Properties

Label 4005.dl
Modulus $4005$
Conductor $445$
Order $88$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4005, base_ring=CyclotomicField(88)) M = H._module chi = DirichletCharacter(H, M([0,22,37])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(82,4005)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4005\)
Conductor: \(445\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(88\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 445.ba
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{88})$
Fixed field: Number field defined by a degree 88 polynomial

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{4005}(82,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{37}{88}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{19}{88}\right)\)
\(\chi_{4005}(118,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{5}{88}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{47}{88}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{85}{88}\right)\)
\(\chi_{4005}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{53}{88}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{23}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{21}{88}\right)\)
\(\chi_{4005}(172,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{35}{88}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{61}{88}\right)\) \(e\left(\frac{65}{88}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{67}{88}\right)\)
\(\chi_{4005}(208,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{73}{88}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{87}{88}\right)\) \(e\left(\frac{35}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{9}{88}\right)\)
\(\chi_{4005}(298,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{73}{88}\right)\)
\(\chi_{4005}(343,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{37}{88}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{13}{88}\right)\)
\(\chi_{4005}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{51}{88}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{88}\right)\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{75}{88}\right)\)
\(\chi_{4005}(442,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{45}{88}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{35}{88}\right)\)
\(\chi_{4005}(577,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{83}{88}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{29}{88}\right)\) \(e\left(\frac{41}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{3}{88}\right)\)
\(\chi_{4005}(658,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{65}{88}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{63}{88}\right)\) \(e\left(\frac{83}{88}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{49}{88}\right)\)
\(\chi_{4005}(847,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{39}{88}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{73}{88}\right)\) \(e\left(\frac{85}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{47}{88}\right)\)
\(\chi_{4005}(928,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{61}{88}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{51}{88}\right)\) \(e\left(\frac{63}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{69}{88}\right)\)
\(\chi_{4005}(982,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{15}{88}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{53}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{79}{88}\right)\)
\(\chi_{4005}(1027,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{65}{88}\right)\) \(e\left(\frac{13}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{31}{88}\right)\)
\(\chi_{4005}(1252,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{79}{88}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{21}{88}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{23}{88}\right)\)
\(\chi_{4005}(1342,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{69}{88}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{63}{88}\right)\)
\(\chi_{4005}(1747,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{87}{88}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{41}{88}\right)\) \(e\left(\frac{61}{88}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{71}{88}\right)\)
\(\chi_{4005}(1972,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{47}{88}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{37}{88}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{7}{88}\right)\)
\(\chi_{4005}(2098,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{25}{88}\right)\)
\(\chi_{4005}(2197,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{69}{88}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{83}{88}\right)\)
\(\chi_{4005}(2368,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{21}{88}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{39}{88}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{5}{88}\right)\)
\(\chi_{4005}(2557,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{88}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{43}{88}\right)\)
\(\chi_{4005}(2647,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{88}\right)\) \(e\left(\frac{73}{88}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{59}{88}\right)\)
\(\chi_{4005}(2683,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{23}{88}\right)\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{57}{88}\right)\)
\(\chi_{4005}(2728,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{69}{88}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{15}{88}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{29}{88}\right)\)
\(\chi_{4005}(2782,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{63}{88}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{29}{88}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{15}{88}\right)\)
\(\chi_{4005}(2818,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{29}{88}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{43}{88}\right)\) \(e\left(\frac{79}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{53}{88}\right)\)
\(\chi_{4005}(2863,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{65}{88}\right)\)
\(\chi_{4005}(2872,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{45}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{87}{88}\right)\)
\(\chi_{4005}(2908,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{15}{88}\right)\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{41}{88}\right)\)