) −44.2247 −1.45884 −0.729420 0.684066i \(-0.760210\pi\)
−0.729420 + 0.684066i \(0.760210\pi\)
\(920\) −4.28621 −0.141312
\(921\) 0 0
\(922\) −8.91723 −0.293673
\(923\) 41.7254 1.37341
\(924\) 0 0
\(925\) 39.4523 1.29718
\(926\) −11.0271 −0.362375
\(927\) 0 0
\(928\) −0.417895 −0.0137181
\(929\) −16.8810 −0.553847 −0.276924 0.960892i \(-0.589315\pi\)
−0.276924 + 0.960892i \(0.589315\pi\)
\(930\) 0 0
\(931\) 84.8771 2.78173
\(932\) −15.6082 −0.511263
\(933\) 0 0
\(934\) 30.5478 0.999554
\(935\) −18.0460 −0.590167
\(936\) 0 0
\(937\) 18.6021 0.607703 0.303852 0.952719i \(-0.401727\pi\)
0.303852 + 0.952719i \(0.401727\pi\)
\(938\) 54.2616 1.77170
\(939\) 0 0
\(940\) −1.94033 −0.0632866
\(941\) −24.1545 −0.787415 −0.393707 0.919236i \(-0.628808\pi\)
−0.393707 + 0.919236i \(0.628808\pi\)
\(942\) 0 0
\(943\) 53.3148 1.73617
\(944\) −13.0586 −0.425021
\(945\) 0 0
\(946\) −5.78554 −0.188104
\(947\) −12.4494 −0.404550 −0.202275 0.979329i \(-0.564833\pi\)
−0.202275 + 0.979329i \(0.564833\pi\)
\(948\) 0 0
\(949\) −6.34290 −0.205899
\(950\) 25.0586 0.813009
\(951\) 0 0
\(952\) −20.3860 −0.660713
\(953\) −36.7362 −1.19000 −0.595000 0.803725i \(-0.702848\pi\)
−0.595000 + 0.803725i \(0.702848\pi\)
\(954\) 0 0
\(955\) 14.3023 0.462813
\(956\) 18.7506 0.606439
\(957\) 0 0
\(958\) 10.1032 0.326420
\(959\) −87.4059 −2.82248
\(960\) 0 0
\(961\) −28.5821 −0.922003
\(962\) −36.8189 −1.18709
\(963\) 0 0
\(964\) 4.61463 0.148627
\(965\) −18.7227 −0.602706
\(966\) 0 0
\(967\) −9.16852 −0.294840 −0.147420 0.989074i \(-0.547097\pi\)
−0.147420 + 0.989074i \(0.547097\pi\)
\(968\) −19.4233 −0.624288
\(969\) 0 0
\(970\) −2.54420 −0.0816895
\(971\) −28.5327 −0.915658 −0.457829 0.889040i \(-0.651373\pi\)
−0.457829 + 0.889040i \(0.651373\pi\)
\(972\) 0 0
\(973\) −39.7265 −1.27357
\(974\) 17.5961 0.563816
\(975\) 0 0
\(976\) −15.5036 −0.496260
\(977\) −23.3593 −0.747330 −0.373665 0.927564i \(-0.621899\pi\)
−0.373665 + 0.927564i \(0.621899\pi\)
\(978\) 0 0
\(979\) 25.3403 0.809879
\(980\) 11.3067 0.361178
\(981\) 0 0
\(982\) −22.9758 −0.733188
\(983\) 20.9772 0.669068 0.334534 0.942384i \(-0.391421\pi\)
0.334534 + 0.942384i \(0.391421\pi\)
\(984\) 0 0
\(985\) 0.0532292 0.00169602
\(986\) 1.81568 0.0578229
\(987\) 0 0
\(988\) −23.3860 −0.744007
\(989\) 5.97046 0.189850
\(990\) 0 0
\(991\) −7.54932 −0.239812 −0.119906 0.992785i \(-0.538259\pi\)
−0.119906 + 0.992785i \(0.538259\pi\)
\(992\) 1.55496 0.0493700
\(993\) 0 0
\(994\) −47.3226 −1.50098
\(995\) −8.81343 −0.279404
\(996\) 0 0
\(997\) 30.6974 0.972196 0.486098 0.873904i \(-0.338420\pi\)
0.486098 + 0.873904i \(0.338420\pi\)
\(998\) −29.5200 −0.934441
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4014.2.a.n.1.1 3
3.2 odd 2 1338.2.a.f.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.f.1.3 3 3.2 odd 2
4014.2.a.n.1.1 3 1.1 even 1 trivial