Defining parameters
| Level: | \( N \) | = | \( 4005 = 3^{2} \cdot 5 \cdot 89 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 56 \) | ||
| Sturm bound: | \(2280960\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4005))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 575872 | 416066 | 159806 |
| Cusp forms | 564609 | 411366 | 153243 |
| Eisenstein series | 11263 | 4700 | 6563 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4005))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4005))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(4005)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(89))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(267))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(445))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(801))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1335))\)\(^{\oplus 2}\)