Properties

Label 1338.2.a.f.1.3
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(1,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -0.753020 q^{5} +1.00000 q^{6} -4.69202 q^{7} +1.00000 q^{8} +1.00000 q^{9} -0.753020 q^{10} -5.51573 q^{11} +1.00000 q^{12} -4.13706 q^{13} -4.69202 q^{14} -0.753020 q^{15} +1.00000 q^{16} +4.34481 q^{17} +1.00000 q^{18} +5.65279 q^{19} -0.753020 q^{20} -4.69202 q^{21} -5.51573 q^{22} -5.69202 q^{23} +1.00000 q^{24} -4.43296 q^{25} -4.13706 q^{26} +1.00000 q^{27} -4.69202 q^{28} -0.417895 q^{29} -0.753020 q^{30} -1.55496 q^{31} +1.00000 q^{32} -5.51573 q^{33} +4.34481 q^{34} +3.53319 q^{35} +1.00000 q^{36} -8.89977 q^{37} +5.65279 q^{38} -4.13706 q^{39} -0.753020 q^{40} -9.36658 q^{41} -4.69202 q^{42} +1.04892 q^{43} -5.51573 q^{44} -0.753020 q^{45} -5.69202 q^{46} +2.57673 q^{47} +1.00000 q^{48} +15.0151 q^{49} -4.43296 q^{50} +4.34481 q^{51} -4.13706 q^{52} -8.32304 q^{53} +1.00000 q^{54} +4.15346 q^{55} -4.69202 q^{56} +5.65279 q^{57} -0.417895 q^{58} +13.0586 q^{59} -0.753020 q^{60} -15.5036 q^{61} -1.55496 q^{62} -4.69202 q^{63} +1.00000 q^{64} +3.11529 q^{65} -5.51573 q^{66} +11.5646 q^{67} +4.34481 q^{68} -5.69202 q^{69} +3.53319 q^{70} +10.0858 q^{71} +1.00000 q^{72} +1.53319 q^{73} -8.89977 q^{74} -4.43296 q^{75} +5.65279 q^{76} +25.8799 q^{77} -4.13706 q^{78} +6.46011 q^{79} -0.753020 q^{80} +1.00000 q^{81} -9.36658 q^{82} +2.93900 q^{83} -4.69202 q^{84} -3.27173 q^{85} +1.04892 q^{86} -0.417895 q^{87} -5.51573 q^{88} -4.59419 q^{89} -0.753020 q^{90} +19.4112 q^{91} -5.69202 q^{92} -1.55496 q^{93} +2.57673 q^{94} -4.25667 q^{95} +1.00000 q^{96} +3.37867 q^{97} +15.0151 q^{98} -5.51573 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} - 7 q^{5} + 3 q^{6} - 9 q^{7} + 3 q^{8} + 3 q^{9} - 7 q^{10} - 4 q^{11} + 3 q^{12} - 7 q^{13} - 9 q^{14} - 7 q^{15} + 3 q^{16} - 10 q^{17} + 3 q^{18} - q^{19} - 7 q^{20}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −0.753020 −0.336761 −0.168380 0.985722i \(-0.553854\pi\)
−0.168380 + 0.985722i \(0.553854\pi\)
\(6\) 1.00000 0.408248
\(7\) −4.69202 −1.77342 −0.886709 0.462329i \(-0.847014\pi\)
−0.886709 + 0.462329i \(0.847014\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.753020 −0.238126
\(11\) −5.51573 −1.66306 −0.831528 0.555484i \(-0.812533\pi\)
−0.831528 + 0.555484i \(0.812533\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.13706 −1.14741 −0.573707 0.819060i \(-0.694495\pi\)
−0.573707 + 0.819060i \(0.694495\pi\)
\(14\) −4.69202 −1.25400
\(15\) −0.753020 −0.194429
\(16\) 1.00000 0.250000
\(17\) 4.34481 1.05377 0.526886 0.849936i \(-0.323359\pi\)
0.526886 + 0.849936i \(0.323359\pi\)
\(18\) 1.00000 0.235702
\(19\) 5.65279 1.29684 0.648420 0.761283i \(-0.275430\pi\)
0.648420 + 0.761283i \(0.275430\pi\)
\(20\) −0.753020 −0.168380
\(21\) −4.69202 −1.02388
\(22\) −5.51573 −1.17596
\(23\) −5.69202 −1.18687 −0.593434 0.804882i \(-0.702228\pi\)
−0.593434 + 0.804882i \(0.702228\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.43296 −0.886592
\(26\) −4.13706 −0.811345
\(27\) 1.00000 0.192450
\(28\) −4.69202 −0.886709
\(29\) −0.417895 −0.0776011 −0.0388006 0.999247i \(-0.512354\pi\)
−0.0388006 + 0.999247i \(0.512354\pi\)
\(30\) −0.753020 −0.137482
\(31\) −1.55496 −0.279279 −0.139639 0.990202i \(-0.544594\pi\)
−0.139639 + 0.990202i \(0.544594\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.51573 −0.960165
\(34\) 4.34481 0.745130
\(35\) 3.53319 0.597218
\(36\) 1.00000 0.166667
\(37\) −8.89977 −1.46311 −0.731557 0.681781i \(-0.761206\pi\)
−0.731557 + 0.681781i \(0.761206\pi\)
\(38\) 5.65279 0.917004
\(39\) −4.13706 −0.662460
\(40\) −0.753020 −0.119063
\(41\) −9.36658 −1.46281 −0.731407 0.681941i \(-0.761136\pi\)
−0.731407 + 0.681941i \(0.761136\pi\)
\(42\) −4.69202 −0.723995
\(43\) 1.04892 0.159958 0.0799792 0.996797i \(-0.474515\pi\)
0.0799792 + 0.996797i \(0.474515\pi\)
\(44\) −5.51573 −0.831528
\(45\) −0.753020 −0.112254
\(46\) −5.69202 −0.839243
\(47\) 2.57673 0.375854 0.187927 0.982183i \(-0.439823\pi\)
0.187927 + 0.982183i \(0.439823\pi\)
\(48\) 1.00000 0.144338
\(49\) 15.0151 2.14501
\(50\) −4.43296 −0.626915
\(51\) 4.34481 0.608396
\(52\) −4.13706 −0.573707
\(53\) −8.32304 −1.14326 −0.571629 0.820512i \(-0.693688\pi\)
−0.571629 + 0.820512i \(0.693688\pi\)
\(54\) 1.00000 0.136083
\(55\) 4.15346 0.560052
\(56\) −4.69202 −0.626998
\(57\) 5.65279 0.748731
\(58\) −0.417895 −0.0548723
\(59\) 13.0586 1.70009 0.850043 0.526714i \(-0.176576\pi\)
0.850043 + 0.526714i \(0.176576\pi\)
\(60\) −0.753020 −0.0972145
\(61\) −15.5036 −1.98504 −0.992519 0.122087i \(-0.961041\pi\)
−0.992519 + 0.122087i \(0.961041\pi\)
\(62\) −1.55496 −0.197480
\(63\) −4.69202 −0.591139
\(64\) 1.00000 0.125000
\(65\) 3.11529 0.386405
\(66\) −5.51573 −0.678939
\(67\) 11.5646 1.41285 0.706423 0.707790i \(-0.250308\pi\)
0.706423 + 0.707790i \(0.250308\pi\)
\(68\) 4.34481 0.526886
\(69\) −5.69202 −0.685239
\(70\) 3.53319 0.422297
\(71\) 10.0858 1.19696 0.598479 0.801138i \(-0.295772\pi\)
0.598479 + 0.801138i \(0.295772\pi\)
\(72\) 1.00000 0.117851
\(73\) 1.53319 0.179446 0.0897230 0.995967i \(-0.471402\pi\)
0.0897230 + 0.995967i \(0.471402\pi\)
\(74\) −8.89977 −1.03458
\(75\) −4.43296 −0.511874
\(76\) 5.65279 0.648420
\(77\) 25.8799 2.94929
\(78\) −4.13706 −0.468430
\(79\) 6.46011 0.726819 0.363409 0.931630i \(-0.381613\pi\)
0.363409 + 0.931630i \(0.381613\pi\)
\(80\) −0.753020 −0.0841902
\(81\) 1.00000 0.111111
\(82\) −9.36658 −1.03437
\(83\) 2.93900 0.322597 0.161299 0.986906i \(-0.448432\pi\)
0.161299 + 0.986906i \(0.448432\pi\)
\(84\) −4.69202 −0.511942
\(85\) −3.27173 −0.354869
\(86\) 1.04892 0.113108
\(87\) −0.417895 −0.0448030
\(88\) −5.51573 −0.587979
\(89\) −4.59419 −0.486983 −0.243491 0.969903i \(-0.578293\pi\)
−0.243491 + 0.969903i \(0.578293\pi\)
\(90\) −0.753020 −0.0793753
\(91\) 19.4112 2.03485
\(92\) −5.69202 −0.593434
\(93\) −1.55496 −0.161242
\(94\) 2.57673 0.265769
\(95\) −4.25667 −0.436725
\(96\) 1.00000 0.102062
\(97\) 3.37867 0.343052 0.171526 0.985180i \(-0.445130\pi\)
0.171526 + 0.985180i \(0.445130\pi\)
\(98\) 15.0151 1.51675
\(99\) −5.51573 −0.554352
\(100\) −4.43296 −0.443296
\(101\) −5.85623 −0.582717 −0.291358 0.956614i \(-0.594107\pi\)
−0.291358 + 0.956614i \(0.594107\pi\)
\(102\) 4.34481 0.430201
\(103\) 3.34050 0.329149 0.164575 0.986365i \(-0.447375\pi\)
0.164575 + 0.986365i \(0.447375\pi\)
\(104\) −4.13706 −0.405672
\(105\) 3.53319 0.344804
\(106\) −8.32304 −0.808405
\(107\) −16.0248 −1.54917 −0.774586 0.632469i \(-0.782042\pi\)
−0.774586 + 0.632469i \(0.782042\pi\)
\(108\) 1.00000 0.0962250
\(109\) 15.9705 1.52969 0.764846 0.644213i \(-0.222815\pi\)
0.764846 + 0.644213i \(0.222815\pi\)
\(110\) 4.15346 0.396017
\(111\) −8.89977 −0.844729
\(112\) −4.69202 −0.443354
\(113\) −15.7778 −1.48425 −0.742124 0.670263i \(-0.766182\pi\)
−0.742124 + 0.670263i \(0.766182\pi\)
\(114\) 5.65279 0.529433
\(115\) 4.28621 0.399691
\(116\) −0.417895 −0.0388006
\(117\) −4.13706 −0.382472
\(118\) 13.0586 1.20214
\(119\) −20.3860 −1.86878
\(120\) −0.753020 −0.0687410
\(121\) 19.4233 1.76575
\(122\) −15.5036 −1.40363
\(123\) −9.36658 −0.844556
\(124\) −1.55496 −0.139639
\(125\) 7.10321 0.635331
\(126\) −4.69202 −0.417998
\(127\) −1.66487 −0.147734 −0.0738669 0.997268i \(-0.523534\pi\)
−0.0738669 + 0.997268i \(0.523534\pi\)
\(128\) 1.00000 0.0883883
\(129\) 1.04892 0.0923520
\(130\) 3.11529 0.273229
\(131\) 9.21983 0.805541 0.402770 0.915301i \(-0.368047\pi\)
0.402770 + 0.915301i \(0.368047\pi\)
\(132\) −5.51573 −0.480083
\(133\) −26.5230 −2.29984
\(134\) 11.5646 0.999033
\(135\) −0.753020 −0.0648097
\(136\) 4.34481 0.372565
\(137\) −18.6286 −1.59155 −0.795776 0.605592i \(-0.792937\pi\)
−0.795776 + 0.605592i \(0.792937\pi\)
\(138\) −5.69202 −0.484537
\(139\) 8.46681 0.718146 0.359073 0.933310i \(-0.383093\pi\)
0.359073 + 0.933310i \(0.383093\pi\)
\(140\) 3.53319 0.298609
\(141\) 2.57673 0.217000
\(142\) 10.0858 0.846378
\(143\) 22.8189 1.90821
\(144\) 1.00000 0.0833333
\(145\) 0.314683 0.0261330
\(146\) 1.53319 0.126888
\(147\) 15.0151 1.23842
\(148\) −8.89977 −0.731557
\(149\) −3.73125 −0.305676 −0.152838 0.988251i \(-0.548841\pi\)
−0.152838 + 0.988251i \(0.548841\pi\)
\(150\) −4.43296 −0.361950
\(151\) −0.146752 −0.0119425 −0.00597125 0.999982i \(-0.501901\pi\)
−0.00597125 + 0.999982i \(0.501901\pi\)
\(152\) 5.65279 0.458502
\(153\) 4.34481 0.351257
\(154\) 25.8799 2.08546
\(155\) 1.17092 0.0940502
\(156\) −4.13706 −0.331230
\(157\) 8.85623 0.706804 0.353402 0.935472i \(-0.385025\pi\)
0.353402 + 0.935472i \(0.385025\pi\)
\(158\) 6.46011 0.513939
\(159\) −8.32304 −0.660060
\(160\) −0.753020 −0.0595315
\(161\) 26.7071 2.10481
\(162\) 1.00000 0.0785674
\(163\) 18.6112 1.45774 0.728870 0.684652i \(-0.240046\pi\)
0.728870 + 0.684652i \(0.240046\pi\)
\(164\) −9.36658 −0.731407
\(165\) 4.15346 0.323346
\(166\) 2.93900 0.228111
\(167\) 15.9933 1.23760 0.618799 0.785549i \(-0.287619\pi\)
0.618799 + 0.785549i \(0.287619\pi\)
\(168\) −4.69202 −0.361997
\(169\) 4.11529 0.316561
\(170\) −3.27173 −0.250931
\(171\) 5.65279 0.432280
\(172\) 1.04892 0.0799792
\(173\) −2.14914 −0.163396 −0.0816982 0.996657i \(-0.526034\pi\)
−0.0816982 + 0.996657i \(0.526034\pi\)
\(174\) −0.417895 −0.0316805
\(175\) 20.7995 1.57230
\(176\) −5.51573 −0.415764
\(177\) 13.0586 0.981545
\(178\) −4.59419 −0.344349
\(179\) −21.3032 −1.59228 −0.796138 0.605116i \(-0.793127\pi\)
−0.796138 + 0.605116i \(0.793127\pi\)
\(180\) −0.753020 −0.0561268
\(181\) −1.76510 −0.131199 −0.0655995 0.997846i \(-0.520896\pi\)
−0.0655995 + 0.997846i \(0.520896\pi\)
\(182\) 19.4112 1.43885
\(183\) −15.5036 −1.14606
\(184\) −5.69202 −0.419621
\(185\) 6.70171 0.492720
\(186\) −1.55496 −0.114015
\(187\) −23.9648 −1.75248
\(188\) 2.57673 0.187927
\(189\) −4.69202 −0.341294
\(190\) −4.25667 −0.308811
\(191\) −18.9933 −1.37431 −0.687153 0.726512i \(-0.741140\pi\)
−0.687153 + 0.726512i \(0.741140\pi\)
\(192\) 1.00000 0.0721688
\(193\) −24.8635 −1.78972 −0.894858 0.446351i \(-0.852723\pi\)
−0.894858 + 0.446351i \(0.852723\pi\)
\(194\) 3.37867 0.242574
\(195\) 3.11529 0.223091
\(196\) 15.0151 1.07250
\(197\) −0.0706876 −0.00503628 −0.00251814 0.999997i \(-0.500802\pi\)
−0.00251814 + 0.999997i \(0.500802\pi\)
\(198\) −5.51573 −0.391986
\(199\) −11.7041 −0.829682 −0.414841 0.909894i \(-0.636163\pi\)
−0.414841 + 0.909894i \(0.636163\pi\)
\(200\) −4.43296 −0.313458
\(201\) 11.5646 0.815707
\(202\) −5.85623 −0.412043
\(203\) 1.96077 0.137619
\(204\) 4.34481 0.304198
\(205\) 7.05323 0.492619
\(206\) 3.34050 0.232744
\(207\) −5.69202 −0.395623
\(208\) −4.13706 −0.286854
\(209\) −31.1793 −2.15672
\(210\) 3.53319 0.243813
\(211\) −9.29350 −0.639791 −0.319896 0.947453i \(-0.603648\pi\)
−0.319896 + 0.947453i \(0.603648\pi\)
\(212\) −8.32304 −0.571629
\(213\) 10.0858 0.691064
\(214\) −16.0248 −1.09543
\(215\) −0.789856 −0.0538677
\(216\) 1.00000 0.0680414
\(217\) 7.29590 0.495278
\(218\) 15.9705 1.08166
\(219\) 1.53319 0.103603
\(220\) 4.15346 0.280026
\(221\) −17.9748 −1.20911
\(222\) −8.89977 −0.597314
\(223\) −1.00000 −0.0669650
\(224\) −4.69202 −0.313499
\(225\) −4.43296 −0.295531
\(226\) −15.7778 −1.04952
\(227\) −9.17390 −0.608893 −0.304447 0.952529i \(-0.598471\pi\)
−0.304447 + 0.952529i \(0.598471\pi\)
\(228\) 5.65279 0.374365
\(229\) 21.5308 1.42279 0.711397 0.702790i \(-0.248063\pi\)
0.711397 + 0.702790i \(0.248063\pi\)
\(230\) 4.28621 0.282624
\(231\) 25.8799 1.70277
\(232\) −0.417895 −0.0274361
\(233\) 15.6082 1.02253 0.511263 0.859424i \(-0.329178\pi\)
0.511263 + 0.859424i \(0.329178\pi\)
\(234\) −4.13706 −0.270448
\(235\) −1.94033 −0.126573
\(236\) 13.0586 0.850043
\(237\) 6.46011 0.419629
\(238\) −20.3860 −1.32143
\(239\) −18.7506 −1.21288 −0.606439 0.795130i \(-0.707402\pi\)
−0.606439 + 0.795130i \(0.707402\pi\)
\(240\) −0.753020 −0.0486073
\(241\) 4.61463 0.297254 0.148627 0.988893i \(-0.452515\pi\)
0.148627 + 0.988893i \(0.452515\pi\)
\(242\) 19.4233 1.24858
\(243\) 1.00000 0.0641500
\(244\) −15.5036 −0.992519
\(245\) −11.3067 −0.722355
\(246\) −9.36658 −0.597192
\(247\) −23.3860 −1.48801
\(248\) −1.55496 −0.0987399
\(249\) 2.93900 0.186252
\(250\) 7.10321 0.449247
\(251\) −16.8280 −1.06218 −0.531088 0.847317i \(-0.678216\pi\)
−0.531088 + 0.847317i \(0.678216\pi\)
\(252\) −4.69202 −0.295570
\(253\) 31.3957 1.97383
\(254\) −1.66487 −0.104464
\(255\) −3.27173 −0.204884
\(256\) 1.00000 0.0625000
\(257\) −11.0513 −0.689362 −0.344681 0.938720i \(-0.612013\pi\)
−0.344681 + 0.938720i \(0.612013\pi\)
\(258\) 1.04892 0.0653027
\(259\) 41.7579 2.59471
\(260\) 3.11529 0.193202
\(261\) −0.417895 −0.0258670
\(262\) 9.21983 0.569603
\(263\) 6.92261 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(264\) −5.51573 −0.339470
\(265\) 6.26742 0.385005
\(266\) −26.5230 −1.62623
\(267\) −4.59419 −0.281160
\(268\) 11.5646 0.706423
\(269\) −16.4330 −1.00194 −0.500968 0.865466i \(-0.667022\pi\)
−0.500968 + 0.865466i \(0.667022\pi\)
\(270\) −0.753020 −0.0458274
\(271\) 5.65817 0.343709 0.171855 0.985122i \(-0.445024\pi\)
0.171855 + 0.985122i \(0.445024\pi\)
\(272\) 4.34481 0.263443
\(273\) 19.4112 1.17482
\(274\) −18.6286 −1.12540
\(275\) 24.4510 1.47445
\(276\) −5.69202 −0.342619
\(277\) −2.23191 −0.134103 −0.0670514 0.997750i \(-0.521359\pi\)
−0.0670514 + 0.997750i \(0.521359\pi\)
\(278\) 8.46681 0.507806
\(279\) −1.55496 −0.0930929
\(280\) 3.53319 0.211148
\(281\) 18.6015 1.10967 0.554836 0.831960i \(-0.312781\pi\)
0.554836 + 0.831960i \(0.312781\pi\)
\(282\) 2.57673 0.153442
\(283\) −5.78017 −0.343595 −0.171798 0.985132i \(-0.554958\pi\)
−0.171798 + 0.985132i \(0.554958\pi\)
\(284\) 10.0858 0.598479
\(285\) −4.25667 −0.252143
\(286\) 22.8189 1.34931
\(287\) 43.9482 2.59418
\(288\) 1.00000 0.0589256
\(289\) 1.87741 0.110436
\(290\) 0.314683 0.0184788
\(291\) 3.37867 0.198061
\(292\) 1.53319 0.0897230
\(293\) −10.5875 −0.618527 −0.309264 0.950976i \(-0.600083\pi\)
−0.309264 + 0.950976i \(0.600083\pi\)
\(294\) 15.0151 0.875696
\(295\) −9.83340 −0.572522
\(296\) −8.89977 −0.517289
\(297\) −5.51573 −0.320055
\(298\) −3.73125 −0.216146
\(299\) 23.5483 1.36183
\(300\) −4.43296 −0.255937
\(301\) −4.92154 −0.283673
\(302\) −0.146752 −0.00844463
\(303\) −5.85623 −0.336432
\(304\) 5.65279 0.324210
\(305\) 11.6746 0.668484
\(306\) 4.34481 0.248377
\(307\) −27.3478 −1.56082 −0.780411 0.625267i \(-0.784990\pi\)
−0.780411 + 0.625267i \(0.784990\pi\)
\(308\) 25.8799 1.47465
\(309\) 3.34050 0.190035
\(310\) 1.17092 0.0665035
\(311\) −4.63102 −0.262601 −0.131301 0.991343i \(-0.541915\pi\)
−0.131301 + 0.991343i \(0.541915\pi\)
\(312\) −4.13706 −0.234215
\(313\) −21.1709 −1.19665 −0.598325 0.801253i \(-0.704167\pi\)
−0.598325 + 0.801253i \(0.704167\pi\)
\(314\) 8.85623 0.499786
\(315\) 3.53319 0.199073
\(316\) 6.46011 0.363409
\(317\) −1.68127 −0.0944294 −0.0472147 0.998885i \(-0.515034\pi\)
−0.0472147 + 0.998885i \(0.515034\pi\)
\(318\) −8.32304 −0.466733
\(319\) 2.30499 0.129055
\(320\) −0.753020 −0.0420951
\(321\) −16.0248 −0.894415
\(322\) 26.7071 1.48833
\(323\) 24.5603 1.36657
\(324\) 1.00000 0.0555556
\(325\) 18.3394 1.01729
\(326\) 18.6112 1.03078
\(327\) 15.9705 0.883168
\(328\) −9.36658 −0.517183
\(329\) −12.0901 −0.666547
\(330\) 4.15346 0.228640
\(331\) 24.3394 1.33782 0.668908 0.743345i \(-0.266762\pi\)
0.668908 + 0.743345i \(0.266762\pi\)
\(332\) 2.93900 0.161299
\(333\) −8.89977 −0.487705
\(334\) 15.9933 0.875114
\(335\) −8.70841 −0.475792
\(336\) −4.69202 −0.255971
\(337\) 28.9922 1.57931 0.789654 0.613553i \(-0.210260\pi\)
0.789654 + 0.613553i \(0.210260\pi\)
\(338\) 4.11529 0.223842
\(339\) −15.7778 −0.856931
\(340\) −3.27173 −0.177435
\(341\) 8.57673 0.464456
\(342\) 5.65279 0.305668
\(343\) −37.6069 −2.03058
\(344\) 1.04892 0.0565538
\(345\) 4.28621 0.230762
\(346\) −2.14914 −0.115539
\(347\) −28.8442 −1.54844 −0.774218 0.632920i \(-0.781856\pi\)
−0.774218 + 0.632920i \(0.781856\pi\)
\(348\) −0.417895 −0.0224015
\(349\) 19.4795 1.04271 0.521356 0.853339i \(-0.325426\pi\)
0.521356 + 0.853339i \(0.325426\pi\)
\(350\) 20.7995 1.11178
\(351\) −4.13706 −0.220820
\(352\) −5.51573 −0.293989
\(353\) −34.7657 −1.85039 −0.925196 0.379491i \(-0.876099\pi\)
−0.925196 + 0.379491i \(0.876099\pi\)
\(354\) 13.0586 0.694057
\(355\) −7.59478 −0.403089
\(356\) −4.59419 −0.243491
\(357\) −20.3860 −1.07894
\(358\) −21.3032 −1.12591
\(359\) 12.9530 0.683633 0.341817 0.939767i \(-0.388958\pi\)
0.341817 + 0.939767i \(0.388958\pi\)
\(360\) −0.753020 −0.0396877
\(361\) 12.9541 0.681793
\(362\) −1.76510 −0.0927717
\(363\) 19.4233 1.01946
\(364\) 19.4112 1.01742
\(365\) −1.15452 −0.0604304
\(366\) −15.5036 −0.810389
\(367\) −23.5265 −1.22807 −0.614036 0.789278i \(-0.710455\pi\)
−0.614036 + 0.789278i \(0.710455\pi\)
\(368\) −5.69202 −0.296717
\(369\) −9.36658 −0.487605
\(370\) 6.70171 0.348405
\(371\) 39.0519 2.02747
\(372\) −1.55496 −0.0806208
\(373\) 26.4959 1.37190 0.685952 0.727647i \(-0.259386\pi\)
0.685952 + 0.727647i \(0.259386\pi\)
\(374\) −23.9648 −1.23919
\(375\) 7.10321 0.366808
\(376\) 2.57673 0.132885
\(377\) 1.72886 0.0890407
\(378\) −4.69202 −0.241332
\(379\) −35.3642 −1.81654 −0.908268 0.418388i \(-0.862595\pi\)
−0.908268 + 0.418388i \(0.862595\pi\)
\(380\) −4.25667 −0.218362
\(381\) −1.66487 −0.0852941
\(382\) −18.9933 −0.971782
\(383\) −17.8834 −0.913798 −0.456899 0.889519i \(-0.651040\pi\)
−0.456899 + 0.889519i \(0.651040\pi\)
\(384\) 1.00000 0.0510310
\(385\) −19.4881 −0.993206
\(386\) −24.8635 −1.26552
\(387\) 1.04892 0.0533195
\(388\) 3.37867 0.171526
\(389\) −12.6063 −0.639163 −0.319582 0.947559i \(-0.603542\pi\)
−0.319582 + 0.947559i \(0.603542\pi\)
\(390\) 3.11529 0.157749
\(391\) −24.7308 −1.25069
\(392\) 15.0151 0.758375
\(393\) 9.21983 0.465079
\(394\) −0.0706876 −0.00356119
\(395\) −4.86459 −0.244764
\(396\) −5.51573 −0.277176
\(397\) 10.2567 0.514767 0.257384 0.966309i \(-0.417140\pi\)
0.257384 + 0.966309i \(0.417140\pi\)
\(398\) −11.7041 −0.586674
\(399\) −26.5230 −1.32781
\(400\) −4.43296 −0.221648
\(401\) −15.3690 −0.767490 −0.383745 0.923439i \(-0.625366\pi\)
−0.383745 + 0.923439i \(0.625366\pi\)
\(402\) 11.5646 0.576792
\(403\) 6.43296 0.320449
\(404\) −5.85623 −0.291358
\(405\) −0.753020 −0.0374179
\(406\) 1.96077 0.0973114
\(407\) 49.0887 2.43324
\(408\) 4.34481 0.215100
\(409\) 34.6819 1.71491 0.857454 0.514561i \(-0.172045\pi\)
0.857454 + 0.514561i \(0.172045\pi\)
\(410\) 7.05323 0.348334
\(411\) −18.6286 −0.918883
\(412\) 3.34050 0.164575
\(413\) −61.2713 −3.01496
\(414\) −5.69202 −0.279748
\(415\) −2.21313 −0.108638
\(416\) −4.13706 −0.202836
\(417\) 8.46681 0.414622
\(418\) −31.1793 −1.52503
\(419\) 15.1250 0.738904 0.369452 0.929250i \(-0.379545\pi\)
0.369452 + 0.929250i \(0.379545\pi\)
\(420\) 3.53319 0.172402
\(421\) 33.2707 1.62151 0.810757 0.585383i \(-0.199056\pi\)
0.810757 + 0.585383i \(0.199056\pi\)
\(422\) −9.29350 −0.452401
\(423\) 2.57673 0.125285
\(424\) −8.32304 −0.404203
\(425\) −19.2604 −0.934266
\(426\) 10.0858 0.488656
\(427\) 72.7434 3.52030
\(428\) −16.0248 −0.774586
\(429\) 22.8189 1.10171
\(430\) −0.789856 −0.0380902
\(431\) 20.0465 0.965607 0.482804 0.875729i \(-0.339619\pi\)
0.482804 + 0.875729i \(0.339619\pi\)
\(432\) 1.00000 0.0481125
\(433\) −25.9734 −1.24820 −0.624102 0.781343i \(-0.714535\pi\)
−0.624102 + 0.781343i \(0.714535\pi\)
\(434\) 7.29590 0.350214
\(435\) 0.314683 0.0150879
\(436\) 15.9705 0.764846
\(437\) −32.1758 −1.53918
\(438\) 1.53319 0.0732586
\(439\) −14.7705 −0.704956 −0.352478 0.935820i \(-0.614661\pi\)
−0.352478 + 0.935820i \(0.614661\pi\)
\(440\) 4.15346 0.198008
\(441\) 15.0151 0.715003
\(442\) −17.9748 −0.854973
\(443\) −1.89440 −0.0900055 −0.0450027 0.998987i \(-0.514330\pi\)
−0.0450027 + 0.998987i \(0.514330\pi\)
\(444\) −8.89977 −0.422365
\(445\) 3.45952 0.163997
\(446\) −1.00000 −0.0473514
\(447\) −3.73125 −0.176482
\(448\) −4.69202 −0.221677
\(449\) 14.4142 0.680247 0.340123 0.940381i \(-0.389531\pi\)
0.340123 + 0.940381i \(0.389531\pi\)
\(450\) −4.43296 −0.208972
\(451\) 51.6635 2.43274
\(452\) −15.7778 −0.742124
\(453\) −0.146752 −0.00689501
\(454\) −9.17390 −0.430552
\(455\) −14.6170 −0.685257
\(456\) 5.65279 0.264716
\(457\) 6.65817 0.311456 0.155728 0.987800i \(-0.450228\pi\)
0.155728 + 0.987800i \(0.450228\pi\)
\(458\) 21.5308 1.00607
\(459\) 4.34481 0.202799
\(460\) 4.28621 0.199845
\(461\) −8.91723 −0.415317 −0.207658 0.978201i \(-0.566584\pi\)
−0.207658 + 0.978201i \(0.566584\pi\)
\(462\) 25.8799 1.20404
\(463\) 11.0271 0.512475 0.256237 0.966614i \(-0.417517\pi\)
0.256237 + 0.966614i \(0.417517\pi\)
\(464\) −0.417895 −0.0194003
\(465\) 1.17092 0.0542999
\(466\) 15.6082 0.723035
\(467\) 30.5478 1.41358 0.706791 0.707422i \(-0.250142\pi\)
0.706791 + 0.707422i \(0.250142\pi\)
\(468\) −4.13706 −0.191236
\(469\) −54.2616 −2.50557
\(470\) −1.94033 −0.0895007
\(471\) 8.85623 0.408074
\(472\) 13.0586 0.601071
\(473\) −5.78554 −0.266020
\(474\) 6.46011 0.296723
\(475\) −25.0586 −1.14977
\(476\) −20.3860 −0.934389
\(477\) −8.32304 −0.381086
\(478\) −18.7506 −0.857634
\(479\) 10.1032 0.461628 0.230814 0.972998i \(-0.425861\pi\)
0.230814 + 0.972998i \(0.425861\pi\)
\(480\) −0.753020 −0.0343705
\(481\) 36.8189 1.67880
\(482\) 4.61463 0.210191
\(483\) 26.7071 1.21521
\(484\) 19.4233 0.882876
\(485\) −2.54420 −0.115526
\(486\) 1.00000 0.0453609
\(487\) −17.5961 −0.797356 −0.398678 0.917091i \(-0.630531\pi\)
−0.398678 + 0.917091i \(0.630531\pi\)
\(488\) −15.5036 −0.701817
\(489\) 18.6112 0.841626
\(490\) −11.3067 −0.510782
\(491\) −22.9758 −1.03689 −0.518443 0.855112i \(-0.673488\pi\)
−0.518443 + 0.855112i \(0.673488\pi\)
\(492\) −9.36658 −0.422278
\(493\) −1.81568 −0.0817739
\(494\) −23.3860 −1.05218
\(495\) 4.15346 0.186684
\(496\) −1.55496 −0.0698197
\(497\) −47.3226 −2.12271
\(498\) 2.93900 0.131700
\(499\) 29.5200 1.32150 0.660749 0.750607i \(-0.270239\pi\)
0.660749 + 0.750607i \(0.270239\pi\)
\(500\) 7.10321 0.317665
\(501\) 15.9933 0.714528
\(502\) −16.8280 −0.751071
\(503\) −23.4741 −1.04666 −0.523329 0.852130i \(-0.675310\pi\)
−0.523329 + 0.852130i \(0.675310\pi\)
\(504\) −4.69202 −0.208999
\(505\) 4.40986 0.196236
\(506\) 31.3957 1.39571
\(507\) 4.11529 0.182767
\(508\) −1.66487 −0.0738669
\(509\) −37.2078 −1.64920 −0.824602 0.565713i \(-0.808601\pi\)
−0.824602 + 0.565713i \(0.808601\pi\)
\(510\) −3.27173 −0.144875
\(511\) −7.19375 −0.318233
\(512\) 1.00000 0.0441942
\(513\) 5.65279 0.249577
\(514\) −11.0513 −0.487452
\(515\) −2.51547 −0.110845
\(516\) 1.04892 0.0461760
\(517\) −14.2125 −0.625067
\(518\) 41.7579 1.83474
\(519\) −2.14914 −0.0943370
\(520\) 3.11529 0.136615
\(521\) 6.82430 0.298978 0.149489 0.988763i \(-0.452237\pi\)
0.149489 + 0.988763i \(0.452237\pi\)
\(522\) −0.417895 −0.0182908
\(523\) −19.1879 −0.839028 −0.419514 0.907749i \(-0.637800\pi\)
−0.419514 + 0.907749i \(0.637800\pi\)
\(524\) 9.21983 0.402770
\(525\) 20.7995 0.907767
\(526\) 6.92261 0.301840
\(527\) −6.75600 −0.294296
\(528\) −5.51573 −0.240041
\(529\) 9.39911 0.408657
\(530\) 6.26742 0.272239
\(531\) 13.0586 0.566695
\(532\) −26.5230 −1.14992
\(533\) 38.7502 1.67846
\(534\) −4.59419 −0.198810
\(535\) 12.0670 0.521700
\(536\) 11.5646 0.499517
\(537\) −21.3032 −0.919301
\(538\) −16.4330 −0.708475
\(539\) −82.8190 −3.56727
\(540\) −0.753020 −0.0324048
\(541\) −17.2271 −0.740652 −0.370326 0.928902i \(-0.620754\pi\)
−0.370326 + 0.928902i \(0.620754\pi\)
\(542\) 5.65817 0.243039
\(543\) −1.76510 −0.0757478
\(544\) 4.34481 0.186282
\(545\) −12.0261 −0.515141
\(546\) 19.4112 0.830722
\(547\) −11.4125 −0.487964 −0.243982 0.969780i \(-0.578454\pi\)
−0.243982 + 0.969780i \(0.578454\pi\)
\(548\) −18.6286 −0.795776
\(549\) −15.5036 −0.661680
\(550\) 24.4510 1.04259
\(551\) −2.36227 −0.100636
\(552\) −5.69202 −0.242269
\(553\) −30.3110 −1.28895
\(554\) −2.23191 −0.0948249
\(555\) 6.70171 0.284472
\(556\) 8.46681 0.359073
\(557\) 16.0392 0.679604 0.339802 0.940497i \(-0.389640\pi\)
0.339802 + 0.940497i \(0.389640\pi\)
\(558\) −1.55496 −0.0658266
\(559\) −4.33944 −0.183539
\(560\) 3.53319 0.149304
\(561\) −23.9648 −1.01180
\(562\) 18.6015 0.784656
\(563\) 16.4517 0.693358 0.346679 0.937984i \(-0.387309\pi\)
0.346679 + 0.937984i \(0.387309\pi\)
\(564\) 2.57673 0.108500
\(565\) 11.8810 0.499837
\(566\) −5.78017 −0.242959
\(567\) −4.69202 −0.197046
\(568\) 10.0858 0.423189
\(569\) 6.44026 0.269990 0.134995 0.990846i \(-0.456898\pi\)
0.134995 + 0.990846i \(0.456898\pi\)
\(570\) −4.25667 −0.178292
\(571\) −23.3260 −0.976164 −0.488082 0.872798i \(-0.662303\pi\)
−0.488082 + 0.872798i \(0.662303\pi\)
\(572\) 22.8189 0.954107
\(573\) −18.9933 −0.793456
\(574\) 43.9482 1.83436
\(575\) 25.2325 1.05227
\(576\) 1.00000 0.0416667
\(577\) 7.17092 0.298529 0.149265 0.988797i \(-0.452309\pi\)
0.149265 + 0.988797i \(0.452309\pi\)
\(578\) 1.87741 0.0780900
\(579\) −24.8635 −1.03329
\(580\) 0.314683 0.0130665
\(581\) −13.7899 −0.572100
\(582\) 3.37867 0.140050
\(583\) 45.9077 1.90130
\(584\) 1.53319 0.0634438
\(585\) 3.11529 0.128802
\(586\) −10.5875 −0.437365
\(587\) −43.0097 −1.77520 −0.887600 0.460615i \(-0.847629\pi\)
−0.887600 + 0.460615i \(0.847629\pi\)
\(588\) 15.0151 0.619211
\(589\) −8.78986 −0.362180
\(590\) −9.83340 −0.404835
\(591\) −0.0706876 −0.00290770
\(592\) −8.89977 −0.365778
\(593\) 14.2155 0.583761 0.291881 0.956455i \(-0.405719\pi\)
0.291881 + 0.956455i \(0.405719\pi\)
\(594\) −5.51573 −0.226313
\(595\) 15.3510 0.629331
\(596\) −3.73125 −0.152838
\(597\) −11.7041 −0.479017
\(598\) 23.5483 0.962960
\(599\) 17.2338 0.704155 0.352078 0.935971i \(-0.385475\pi\)
0.352078 + 0.935971i \(0.385475\pi\)
\(600\) −4.43296 −0.180975
\(601\) −12.4722 −0.508751 −0.254376 0.967106i \(-0.581870\pi\)
−0.254376 + 0.967106i \(0.581870\pi\)
\(602\) −4.92154 −0.200587
\(603\) 11.5646 0.470949
\(604\) −0.146752 −0.00597125
\(605\) −14.6261 −0.594636
\(606\) −5.85623 −0.237893
\(607\) 36.6558 1.48781 0.743906 0.668284i \(-0.232971\pi\)
0.743906 + 0.668284i \(0.232971\pi\)
\(608\) 5.65279 0.229251
\(609\) 1.96077 0.0794545
\(610\) 11.6746 0.472689
\(611\) −10.6601 −0.431261
\(612\) 4.34481 0.175629
\(613\) 21.6775 0.875548 0.437774 0.899085i \(-0.355767\pi\)
0.437774 + 0.899085i \(0.355767\pi\)
\(614\) −27.3478 −1.10367
\(615\) 7.05323 0.284414
\(616\) 25.8799 1.04273
\(617\) −29.6329 −1.19298 −0.596489 0.802622i \(-0.703438\pi\)
−0.596489 + 0.802622i \(0.703438\pi\)
\(618\) 3.34050 0.134375
\(619\) 26.8291 1.07835 0.539176 0.842193i \(-0.318736\pi\)
0.539176 + 0.842193i \(0.318736\pi\)
\(620\) 1.17092 0.0470251
\(621\) −5.69202 −0.228413
\(622\) −4.63102 −0.185687
\(623\) 21.5560 0.863624
\(624\) −4.13706 −0.165615
\(625\) 16.8159 0.672638
\(626\) −21.1709 −0.846160
\(627\) −31.1793 −1.24518
\(628\) 8.85623 0.353402
\(629\) −38.6679 −1.54179
\(630\) 3.53319 0.140766
\(631\) −9.14005 −0.363860 −0.181930 0.983312i \(-0.558234\pi\)
−0.181930 + 0.983312i \(0.558234\pi\)
\(632\) 6.46011 0.256969
\(633\) −9.29350 −0.369384
\(634\) −1.68127 −0.0667717
\(635\) 1.25368 0.0497509
\(636\) −8.32304 −0.330030
\(637\) −62.1183 −2.46122
\(638\) 2.30499 0.0912556
\(639\) 10.0858 0.398986
\(640\) −0.753020 −0.0297657
\(641\) 1.45606 0.0575109 0.0287554 0.999586i \(-0.490846\pi\)
0.0287554 + 0.999586i \(0.490846\pi\)
\(642\) −16.0248 −0.632447
\(643\) −19.0562 −0.751504 −0.375752 0.926720i \(-0.622615\pi\)
−0.375752 + 0.926720i \(0.622615\pi\)
\(644\) 26.7071 1.05241
\(645\) −0.789856 −0.0311006
\(646\) 24.5603 0.966313
\(647\) 21.2373 0.834924 0.417462 0.908694i \(-0.362920\pi\)
0.417462 + 0.908694i \(0.362920\pi\)
\(648\) 1.00000 0.0392837
\(649\) −72.0277 −2.82734
\(650\) 18.3394 0.719332
\(651\) 7.29590 0.285949
\(652\) 18.6112 0.728870
\(653\) −3.11662 −0.121963 −0.0609814 0.998139i \(-0.519423\pi\)
−0.0609814 + 0.998139i \(0.519423\pi\)
\(654\) 15.9705 0.624494
\(655\) −6.94272 −0.271275
\(656\) −9.36658 −0.365704
\(657\) 1.53319 0.0598154
\(658\) −12.0901 −0.471320
\(659\) −17.5429 −0.683373 −0.341687 0.939814i \(-0.610998\pi\)
−0.341687 + 0.939814i \(0.610998\pi\)
\(660\) 4.15346 0.161673
\(661\) −38.7482 −1.50713 −0.753566 0.657372i \(-0.771668\pi\)
−0.753566 + 0.657372i \(0.771668\pi\)
\(662\) 24.3394 0.945979
\(663\) −17.9748 −0.698082
\(664\) 2.93900 0.114055
\(665\) 19.9724 0.774496
\(666\) −8.89977 −0.344859
\(667\) 2.37867 0.0921023
\(668\) 15.9933 0.618799
\(669\) −1.00000 −0.0386622
\(670\) −8.70841 −0.336435
\(671\) 85.5139 3.30123
\(672\) −4.69202 −0.180999
\(673\) −2.55629 −0.0985376 −0.0492688 0.998786i \(-0.515689\pi\)
−0.0492688 + 0.998786i \(0.515689\pi\)
\(674\) 28.9922 1.11674
\(675\) −4.43296 −0.170625
\(676\) 4.11529 0.158281
\(677\) −48.9874 −1.88274 −0.941370 0.337375i \(-0.890461\pi\)
−0.941370 + 0.337375i \(0.890461\pi\)
\(678\) −15.7778 −0.605942
\(679\) −15.8528 −0.608374
\(680\) −3.27173 −0.125465
\(681\) −9.17390 −0.351545
\(682\) 8.57673 0.328420
\(683\) 23.4077 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(684\) 5.65279 0.216140
\(685\) 14.0277 0.535972
\(686\) −37.6069 −1.43584
\(687\) 21.5308 0.821451
\(688\) 1.04892 0.0399896
\(689\) 34.4330 1.31179
\(690\) 4.28621 0.163173
\(691\) 48.5357 1.84638 0.923192 0.384338i \(-0.125570\pi\)
0.923192 + 0.384338i \(0.125570\pi\)
\(692\) −2.14914 −0.0816982
\(693\) 25.8799 0.983097
\(694\) −28.8442 −1.09491
\(695\) −6.37568 −0.241843
\(696\) −0.417895 −0.0158403
\(697\) −40.6961 −1.54147
\(698\) 19.4795 0.737309
\(699\) 15.6082 0.590356
\(700\) 20.7995 0.786149
\(701\) 14.1860 0.535797 0.267899 0.963447i \(-0.413671\pi\)
0.267899 + 0.963447i \(0.413671\pi\)
\(702\) −4.13706 −0.156143
\(703\) −50.3086 −1.89742
\(704\) −5.51573 −0.207882
\(705\) −1.94033 −0.0730770
\(706\) −34.7657 −1.30842
\(707\) 27.4776 1.03340
\(708\) 13.0586 0.490772
\(709\) −33.9439 −1.27479 −0.637395 0.770537i \(-0.719988\pi\)
−0.637395 + 0.770537i \(0.719988\pi\)
\(710\) −7.59478 −0.285027
\(711\) 6.46011 0.242273
\(712\) −4.59419 −0.172174
\(713\) 8.85086 0.331467
\(714\) −20.3860 −0.762925
\(715\) −17.1831 −0.642612
\(716\) −21.3032 −0.796138
\(717\) −18.7506 −0.700255
\(718\) 12.9530 0.483402
\(719\) −10.4964 −0.391448 −0.195724 0.980659i \(-0.562706\pi\)
−0.195724 + 0.980659i \(0.562706\pi\)
\(720\) −0.753020 −0.0280634
\(721\) −15.6737 −0.583719
\(722\) 12.9541 0.482100
\(723\) 4.61463 0.171620
\(724\) −1.76510 −0.0655995
\(725\) 1.85251 0.0688005
\(726\) 19.4233 0.720865
\(727\) −27.3274 −1.01352 −0.506758 0.862088i \(-0.669156\pi\)
−0.506758 + 0.862088i \(0.669156\pi\)
\(728\) 19.4112 0.719427
\(729\) 1.00000 0.0370370
\(730\) −1.15452 −0.0427308
\(731\) 4.55735 0.168560
\(732\) −15.5036 −0.573031
\(733\) −36.3588 −1.34294 −0.671472 0.741030i \(-0.734338\pi\)
−0.671472 + 0.741030i \(0.734338\pi\)
\(734\) −23.5265 −0.868378
\(735\) −11.3067 −0.417052
\(736\) −5.69202 −0.209811
\(737\) −63.7875 −2.34964
\(738\) −9.36658 −0.344789
\(739\) 34.7644 1.27883 0.639414 0.768863i \(-0.279177\pi\)
0.639414 + 0.768863i \(0.279177\pi\)
\(740\) 6.70171 0.246360
\(741\) −23.3860 −0.859105
\(742\) 39.0519 1.43364
\(743\) 17.2591 0.633174 0.316587 0.948564i \(-0.397463\pi\)
0.316587 + 0.948564i \(0.397463\pi\)
\(744\) −1.55496 −0.0570075
\(745\) 2.80971 0.102940
\(746\) 26.4959 0.970083
\(747\) 2.93900 0.107532
\(748\) −23.9648 −0.876241
\(749\) 75.1885 2.74733
\(750\) 7.10321 0.259373
\(751\) 12.8431 0.468651 0.234325 0.972158i \(-0.424712\pi\)
0.234325 + 0.972158i \(0.424712\pi\)
\(752\) 2.57673 0.0939636
\(753\) −16.8280 −0.613247
\(754\) 1.72886 0.0629613
\(755\) 0.110507 0.00402177
\(756\) −4.69202 −0.170647
\(757\) 2.04221 0.0742255 0.0371127 0.999311i \(-0.488184\pi\)
0.0371127 + 0.999311i \(0.488184\pi\)
\(758\) −35.3642 −1.28449
\(759\) 31.3957 1.13959
\(760\) −4.25667 −0.154406
\(761\) −45.6902 −1.65627 −0.828135 0.560529i \(-0.810598\pi\)
−0.828135 + 0.560529i \(0.810598\pi\)
\(762\) −1.66487 −0.0603120
\(763\) −74.9337 −2.71278
\(764\) −18.9933 −0.687153
\(765\) −3.27173 −0.118290
\(766\) −17.8834 −0.646153
\(767\) −54.0243 −1.95070
\(768\) 1.00000 0.0360844
\(769\) −35.7743 −1.29005 −0.645027 0.764159i \(-0.723154\pi\)
−0.645027 + 0.764159i \(0.723154\pi\)
\(770\) −19.4881 −0.702303
\(771\) −11.0513 −0.398003
\(772\) −24.8635 −0.894858
\(773\) 23.9782 0.862437 0.431218 0.902248i \(-0.358084\pi\)
0.431218 + 0.902248i \(0.358084\pi\)
\(774\) 1.04892 0.0377026
\(775\) 6.89307 0.247606
\(776\) 3.37867 0.121287
\(777\) 41.7579 1.49806
\(778\) −12.6063 −0.451957
\(779\) −52.9474 −1.89704
\(780\) 3.11529 0.111545
\(781\) −55.6303 −1.99061
\(782\) −24.7308 −0.884371
\(783\) −0.417895 −0.0149343
\(784\) 15.0151 0.536252
\(785\) −6.66892 −0.238024
\(786\) 9.21983 0.328861
\(787\) −50.4626 −1.79880 −0.899399 0.437129i \(-0.855995\pi\)
−0.899399 + 0.437129i \(0.855995\pi\)
\(788\) −0.0706876 −0.00251814
\(789\) 6.92261 0.246451
\(790\) −4.86459 −0.173074
\(791\) 74.0297 2.63219
\(792\) −5.51573 −0.195993
\(793\) 64.1396 2.27766
\(794\) 10.2567 0.363996
\(795\) 6.26742 0.222283
\(796\) −11.7041 −0.414841
\(797\) −15.3026 −0.542046 −0.271023 0.962573i \(-0.587362\pi\)
−0.271023 + 0.962573i \(0.587362\pi\)
\(798\) −26.5230 −0.938905
\(799\) 11.1954 0.396065
\(800\) −4.43296 −0.156729
\(801\) −4.59419 −0.162328
\(802\) −15.3690 −0.542697
\(803\) −8.45665 −0.298429
\(804\) 11.5646 0.407854
\(805\) −20.1110 −0.708819
\(806\) 6.43296 0.226591
\(807\) −16.4330 −0.578468
\(808\) −5.85623 −0.206022
\(809\) 17.5636 0.617503 0.308751 0.951143i \(-0.400089\pi\)
0.308751 + 0.951143i \(0.400089\pi\)
\(810\) −0.753020 −0.0264584
\(811\) −0.443977 −0.0155901 −0.00779507 0.999970i \(-0.502481\pi\)
−0.00779507 + 0.999970i \(0.502481\pi\)
\(812\) 1.96077 0.0688096
\(813\) 5.65817 0.198441
\(814\) 49.0887 1.72056
\(815\) −14.0146 −0.490910
\(816\) 4.34481 0.152099
\(817\) 5.92931 0.207440
\(818\) 34.6819 1.21262
\(819\) 19.4112 0.678282
\(820\) 7.05323 0.246309
\(821\) 16.4510 0.574144 0.287072 0.957909i \(-0.407318\pi\)
0.287072 + 0.957909i \(0.407318\pi\)
\(822\) −18.6286 −0.649748
\(823\) 44.1309 1.53831 0.769154 0.639063i \(-0.220678\pi\)
0.769154 + 0.639063i \(0.220678\pi\)
\(824\) 3.34050 0.116372
\(825\) 24.4510 0.851275
\(826\) −61.2713 −2.13190
\(827\) 5.58748 0.194296 0.0971479 0.995270i \(-0.469028\pi\)
0.0971479 + 0.995270i \(0.469028\pi\)
\(828\) −5.69202 −0.197811
\(829\) 36.7754 1.27726 0.638631 0.769513i \(-0.279501\pi\)
0.638631 + 0.769513i \(0.279501\pi\)
\(830\) −2.21313 −0.0768188
\(831\) −2.23191 −0.0774242
\(832\) −4.13706 −0.143427
\(833\) 65.2377 2.26035
\(834\) 8.46681 0.293182
\(835\) −12.0433 −0.416775
\(836\) −31.1793 −1.07836
\(837\) −1.55496 −0.0537472
\(838\) 15.1250 0.522484
\(839\) −15.2892 −0.527842 −0.263921 0.964544i \(-0.585016\pi\)
−0.263921 + 0.964544i \(0.585016\pi\)
\(840\) 3.53319 0.121907
\(841\) −28.8254 −0.993978
\(842\) 33.2707 1.14658
\(843\) 18.6015 0.640669
\(844\) −9.29350 −0.319896
\(845\) −3.09890 −0.106605
\(846\) 2.57673 0.0885897
\(847\) −91.1344 −3.13142
\(848\) −8.32304 −0.285815
\(849\) −5.78017 −0.198375
\(850\) −19.2604 −0.660626
\(851\) 50.6577 1.73652
\(852\) 10.0858 0.345532
\(853\) 20.7090 0.709063 0.354531 0.935044i \(-0.384640\pi\)
0.354531 + 0.935044i \(0.384640\pi\)
\(854\) 72.7434 2.48923
\(855\) −4.25667 −0.145575
\(856\) −16.0248 −0.547715
\(857\) 37.2368 1.27199 0.635993 0.771695i \(-0.280591\pi\)
0.635993 + 0.771695i \(0.280591\pi\)
\(858\) 22.8189 0.779025
\(859\) −1.71273 −0.0584375 −0.0292187 0.999573i \(-0.509302\pi\)
−0.0292187 + 0.999573i \(0.509302\pi\)
\(860\) −0.789856 −0.0269339
\(861\) 43.9482 1.49775
\(862\) 20.0465 0.682787
\(863\) 15.0731 0.513094 0.256547 0.966532i \(-0.417415\pi\)
0.256547 + 0.966532i \(0.417415\pi\)
\(864\) 1.00000 0.0340207
\(865\) 1.61835 0.0550255
\(866\) −25.9734 −0.882614
\(867\) 1.87741 0.0637602
\(868\) 7.29590 0.247639
\(869\) −35.6322 −1.20874
\(870\) 0.314683 0.0106688
\(871\) −47.8437 −1.62112
\(872\) 15.9705 0.540828
\(873\) 3.37867 0.114351
\(874\) −32.1758 −1.08836
\(875\) −33.3284 −1.12671
\(876\) 1.53319 0.0518016
\(877\) −38.7536 −1.30862 −0.654308 0.756228i \(-0.727040\pi\)
−0.654308 + 0.756228i \(0.727040\pi\)
\(878\) −14.7705 −0.498480
\(879\) −10.5875 −0.357107
\(880\) 4.15346 0.140013
\(881\) 19.8358 0.668285 0.334142 0.942523i \(-0.391553\pi\)
0.334142 + 0.942523i \(0.391553\pi\)
\(882\) 15.0151 0.505584
\(883\) −35.0258 −1.17871 −0.589356 0.807873i \(-0.700619\pi\)
−0.589356 + 0.807873i \(0.700619\pi\)
\(884\) −17.9748 −0.604557
\(885\) −9.83340 −0.330546
\(886\) −1.89440 −0.0636435
\(887\) 31.7875 1.06732 0.533659 0.845700i \(-0.320816\pi\)
0.533659 + 0.845700i \(0.320816\pi\)
\(888\) −8.89977 −0.298657
\(889\) 7.81163 0.261994
\(890\) 3.45952 0.115963
\(891\) −5.51573 −0.184784
\(892\) −1.00000 −0.0334825
\(893\) 14.5657 0.487423
\(894\) −3.73125 −0.124792
\(895\) 16.0417 0.536216
\(896\) −4.69202 −0.156749
\(897\) 23.5483 0.786253
\(898\) 14.4142 0.481007
\(899\) 0.649809 0.0216723
\(900\) −4.43296 −0.147765
\(901\) −36.1621 −1.20473
\(902\) 51.6635 1.72021
\(903\) −4.92154 −0.163779
\(904\) −15.7778 −0.524761
\(905\) 1.32916 0.0441827
\(906\) −0.146752 −0.00487551
\(907\) 8.45042 0.280592 0.140296 0.990110i \(-0.455195\pi\)
0.140296 + 0.990110i \(0.455195\pi\)
\(908\) −9.17390 −0.304447
\(909\) −5.85623 −0.194239
\(910\) −14.6170 −0.484550
\(911\) −9.38106 −0.310808 −0.155404 0.987851i \(-0.549668\pi\)
−0.155404 + 0.987851i \(0.549668\pi\)
\(912\) 5.65279 0.187183
\(913\) −16.2107 −0.536497
\(914\) 6.65817 0.220233
\(915\) 11.6746 0.385949
\(916\) 21.5308 0.711397
\(917\) −43.2597 −1.42856
\(918\) 4.34481 0.143400
\(919\) −44.2247 −1.45884 −0.729420 0.684066i \(-0.760210\pi\)
−0.729420 + 0.684066i \(0.760210\pi\)
\(920\) 4.28621 0.141312
\(921\) −27.3478 −0.901141
\(922\) −8.91723 −0.293673
\(923\) −41.7254 −1.37341
\(924\) 25.8799 0.851387
\(925\) 39.4523 1.29718
\(926\) 11.0271 0.362375
\(927\) 3.34050 0.109716
\(928\) −0.417895 −0.0137181
\(929\) 16.8810 0.553847 0.276924 0.960892i \(-0.410685\pi\)
0.276924 + 0.960892i \(0.410685\pi\)
\(930\) 1.17092 0.0383958
\(931\) 84.8771 2.78173
\(932\) 15.6082 0.511263
\(933\) −4.63102 −0.151613
\(934\) 30.5478 0.999554
\(935\) 18.0460 0.590167
\(936\) −4.13706 −0.135224
\(937\) 18.6021 0.607703 0.303852 0.952719i \(-0.401727\pi\)
0.303852 + 0.952719i \(0.401727\pi\)
\(938\) −54.2616 −1.77170
\(939\) −21.1709 −0.690887
\(940\) −1.94033 −0.0632866
\(941\) 24.1545 0.787415 0.393707 0.919236i \(-0.371192\pi\)
0.393707 + 0.919236i \(0.371192\pi\)
\(942\) 8.85623 0.288552
\(943\) 53.3148 1.73617
\(944\) 13.0586 0.425021
\(945\) 3.53319 0.114935
\(946\) −5.78554 −0.188104
\(947\) 12.4494 0.404550 0.202275 0.979329i \(-0.435167\pi\)
0.202275 + 0.979329i \(0.435167\pi\)
\(948\) 6.46011 0.209815
\(949\) −6.34290 −0.205899
\(950\) −25.0586 −0.813009
\(951\) −1.68127 −0.0545188
\(952\) −20.3860 −0.660713
\(953\) 36.7362 1.19000 0.595000 0.803725i \(-0.297152\pi\)
0.595000 + 0.803725i \(0.297152\pi\)
\(954\) −8.32304 −0.269468
\(955\) 14.3023 0.462813
\(956\) −18.7506 −0.606439
\(957\) 2.30499 0.0745099
\(958\) 10.1032 0.326420
\(959\) 87.4059 2.82248
\(960\) −0.753020 −0.0243036
\(961\) −28.5821 −0.922003
\(962\) 36.8189 1.18709
\(963\) −16.0248 −0.516390
\(964\) 4.61463 0.148627
\(965\) 18.7227 0.602706
\(966\) 26.7071 0.859286
\(967\) −9.16852 −0.294840 −0.147420 0.989074i \(-0.547097\pi\)
−0.147420 + 0.989074i \(0.547097\pi\)
\(968\) 19.4233 0.624288
\(969\) 24.5603 0.788992
\(970\) −2.54420 −0.0816895
\(971\) 28.5327 0.915658 0.457829 0.889040i \(-0.348627\pi\)
0.457829 + 0.889040i \(0.348627\pi\)
\(972\) 1.00000 0.0320750
\(973\) −39.7265 −1.27357
\(974\) −17.5961 −0.563816
\(975\) 18.3394 0.587332
\(976\) −15.5036 −0.496260
\(977\) 23.3593 0.747330 0.373665 0.927564i \(-0.378101\pi\)
0.373665 + 0.927564i \(0.378101\pi\)
\(978\) 18.6112 0.595120
\(979\) 25.3403 0.809879
\(980\) −11.3067 −0.361178
\(981\) 15.9705 0.509898
\(982\) −22.9758 −0.733188
\(983\) −20.9772 −0.669068 −0.334534 0.942384i \(-0.608579\pi\)
−0.334534 + 0.942384i \(0.608579\pi\)
\(984\) −9.36658 −0.298596
\(985\) 0.0532292 0.00169602
\(986\) −1.81568 −0.0578229
\(987\) −12.0901 −0.384831
\(988\) −23.3860 −0.744007
\(989\) −5.97046 −0.189850
\(990\) 4.15346 0.132006
\(991\) −7.54932 −0.239812 −0.119906 0.992785i \(-0.538259\pi\)
−0.119906 + 0.992785i \(0.538259\pi\)
\(992\) −1.55496 −0.0493700
\(993\) 24.3394 0.772389
\(994\) −47.3226 −1.50098
\(995\) 8.81343 0.279404
\(996\) 2.93900 0.0931258
\(997\) 30.6974 0.972196 0.486098 0.873904i \(-0.338420\pi\)
0.486098 + 0.873904i \(0.338420\pi\)
\(998\) 29.5200 0.934441
\(999\) −8.89977 −0.281576
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.f.1.3 3
3.2 odd 2 4014.2.a.n.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.f.1.3 3 1.1 even 1 trivial
4014.2.a.n.1.1 3 3.2 odd 2