Properties

Label 4005.2.a.m
Level $4005$
Weight $2$
Character orbit 4005.a
Self dual yes
Analytic conductor $31.980$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4005,2,Mod(1,4005)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4005.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4005, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4005 = 3^{2} \cdot 5 \cdot 89 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4005.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9800860095\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2777.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1335)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - \beta_{3} + 1) q^{4} + q^{5} + (\beta_1 - 2) q^{7} + ( - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{8} - \beta_{2} q^{10} + 2 \beta_{2} q^{11} + (2 \beta_{3} - \beta_{2} - \beta_1 - 2) q^{13}+ \cdots + (4 \beta_{3} + \beta_{2} + 3 \beta_1 - 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{5} - 7 q^{7} + 3 q^{8} - 5 q^{13} + q^{14} - 10 q^{16} + 13 q^{17} - 10 q^{19} + 2 q^{20} - 20 q^{22} - 3 q^{23} + 4 q^{25} + 3 q^{26} - 4 q^{28} - 2 q^{29} - 2 q^{31} + q^{32} + 6 q^{34}+ \cdots - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4x^{2} + x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.50848
2.36234
−0.679643
0.825785
−1.78400 0 1.18264 1.00000 0 −3.50848 1.45816 0 −1.78400
1.2 −1.21831 0 −0.515722 1.00000 0 0.362340 3.06493 0 −1.21831
1.3 0.858442 0 −1.26308 1.00000 0 −2.67964 −2.80116 0 0.858442
1.4 2.14386 0 2.59615 1.00000 0 −1.17422 1.27807 0 2.14386
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(89\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4005.2.a.m 4
3.b odd 2 1 1335.2.a.f 4
15.d odd 2 1 6675.2.a.r 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1335.2.a.f 4 3.b odd 2 1
4005.2.a.m 4 1.a even 1 1 trivial
6675.2.a.r 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4005))\):

\( T_{2}^{4} - 5T_{2}^{2} - T_{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 7T_{7}^{3} + 14T_{7}^{2} + 5T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 20T_{11}^{2} + 8T_{11} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5T^{2} - T + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 7 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( T^{4} - 20 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{4} + 5 T^{3} + \cdots - 106 \) Copy content Toggle raw display
$17$ \( T^{4} - 13 T^{3} + \cdots + 44 \) Copy content Toggle raw display
$19$ \( T^{4} + 10 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$23$ \( T^{4} + 3 T^{3} + \cdots - 88 \) Copy content Toggle raw display
$29$ \( T^{4} + 2 T^{3} + \cdots + 41 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$37$ \( T^{4} + 9 T^{3} + \cdots - 386 \) Copy content Toggle raw display
$41$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{4} + 19 T^{3} + \cdots - 2144 \) Copy content Toggle raw display
$47$ \( T^{4} + 5 T^{3} + \cdots - 188 \) Copy content Toggle raw display
$53$ \( T^{4} - 3 T^{3} + \cdots + 1142 \) Copy content Toggle raw display
$59$ \( T^{4} + 2 T^{3} + \cdots - 23 \) Copy content Toggle raw display
$61$ \( T^{4} + 4 T^{3} + \cdots + 3008 \) Copy content Toggle raw display
$67$ \( T^{4} + 15 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$71$ \( T^{4} - 6 T^{3} + \cdots - 256 \) Copy content Toggle raw display
$73$ \( T^{4} + 21 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$79$ \( T^{4} + 20 T^{3} + \cdots + 67 \) Copy content Toggle raw display
$83$ \( T^{4} - 9 T^{3} + \cdots + 1016 \) Copy content Toggle raw display
$89$ \( (T + 1)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 17 T^{3} + \cdots + 424 \) Copy content Toggle raw display
show more
show less