Properties

Label 4000.2.d.c.2001.13
Level $4000$
Weight $2$
Character 4000.2001
Analytic conductor $31.940$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4000,2,Mod(2001,4000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4000.2001"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2001.13
Character \(\chi\) \(=\) 4000.2001
Dual form 4000.2.d.c.2001.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.62662i q^{3} -0.269237 q^{7} -3.89913 q^{9} -4.58163i q^{11} -1.55366i q^{13} +0.609109 q^{17} -6.69309i q^{19} +0.707183i q^{21} -3.52675 q^{23} +2.36168i q^{27} +7.73304i q^{29} +3.34096 q^{31} -12.0342 q^{33} -5.32768i q^{37} -4.08087 q^{39} +4.38291 q^{41} -12.2644i q^{43} +9.54651 q^{47} -6.92751 q^{49} -1.59990i q^{51} -10.6574i q^{53} -17.5802 q^{57} +10.2256i q^{59} +13.2628i q^{61} +1.04979 q^{63} +3.93398i q^{67} +9.26343i q^{69} -6.95638 q^{71} +5.93156 q^{73} +1.23354i q^{77} -10.1382 q^{79} -5.49416 q^{81} +6.52313i q^{83} +20.3118 q^{87} +6.69564 q^{89} +0.418302i q^{91} -8.77544i q^{93} -3.99182 q^{97} +17.8644i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{9} - 48 q^{31} - 8 q^{39} + 44 q^{41} + 12 q^{49} - 96 q^{71} - 96 q^{79} - 56 q^{81} - 44 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.62662i − 1.51648i −0.651976 0.758240i \(-0.726060\pi\)
0.651976 0.758240i \(-0.273940\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.269237 −0.101762 −0.0508810 0.998705i \(-0.516203\pi\)
−0.0508810 + 0.998705i \(0.516203\pi\)
\(8\) 0 0
\(9\) −3.89913 −1.29971
\(10\) 0 0
\(11\) − 4.58163i − 1.38141i −0.723135 0.690706i \(-0.757300\pi\)
0.723135 0.690706i \(-0.242700\pi\)
\(12\) 0 0
\(13\) − 1.55366i − 0.430908i −0.976514 0.215454i \(-0.930877\pi\)
0.976514 0.215454i \(-0.0691231\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.609109 0.147731 0.0738653 0.997268i \(-0.476467\pi\)
0.0738653 + 0.997268i \(0.476467\pi\)
\(18\) 0 0
\(19\) − 6.69309i − 1.53550i −0.640749 0.767750i \(-0.721376\pi\)
0.640749 0.767750i \(-0.278624\pi\)
\(20\) 0 0
\(21\) 0.707183i 0.154320i
\(22\) 0 0
\(23\) −3.52675 −0.735378 −0.367689 0.929949i \(-0.619851\pi\)
−0.367689 + 0.929949i \(0.619851\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.36168i 0.454506i
\(28\) 0 0
\(29\) 7.73304i 1.43599i 0.696048 + 0.717995i \(0.254940\pi\)
−0.696048 + 0.717995i \(0.745060\pi\)
\(30\) 0 0
\(31\) 3.34096 0.600054 0.300027 0.953931i \(-0.403004\pi\)
0.300027 + 0.953931i \(0.403004\pi\)
\(32\) 0 0
\(33\) −12.0342 −2.09488
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 5.32768i − 0.875865i −0.899008 0.437933i \(-0.855711\pi\)
0.899008 0.437933i \(-0.144289\pi\)
\(38\) 0 0
\(39\) −4.08087 −0.653463
\(40\) 0 0
\(41\) 4.38291 0.684496 0.342248 0.939610i \(-0.388812\pi\)
0.342248 + 0.939610i \(0.388812\pi\)
\(42\) 0 0
\(43\) − 12.2644i − 1.87031i −0.354238 0.935155i \(-0.615260\pi\)
0.354238 0.935155i \(-0.384740\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.54651 1.39250 0.696251 0.717798i \(-0.254850\pi\)
0.696251 + 0.717798i \(0.254850\pi\)
\(48\) 0 0
\(49\) −6.92751 −0.989645
\(50\) 0 0
\(51\) − 1.59990i − 0.224030i
\(52\) 0 0
\(53\) − 10.6574i − 1.46391i −0.681353 0.731955i \(-0.738608\pi\)
0.681353 0.731955i \(-0.261392\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −17.5802 −2.32855
\(58\) 0 0
\(59\) 10.2256i 1.33126i 0.746283 + 0.665629i \(0.231837\pi\)
−0.746283 + 0.665629i \(0.768163\pi\)
\(60\) 0 0
\(61\) 13.2628i 1.69812i 0.528294 + 0.849062i \(0.322832\pi\)
−0.528294 + 0.849062i \(0.677168\pi\)
\(62\) 0 0
\(63\) 1.04979 0.132261
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.93398i 0.480613i 0.970697 + 0.240306i \(0.0772479\pi\)
−0.970697 + 0.240306i \(0.922752\pi\)
\(68\) 0 0
\(69\) 9.26343i 1.11519i
\(70\) 0 0
\(71\) −6.95638 −0.825571 −0.412785 0.910828i \(-0.635444\pi\)
−0.412785 + 0.910828i \(0.635444\pi\)
\(72\) 0 0
\(73\) 5.93156 0.694236 0.347118 0.937821i \(-0.387160\pi\)
0.347118 + 0.937821i \(0.387160\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.23354i 0.140575i
\(78\) 0 0
\(79\) −10.1382 −1.14064 −0.570321 0.821422i \(-0.693181\pi\)
−0.570321 + 0.821422i \(0.693181\pi\)
\(80\) 0 0
\(81\) −5.49416 −0.610462
\(82\) 0 0
\(83\) 6.52313i 0.716007i 0.933720 + 0.358003i \(0.116542\pi\)
−0.933720 + 0.358003i \(0.883458\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 20.3118 2.17765
\(88\) 0 0
\(89\) 6.69564 0.709736 0.354868 0.934916i \(-0.384526\pi\)
0.354868 + 0.934916i \(0.384526\pi\)
\(90\) 0 0
\(91\) 0.418302i 0.0438500i
\(92\) 0 0
\(93\) − 8.77544i − 0.909970i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −3.99182 −0.405307 −0.202654 0.979250i \(-0.564957\pi\)
−0.202654 + 0.979250i \(0.564957\pi\)
\(98\) 0 0
\(99\) 17.8644i 1.79544i
\(100\) 0 0
\(101\) 0.361133i 0.0359340i 0.999839 + 0.0179670i \(0.00571939\pi\)
−0.999839 + 0.0179670i \(0.994281\pi\)
\(102\) 0 0
\(103\) −19.0514 −1.87719 −0.938596 0.345019i \(-0.887872\pi\)
−0.938596 + 0.345019i \(0.887872\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 7.68019i − 0.742472i −0.928539 0.371236i \(-0.878934\pi\)
0.928539 0.371236i \(-0.121066\pi\)
\(108\) 0 0
\(109\) 1.81184i 0.173543i 0.996228 + 0.0867716i \(0.0276550\pi\)
−0.996228 + 0.0867716i \(0.972345\pi\)
\(110\) 0 0
\(111\) −13.9938 −1.32823
\(112\) 0 0
\(113\) 1.11278 0.104681 0.0523406 0.998629i \(-0.483332\pi\)
0.0523406 + 0.998629i \(0.483332\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.05792i 0.560055i
\(118\) 0 0
\(119\) −0.163994 −0.0150333
\(120\) 0 0
\(121\) −9.99130 −0.908300
\(122\) 0 0
\(123\) − 11.5122i − 1.03802i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −9.81903 −0.871298 −0.435649 0.900117i \(-0.643481\pi\)
−0.435649 + 0.900117i \(0.643481\pi\)
\(128\) 0 0
\(129\) −32.2140 −2.83629
\(130\) 0 0
\(131\) − 5.00551i − 0.437333i −0.975800 0.218667i \(-0.929829\pi\)
0.975800 0.218667i \(-0.0701708\pi\)
\(132\) 0 0
\(133\) 1.80203i 0.156255i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.1561 −1.03856 −0.519282 0.854603i \(-0.673800\pi\)
−0.519282 + 0.854603i \(0.673800\pi\)
\(138\) 0 0
\(139\) 7.81838i 0.663147i 0.943429 + 0.331573i \(0.107579\pi\)
−0.943429 + 0.331573i \(0.892421\pi\)
\(140\) 0 0
\(141\) − 25.0751i − 2.11170i
\(142\) 0 0
\(143\) −7.11829 −0.595261
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 18.1959i 1.50078i
\(148\) 0 0
\(149\) − 17.0047i − 1.39308i −0.717520 0.696538i \(-0.754723\pi\)
0.717520 0.696538i \(-0.245277\pi\)
\(150\) 0 0
\(151\) 13.2804 1.08075 0.540373 0.841425i \(-0.318283\pi\)
0.540373 + 0.841425i \(0.318283\pi\)
\(152\) 0 0
\(153\) −2.37500 −0.192007
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 19.0554i − 1.52078i −0.649465 0.760391i \(-0.725007\pi\)
0.649465 0.760391i \(-0.274993\pi\)
\(158\) 0 0
\(159\) −27.9930 −2.21999
\(160\) 0 0
\(161\) 0.949531 0.0748335
\(162\) 0 0
\(163\) 16.7152i 1.30923i 0.755961 + 0.654617i \(0.227170\pi\)
−0.755961 + 0.654617i \(0.772830\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.2045 −0.944409 −0.472204 0.881489i \(-0.656542\pi\)
−0.472204 + 0.881489i \(0.656542\pi\)
\(168\) 0 0
\(169\) 10.5861 0.814319
\(170\) 0 0
\(171\) 26.0972i 1.99571i
\(172\) 0 0
\(173\) 2.55690i 0.194397i 0.995265 + 0.0971986i \(0.0309882\pi\)
−0.995265 + 0.0971986i \(0.969012\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 26.8587 2.01883
\(178\) 0 0
\(179\) 18.3566i 1.37204i 0.727584 + 0.686019i \(0.240643\pi\)
−0.727584 + 0.686019i \(0.759357\pi\)
\(180\) 0 0
\(181\) 8.74009i 0.649646i 0.945775 + 0.324823i \(0.105305\pi\)
−0.945775 + 0.324823i \(0.894695\pi\)
\(182\) 0 0
\(183\) 34.8362 2.57517
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.79071i − 0.204077i
\(188\) 0 0
\(189\) − 0.635851i − 0.0462514i
\(190\) 0 0
\(191\) 21.5766 1.56123 0.780614 0.625013i \(-0.214906\pi\)
0.780614 + 0.625013i \(0.214906\pi\)
\(192\) 0 0
\(193\) 9.90462 0.712950 0.356475 0.934305i \(-0.383978\pi\)
0.356475 + 0.934305i \(0.383978\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 9.37856i − 0.668195i −0.942539 0.334097i \(-0.891569\pi\)
0.942539 0.334097i \(-0.108431\pi\)
\(198\) 0 0
\(199\) −16.8855 −1.19698 −0.598491 0.801130i \(-0.704233\pi\)
−0.598491 + 0.801130i \(0.704233\pi\)
\(200\) 0 0
\(201\) 10.3331 0.728839
\(202\) 0 0
\(203\) − 2.08202i − 0.146129i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 13.7513 0.955779
\(208\) 0 0
\(209\) −30.6652 −2.12116
\(210\) 0 0
\(211\) 14.0265i 0.965623i 0.875724 + 0.482811i \(0.160384\pi\)
−0.875724 + 0.482811i \(0.839616\pi\)
\(212\) 0 0
\(213\) 18.2718i 1.25196i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.899510 −0.0610627
\(218\) 0 0
\(219\) − 15.5799i − 1.05280i
\(220\) 0 0
\(221\) − 0.946347i − 0.0636582i
\(222\) 0 0
\(223\) 2.06137 0.138039 0.0690197 0.997615i \(-0.478013\pi\)
0.0690197 + 0.997615i \(0.478013\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.13275i 0.207928i 0.994581 + 0.103964i \(0.0331526\pi\)
−0.994581 + 0.103964i \(0.966847\pi\)
\(228\) 0 0
\(229\) 17.0738i 1.12827i 0.825682 + 0.564136i \(0.190791\pi\)
−0.825682 + 0.564136i \(0.809209\pi\)
\(230\) 0 0
\(231\) 3.24005 0.213179
\(232\) 0 0
\(233\) −7.63474 −0.500169 −0.250084 0.968224i \(-0.580458\pi\)
−0.250084 + 0.968224i \(0.580458\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 26.6293i 1.72976i
\(238\) 0 0
\(239\) −4.92104 −0.318315 −0.159158 0.987253i \(-0.550878\pi\)
−0.159158 + 0.987253i \(0.550878\pi\)
\(240\) 0 0
\(241\) 19.1214 1.23172 0.615860 0.787855i \(-0.288809\pi\)
0.615860 + 0.787855i \(0.288809\pi\)
\(242\) 0 0
\(243\) 21.5161i 1.38026i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −10.3988 −0.661659
\(248\) 0 0
\(249\) 17.1338 1.08581
\(250\) 0 0
\(251\) − 29.7004i − 1.87467i −0.348423 0.937337i \(-0.613283\pi\)
0.348423 0.937337i \(-0.386717\pi\)
\(252\) 0 0
\(253\) 16.1583i 1.01586i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.1697 −0.821501 −0.410750 0.911748i \(-0.634733\pi\)
−0.410750 + 0.911748i \(0.634733\pi\)
\(258\) 0 0
\(259\) 1.43441i 0.0891297i
\(260\) 0 0
\(261\) − 30.1522i − 1.86637i
\(262\) 0 0
\(263\) 17.7204 1.09269 0.546345 0.837560i \(-0.316019\pi\)
0.546345 + 0.837560i \(0.316019\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 17.5869i − 1.07630i
\(268\) 0 0
\(269\) − 1.52445i − 0.0929474i −0.998920 0.0464737i \(-0.985202\pi\)
0.998920 0.0464737i \(-0.0147984\pi\)
\(270\) 0 0
\(271\) −16.1497 −0.981024 −0.490512 0.871435i \(-0.663190\pi\)
−0.490512 + 0.871435i \(0.663190\pi\)
\(272\) 0 0
\(273\) 1.09872 0.0664976
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.3707i 0.743283i 0.928376 + 0.371642i \(0.121205\pi\)
−0.928376 + 0.371642i \(0.878795\pi\)
\(278\) 0 0
\(279\) −13.0269 −0.779897
\(280\) 0 0
\(281\) −4.03820 −0.240899 −0.120450 0.992719i \(-0.538434\pi\)
−0.120450 + 0.992719i \(0.538434\pi\)
\(282\) 0 0
\(283\) 4.13989i 0.246091i 0.992401 + 0.123046i \(0.0392661\pi\)
−0.992401 + 0.123046i \(0.960734\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.18004 −0.0696557
\(288\) 0 0
\(289\) −16.6290 −0.978176
\(290\) 0 0
\(291\) 10.4850i 0.614641i
\(292\) 0 0
\(293\) 25.2638i 1.47593i 0.674840 + 0.737964i \(0.264213\pi\)
−0.674840 + 0.737964i \(0.735787\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10.8203 0.627860
\(298\) 0 0
\(299\) 5.47937i 0.316880i
\(300\) 0 0
\(301\) 3.30204i 0.190326i
\(302\) 0 0
\(303\) 0.948558 0.0544933
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 10.6692i − 0.608922i −0.952525 0.304461i \(-0.901524\pi\)
0.952525 0.304461i \(-0.0984764\pi\)
\(308\) 0 0
\(309\) 50.0408i 2.84672i
\(310\) 0 0
\(311\) −1.78111 −0.100998 −0.0504988 0.998724i \(-0.516081\pi\)
−0.0504988 + 0.998724i \(0.516081\pi\)
\(312\) 0 0
\(313\) 26.6250 1.50494 0.752468 0.658629i \(-0.228863\pi\)
0.752468 + 0.658629i \(0.228863\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 9.16369i − 0.514684i −0.966320 0.257342i \(-0.917153\pi\)
0.966320 0.257342i \(-0.0828467\pi\)
\(318\) 0 0
\(319\) 35.4299 1.98369
\(320\) 0 0
\(321\) −20.1729 −1.12594
\(322\) 0 0
\(323\) − 4.07682i − 0.226840i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.75903 0.263175
\(328\) 0 0
\(329\) −2.57027 −0.141704
\(330\) 0 0
\(331\) − 7.83419i − 0.430606i −0.976547 0.215303i \(-0.930926\pi\)
0.976547 0.215303i \(-0.0690739\pi\)
\(332\) 0 0
\(333\) 20.7733i 1.13837i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.636306 −0.0346618 −0.0173309 0.999850i \(-0.505517\pi\)
−0.0173309 + 0.999850i \(0.505517\pi\)
\(338\) 0 0
\(339\) − 2.92284i − 0.158747i
\(340\) 0 0
\(341\) − 15.3070i − 0.828923i
\(342\) 0 0
\(343\) 3.74980 0.202470
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 23.5999i − 1.26691i −0.773780 0.633455i \(-0.781636\pi\)
0.773780 0.633455i \(-0.218364\pi\)
\(348\) 0 0
\(349\) 19.1542i 1.02530i 0.858597 + 0.512651i \(0.171336\pi\)
−0.858597 + 0.512651i \(0.828664\pi\)
\(350\) 0 0
\(351\) 3.66925 0.195850
\(352\) 0 0
\(353\) 21.9765 1.16969 0.584845 0.811145i \(-0.301155\pi\)
0.584845 + 0.811145i \(0.301155\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.430751i 0.0227978i
\(358\) 0 0
\(359\) 5.63031 0.297156 0.148578 0.988901i \(-0.452530\pi\)
0.148578 + 0.988901i \(0.452530\pi\)
\(360\) 0 0
\(361\) −25.7974 −1.35776
\(362\) 0 0
\(363\) 26.2434i 1.37742i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.21463 −0.272201 −0.136101 0.990695i \(-0.543457\pi\)
−0.136101 + 0.990695i \(0.543457\pi\)
\(368\) 0 0
\(369\) −17.0896 −0.889647
\(370\) 0 0
\(371\) 2.86937i 0.148970i
\(372\) 0 0
\(373\) − 12.6000i − 0.652405i −0.945300 0.326202i \(-0.894231\pi\)
0.945300 0.326202i \(-0.105769\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0145 0.618779
\(378\) 0 0
\(379\) − 1.28403i − 0.0659562i −0.999456 0.0329781i \(-0.989501\pi\)
0.999456 0.0329781i \(-0.0104992\pi\)
\(380\) 0 0
\(381\) 25.7909i 1.32131i
\(382\) 0 0
\(383\) 18.3642 0.938369 0.469185 0.883100i \(-0.344548\pi\)
0.469185 + 0.883100i \(0.344548\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 47.8207i 2.43086i
\(388\) 0 0
\(389\) − 20.5311i − 1.04097i −0.853871 0.520485i \(-0.825751\pi\)
0.853871 0.520485i \(-0.174249\pi\)
\(390\) 0 0
\(391\) −2.14817 −0.108638
\(392\) 0 0
\(393\) −13.1476 −0.663207
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 17.0191i − 0.854164i −0.904213 0.427082i \(-0.859542\pi\)
0.904213 0.427082i \(-0.140458\pi\)
\(398\) 0 0
\(399\) 4.73324 0.236958
\(400\) 0 0
\(401\) 7.62575 0.380812 0.190406 0.981705i \(-0.439020\pi\)
0.190406 + 0.981705i \(0.439020\pi\)
\(402\) 0 0
\(403\) − 5.19072i − 0.258568i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −24.4094 −1.20993
\(408\) 0 0
\(409\) 7.37530 0.364685 0.182342 0.983235i \(-0.441632\pi\)
0.182342 + 0.983235i \(0.441632\pi\)
\(410\) 0 0
\(411\) 31.9294i 1.57496i
\(412\) 0 0
\(413\) − 2.75310i − 0.135471i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 20.5359 1.00565
\(418\) 0 0
\(419\) − 22.0835i − 1.07885i −0.842034 0.539425i \(-0.818642\pi\)
0.842034 0.539425i \(-0.181358\pi\)
\(420\) 0 0
\(421\) 29.2485i 1.42549i 0.701425 + 0.712743i \(0.252547\pi\)
−0.701425 + 0.712743i \(0.747453\pi\)
\(422\) 0 0
\(423\) −37.2231 −1.80985
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 3.57083i − 0.172804i
\(428\) 0 0
\(429\) 18.6970i 0.902701i
\(430\) 0 0
\(431\) 6.99018 0.336705 0.168353 0.985727i \(-0.446155\pi\)
0.168353 + 0.985727i \(0.446155\pi\)
\(432\) 0 0
\(433\) 19.1288 0.919271 0.459636 0.888108i \(-0.347980\pi\)
0.459636 + 0.888108i \(0.347980\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.6049i 1.12917i
\(438\) 0 0
\(439\) 2.78856 0.133091 0.0665453 0.997783i \(-0.478802\pi\)
0.0665453 + 0.997783i \(0.478802\pi\)
\(440\) 0 0
\(441\) 27.0113 1.28625
\(442\) 0 0
\(443\) 16.8836i 0.802164i 0.916042 + 0.401082i \(0.131366\pi\)
−0.916042 + 0.401082i \(0.868634\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −44.6648 −2.11257
\(448\) 0 0
\(449\) −13.1404 −0.620135 −0.310068 0.950714i \(-0.600352\pi\)
−0.310068 + 0.950714i \(0.600352\pi\)
\(450\) 0 0
\(451\) − 20.0809i − 0.945571i
\(452\) 0 0
\(453\) − 34.8827i − 1.63893i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 33.4760 1.56594 0.782971 0.622058i \(-0.213703\pi\)
0.782971 + 0.622058i \(0.213703\pi\)
\(458\) 0 0
\(459\) 1.43852i 0.0671444i
\(460\) 0 0
\(461\) 27.6037i 1.28563i 0.766021 + 0.642816i \(0.222234\pi\)
−0.766021 + 0.642816i \(0.777766\pi\)
\(462\) 0 0
\(463\) −14.9227 −0.693517 −0.346758 0.937955i \(-0.612718\pi\)
−0.346758 + 0.937955i \(0.612718\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 11.8685i − 0.549210i −0.961557 0.274605i \(-0.911453\pi\)
0.961557 0.274605i \(-0.0885472\pi\)
\(468\) 0 0
\(469\) − 1.05917i − 0.0489081i
\(470\) 0 0
\(471\) −50.0512 −2.30624
\(472\) 0 0
\(473\) −56.1911 −2.58367
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 41.5547i 1.90266i
\(478\) 0 0
\(479\) −15.4425 −0.705586 −0.352793 0.935701i \(-0.614768\pi\)
−0.352793 + 0.935701i \(0.614768\pi\)
\(480\) 0 0
\(481\) −8.27740 −0.377417
\(482\) 0 0
\(483\) − 2.49406i − 0.113484i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7.58171 −0.343560 −0.171780 0.985135i \(-0.554952\pi\)
−0.171780 + 0.985135i \(0.554952\pi\)
\(488\) 0 0
\(489\) 43.9044 1.98543
\(490\) 0 0
\(491\) − 5.55509i − 0.250698i −0.992113 0.125349i \(-0.959995\pi\)
0.992113 0.125349i \(-0.0400050\pi\)
\(492\) 0 0
\(493\) 4.71026i 0.212140i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.87291 0.0840117
\(498\) 0 0
\(499\) − 14.1201i − 0.632102i −0.948742 0.316051i \(-0.897643\pi\)
0.948742 0.316051i \(-0.102357\pi\)
\(500\) 0 0
\(501\) 32.0565i 1.43218i
\(502\) 0 0
\(503\) 14.3503 0.639847 0.319924 0.947443i \(-0.396343\pi\)
0.319924 + 0.947443i \(0.396343\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 27.8058i − 1.23490i
\(508\) 0 0
\(509\) − 42.9057i − 1.90176i −0.309557 0.950881i \(-0.600181\pi\)
0.309557 0.950881i \(-0.399819\pi\)
\(510\) 0 0
\(511\) −1.59699 −0.0706468
\(512\) 0 0
\(513\) 15.8069 0.697893
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 43.7386i − 1.92362i
\(518\) 0 0
\(519\) 6.71600 0.294800
\(520\) 0 0
\(521\) 11.4542 0.501817 0.250909 0.968011i \(-0.419271\pi\)
0.250909 + 0.968011i \(0.419271\pi\)
\(522\) 0 0
\(523\) − 21.7522i − 0.951156i −0.879674 0.475578i \(-0.842239\pi\)
0.879674 0.475578i \(-0.157761\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.03501 0.0886464
\(528\) 0 0
\(529\) −10.5620 −0.459219
\(530\) 0 0
\(531\) − 39.8709i − 1.73025i
\(532\) 0 0
\(533\) − 6.80955i − 0.294955i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 48.2158 2.08067
\(538\) 0 0
\(539\) 31.7393i 1.36711i
\(540\) 0 0
\(541\) − 36.5960i − 1.57339i −0.617344 0.786693i \(-0.711791\pi\)
0.617344 0.786693i \(-0.288209\pi\)
\(542\) 0 0
\(543\) 22.9569 0.985175
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 15.8078i − 0.675893i −0.941165 0.337946i \(-0.890268\pi\)
0.941165 0.337946i \(-0.109732\pi\)
\(548\) 0 0
\(549\) − 51.7133i − 2.20707i
\(550\) 0 0
\(551\) 51.7580 2.20496
\(552\) 0 0
\(553\) 2.72959 0.116074
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 12.7121i − 0.538629i −0.963052 0.269315i \(-0.913203\pi\)
0.963052 0.269315i \(-0.0867971\pi\)
\(558\) 0 0
\(559\) −19.0548 −0.805931
\(560\) 0 0
\(561\) −7.33013 −0.309478
\(562\) 0 0
\(563\) − 14.3700i − 0.605624i −0.953050 0.302812i \(-0.902075\pi\)
0.953050 0.302812i \(-0.0979255\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.47923 0.0621219
\(568\) 0 0
\(569\) 32.5495 1.36455 0.682274 0.731097i \(-0.260991\pi\)
0.682274 + 0.731097i \(0.260991\pi\)
\(570\) 0 0
\(571\) − 16.2274i − 0.679097i −0.940589 0.339548i \(-0.889726\pi\)
0.940589 0.339548i \(-0.110274\pi\)
\(572\) 0 0
\(573\) − 56.6736i − 2.36757i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −30.1137 −1.25365 −0.626825 0.779160i \(-0.715646\pi\)
−0.626825 + 0.779160i \(0.715646\pi\)
\(578\) 0 0
\(579\) − 26.0157i − 1.08117i
\(580\) 0 0
\(581\) − 1.75627i − 0.0728622i
\(582\) 0 0
\(583\) −48.8283 −2.02226
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 14.1963i − 0.585943i −0.956121 0.292971i \(-0.905356\pi\)
0.956121 0.292971i \(-0.0946440\pi\)
\(588\) 0 0
\(589\) − 22.3614i − 0.921384i
\(590\) 0 0
\(591\) −24.6339 −1.01330
\(592\) 0 0
\(593\) −12.2025 −0.501098 −0.250549 0.968104i \(-0.580611\pi\)
−0.250549 + 0.968104i \(0.580611\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 44.3518i 1.81520i
\(598\) 0 0
\(599\) 2.44106 0.0997391 0.0498695 0.998756i \(-0.484119\pi\)
0.0498695 + 0.998756i \(0.484119\pi\)
\(600\) 0 0
\(601\) −13.7234 −0.559789 −0.279895 0.960031i \(-0.590300\pi\)
−0.279895 + 0.960031i \(0.590300\pi\)
\(602\) 0 0
\(603\) − 15.3391i − 0.624657i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −25.0502 −1.01676 −0.508378 0.861134i \(-0.669755\pi\)
−0.508378 + 0.861134i \(0.669755\pi\)
\(608\) 0 0
\(609\) −5.46868 −0.221602
\(610\) 0 0
\(611\) − 14.8320i − 0.600040i
\(612\) 0 0
\(613\) 26.4690i 1.06907i 0.845146 + 0.534536i \(0.179514\pi\)
−0.845146 + 0.534536i \(0.820486\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.2771 −0.816324 −0.408162 0.912909i \(-0.633830\pi\)
−0.408162 + 0.912909i \(0.633830\pi\)
\(618\) 0 0
\(619\) − 13.1584i − 0.528880i −0.964402 0.264440i \(-0.914813\pi\)
0.964402 0.264440i \(-0.0851871\pi\)
\(620\) 0 0
\(621\) − 8.32906i − 0.334234i
\(622\) 0 0
\(623\) −1.80271 −0.0722241
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 80.5459i 3.21669i
\(628\) 0 0
\(629\) − 3.24514i − 0.129392i
\(630\) 0 0
\(631\) −30.4366 −1.21166 −0.605830 0.795594i \(-0.707159\pi\)
−0.605830 + 0.795594i \(0.707159\pi\)
\(632\) 0 0
\(633\) 36.8422 1.46435
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10.7630i 0.426445i
\(638\) 0 0
\(639\) 27.1239 1.07300
\(640\) 0 0
\(641\) 22.4237 0.885683 0.442841 0.896600i \(-0.353971\pi\)
0.442841 + 0.896600i \(0.353971\pi\)
\(642\) 0 0
\(643\) − 36.0640i − 1.42222i −0.703078 0.711112i \(-0.748192\pi\)
0.703078 0.711112i \(-0.251808\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.35270 −0.0924942 −0.0462471 0.998930i \(-0.514726\pi\)
−0.0462471 + 0.998930i \(0.514726\pi\)
\(648\) 0 0
\(649\) 46.8498 1.83902
\(650\) 0 0
\(651\) 2.36267i 0.0926004i
\(652\) 0 0
\(653\) − 13.9239i − 0.544886i −0.962172 0.272443i \(-0.912168\pi\)
0.962172 0.272443i \(-0.0878317\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −23.1279 −0.902306
\(658\) 0 0
\(659\) 20.8197i 0.811022i 0.914090 + 0.405511i \(0.132906\pi\)
−0.914090 + 0.405511i \(0.867094\pi\)
\(660\) 0 0
\(661\) − 9.83003i − 0.382344i −0.981557 0.191172i \(-0.938771\pi\)
0.981557 0.191172i \(-0.0612288\pi\)
\(662\) 0 0
\(663\) −2.48569 −0.0965364
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 27.2725i − 1.05600i
\(668\) 0 0
\(669\) − 5.41443i − 0.209334i
\(670\) 0 0
\(671\) 60.7650 2.34581
\(672\) 0 0
\(673\) −45.7820 −1.76476 −0.882382 0.470533i \(-0.844062\pi\)
−0.882382 + 0.470533i \(0.844062\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 49.9162i − 1.91844i −0.282669 0.959218i \(-0.591220\pi\)
0.282669 0.959218i \(-0.408780\pi\)
\(678\) 0 0
\(679\) 1.07474 0.0412449
\(680\) 0 0
\(681\) 8.22853 0.315318
\(682\) 0 0
\(683\) 14.4414i 0.552584i 0.961074 + 0.276292i \(0.0891056\pi\)
−0.961074 + 0.276292i \(0.910894\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 44.8465 1.71100
\(688\) 0 0
\(689\) −16.5580 −0.630810
\(690\) 0 0
\(691\) 20.6371i 0.785072i 0.919737 + 0.392536i \(0.128402\pi\)
−0.919737 + 0.392536i \(0.871598\pi\)
\(692\) 0 0
\(693\) − 4.80975i − 0.182707i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.66967 0.101121
\(698\) 0 0
\(699\) 20.0536i 0.758496i
\(700\) 0 0
\(701\) − 30.0040i − 1.13323i −0.823981 0.566617i \(-0.808252\pi\)
0.823981 0.566617i \(-0.191748\pi\)
\(702\) 0 0
\(703\) −35.6586 −1.34489
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 0.0972302i − 0.00365672i
\(708\) 0 0
\(709\) − 8.10493i − 0.304387i −0.988351 0.152194i \(-0.951366\pi\)
0.988351 0.152194i \(-0.0486337\pi\)
\(710\) 0 0
\(711\) 39.5303 1.48250
\(712\) 0 0
\(713\) −11.7827 −0.441267
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 12.9257i 0.482719i
\(718\) 0 0
\(719\) 38.0224 1.41800 0.708998 0.705210i \(-0.249148\pi\)
0.708998 + 0.705210i \(0.249148\pi\)
\(720\) 0 0
\(721\) 5.12934 0.191027
\(722\) 0 0
\(723\) − 50.2248i − 1.86788i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 33.5323 1.24364 0.621821 0.783159i \(-0.286393\pi\)
0.621821 + 0.783159i \(0.286393\pi\)
\(728\) 0 0
\(729\) 40.0322 1.48267
\(730\) 0 0
\(731\) − 7.47038i − 0.276302i
\(732\) 0 0
\(733\) 8.77824i 0.324232i 0.986772 + 0.162116i \(0.0518318\pi\)
−0.986772 + 0.162116i \(0.948168\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.0240 0.663924
\(738\) 0 0
\(739\) 10.4760i 0.385365i 0.981261 + 0.192683i \(0.0617187\pi\)
−0.981261 + 0.192683i \(0.938281\pi\)
\(740\) 0 0
\(741\) 27.3136i 1.00339i
\(742\) 0 0
\(743\) −4.29242 −0.157474 −0.0787368 0.996895i \(-0.525089\pi\)
−0.0787368 + 0.996895i \(0.525089\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 25.4346i − 0.930602i
\(748\) 0 0
\(749\) 2.06779i 0.0755554i
\(750\) 0 0
\(751\) −54.2895 −1.98105 −0.990526 0.137324i \(-0.956150\pi\)
−0.990526 + 0.137324i \(0.956150\pi\)
\(752\) 0 0
\(753\) −78.0118 −2.84291
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 15.6468i 0.568691i 0.958722 + 0.284345i \(0.0917763\pi\)
−0.958722 + 0.284345i \(0.908224\pi\)
\(758\) 0 0
\(759\) 42.4416 1.54053
\(760\) 0 0
\(761\) 33.5439 1.21597 0.607983 0.793950i \(-0.291979\pi\)
0.607983 + 0.793950i \(0.291979\pi\)
\(762\) 0 0
\(763\) − 0.487815i − 0.0176601i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.8871 0.573649
\(768\) 0 0
\(769\) −12.1137 −0.436832 −0.218416 0.975856i \(-0.570089\pi\)
−0.218416 + 0.975856i \(0.570089\pi\)
\(770\) 0 0
\(771\) 34.5917i 1.24579i
\(772\) 0 0
\(773\) − 29.0451i − 1.04468i −0.852737 0.522340i \(-0.825059\pi\)
0.852737 0.522340i \(-0.174941\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.76764 0.135163
\(778\) 0 0
\(779\) − 29.3352i − 1.05104i
\(780\) 0 0
\(781\) 31.8716i 1.14045i
\(782\) 0 0
\(783\) −18.2630 −0.652665
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 29.0437i 1.03530i 0.855593 + 0.517649i \(0.173193\pi\)
−0.855593 + 0.517649i \(0.826807\pi\)
\(788\) 0 0
\(789\) − 46.5449i − 1.65704i
\(790\) 0 0
\(791\) −0.299601 −0.0106526
\(792\) 0 0
\(793\) 20.6058 0.731734
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 40.5313i − 1.43569i −0.696201 0.717847i \(-0.745128\pi\)
0.696201 0.717847i \(-0.254872\pi\)
\(798\) 0 0
\(799\) 5.81486 0.205715
\(800\) 0 0
\(801\) −26.1072 −0.922452
\(802\) 0 0
\(803\) − 27.1762i − 0.959026i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.00415 −0.140953
\(808\) 0 0
\(809\) 52.0674 1.83059 0.915297 0.402781i \(-0.131956\pi\)
0.915297 + 0.402781i \(0.131956\pi\)
\(810\) 0 0
\(811\) − 27.5707i − 0.968138i −0.875030 0.484069i \(-0.839158\pi\)
0.875030 0.484069i \(-0.160842\pi\)
\(812\) 0 0
\(813\) 42.4191i 1.48770i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −82.0870 −2.87186
\(818\) 0 0
\(819\) − 1.63102i − 0.0569923i
\(820\) 0 0
\(821\) − 51.8915i − 1.81103i −0.424318 0.905513i \(-0.639486\pi\)
0.424318 0.905513i \(-0.360514\pi\)
\(822\) 0 0
\(823\) 42.8229 1.49271 0.746356 0.665547i \(-0.231802\pi\)
0.746356 + 0.665547i \(0.231802\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 24.7187i − 0.859554i −0.902935 0.429777i \(-0.858592\pi\)
0.902935 0.429777i \(-0.141408\pi\)
\(828\) 0 0
\(829\) 9.70912i 0.337212i 0.985684 + 0.168606i \(0.0539265\pi\)
−0.985684 + 0.168606i \(0.946073\pi\)
\(830\) 0 0
\(831\) 32.4931 1.12717
\(832\) 0 0
\(833\) −4.21961 −0.146201
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 7.89028i 0.272728i
\(838\) 0 0
\(839\) 15.1090 0.521620 0.260810 0.965390i \(-0.416010\pi\)
0.260810 + 0.965390i \(0.416010\pi\)
\(840\) 0 0
\(841\) −30.8000 −1.06207
\(842\) 0 0
\(843\) 10.6068i 0.365319i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.69003 0.0924304
\(848\) 0 0
\(849\) 10.8739 0.373192
\(850\) 0 0
\(851\) 18.7894i 0.644092i
\(852\) 0 0
\(853\) − 15.5755i − 0.533295i −0.963794 0.266647i \(-0.914084\pi\)
0.963794 0.266647i \(-0.0859159\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.5547 −0.838773 −0.419386 0.907808i \(-0.637755\pi\)
−0.419386 + 0.907808i \(0.637755\pi\)
\(858\) 0 0
\(859\) − 38.2985i − 1.30673i −0.757044 0.653363i \(-0.773357\pi\)
0.757044 0.653363i \(-0.226643\pi\)
\(860\) 0 0
\(861\) 3.09952i 0.105631i
\(862\) 0 0
\(863\) 45.7916 1.55876 0.779382 0.626549i \(-0.215533\pi\)
0.779382 + 0.626549i \(0.215533\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 43.6780i 1.48338i
\(868\) 0 0
\(869\) 46.4496i 1.57570i
\(870\) 0 0
\(871\) 6.11207 0.207100
\(872\) 0 0
\(873\) 15.5646 0.526783
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 42.8419i 1.44667i 0.690499 + 0.723334i \(0.257391\pi\)
−0.690499 + 0.723334i \(0.742609\pi\)
\(878\) 0 0
\(879\) 66.3585 2.23822
\(880\) 0 0
\(881\) 26.0361 0.877180 0.438590 0.898687i \(-0.355478\pi\)
0.438590 + 0.898687i \(0.355478\pi\)
\(882\) 0 0
\(883\) − 19.3468i − 0.651072i −0.945530 0.325536i \(-0.894455\pi\)
0.945530 0.325536i \(-0.105545\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −26.1028 −0.876445 −0.438222 0.898867i \(-0.644392\pi\)
−0.438222 + 0.898867i \(0.644392\pi\)
\(888\) 0 0
\(889\) 2.64365 0.0886650
\(890\) 0 0
\(891\) 25.1722i 0.843300i
\(892\) 0 0
\(893\) − 63.8957i − 2.13819i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 14.3922 0.480542
\(898\) 0 0
\(899\) 25.8358i 0.861672i
\(900\) 0 0
\(901\) − 6.49153i − 0.216264i
\(902\) 0 0
\(903\) 8.67321 0.288626
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 47.0568i − 1.56249i −0.624222 0.781247i \(-0.714584\pi\)
0.624222 0.781247i \(-0.285416\pi\)
\(908\) 0 0
\(909\) − 1.40810i − 0.0467039i
\(910\) 0 0
\(911\) −57.6189 −1.90900 −0.954499 0.298214i \(-0.903609\pi\)
−0.954499 + 0.298214i \(0.903609\pi\)
\(912\) 0 0
\(913\) 29.8866 0.989101
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.34767i 0.0445039i
\(918\) 0 0
\(919\) −22.6047 −0.745661 −0.372830 0.927900i \(-0.621613\pi\)
−0.372830 + 0.927900i \(0.621613\pi\)
\(920\) 0 0
\(921\) −28.0239 −0.923418
\(922\) 0 0
\(923\) 10.8079i 0.355745i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 74.2840 2.43981
\(928\) 0 0
\(929\) 22.2533 0.730108 0.365054 0.930986i \(-0.381050\pi\)
0.365054 + 0.930986i \(0.381050\pi\)
\(930\) 0 0
\(931\) 46.3665i 1.51960i
\(932\) 0 0
\(933\) 4.67831i 0.153161i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20.8873 0.682358 0.341179 0.939998i \(-0.389174\pi\)
0.341179 + 0.939998i \(0.389174\pi\)
\(938\) 0 0
\(939\) − 69.9339i − 2.28221i
\(940\) 0 0
\(941\) 13.7530i 0.448335i 0.974551 + 0.224168i \(0.0719664\pi\)
−0.974551 + 0.224168i \(0.928034\pi\)
\(942\) 0 0
\(943\) −15.4574 −0.503364
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.2715i 1.01619i 0.861302 + 0.508094i \(0.169650\pi\)
−0.861302 + 0.508094i \(0.830350\pi\)
\(948\) 0 0
\(949\) − 9.21562i − 0.299152i
\(950\) 0 0
\(951\) −24.0695 −0.780508
\(952\) 0 0
\(953\) −26.2447 −0.850150 −0.425075 0.905158i \(-0.639752\pi\)
−0.425075 + 0.905158i \(0.639752\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 93.0609i − 3.00823i
\(958\) 0 0
\(959\) 3.27286 0.105686
\(960\) 0 0
\(961\) −19.8380 −0.639935
\(962\) 0 0
\(963\) 29.9461i 0.964998i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 18.5089 0.595208 0.297604 0.954689i \(-0.403813\pi\)
0.297604 + 0.954689i \(0.403813\pi\)
\(968\) 0 0
\(969\) −10.7083 −0.343999
\(970\) 0 0
\(971\) 16.7762i 0.538373i 0.963088 + 0.269187i \(0.0867548\pi\)
−0.963088 + 0.269187i \(0.913245\pi\)
\(972\) 0 0
\(973\) − 2.10500i − 0.0674831i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.2815 0.360926 0.180463 0.983582i \(-0.442240\pi\)
0.180463 + 0.983582i \(0.442240\pi\)
\(978\) 0 0
\(979\) − 30.6769i − 0.980438i
\(980\) 0 0
\(981\) − 7.06462i − 0.225556i
\(982\) 0 0
\(983\) −28.6404 −0.913488 −0.456744 0.889598i \(-0.650984\pi\)
−0.456744 + 0.889598i \(0.650984\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6.75113i 0.214891i
\(988\) 0 0
\(989\) 43.2537i 1.37539i
\(990\) 0 0
\(991\) 17.4805 0.555287 0.277643 0.960684i \(-0.410447\pi\)
0.277643 + 0.960684i \(0.410447\pi\)
\(992\) 0 0
\(993\) −20.5774 −0.653005
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 17.6990i 0.560533i 0.959922 + 0.280266i \(0.0904228\pi\)
−0.959922 + 0.280266i \(0.909577\pi\)
\(998\) 0 0
\(999\) 12.5823 0.398086
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.d.c.2001.13 40
4.3 odd 2 1000.2.d.c.501.29 yes 40
5.2 odd 4 4000.2.f.d.3249.1 20
5.3 odd 4 4000.2.f.c.3249.20 20
5.4 even 2 inner 4000.2.d.c.2001.28 40
8.3 odd 2 1000.2.d.c.501.30 yes 40
8.5 even 2 inner 4000.2.d.c.2001.14 40
20.3 even 4 1000.2.f.c.749.5 20
20.7 even 4 1000.2.f.d.749.16 20
20.19 odd 2 1000.2.d.c.501.12 yes 40
40.3 even 4 1000.2.f.d.749.15 20
40.13 odd 4 4000.2.f.d.3249.2 20
40.19 odd 2 1000.2.d.c.501.11 40
40.27 even 4 1000.2.f.c.749.6 20
40.29 even 2 inner 4000.2.d.c.2001.27 40
40.37 odd 4 4000.2.f.c.3249.19 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.11 40 40.19 odd 2
1000.2.d.c.501.12 yes 40 20.19 odd 2
1000.2.d.c.501.29 yes 40 4.3 odd 2
1000.2.d.c.501.30 yes 40 8.3 odd 2
1000.2.f.c.749.5 20 20.3 even 4
1000.2.f.c.749.6 20 40.27 even 4
1000.2.f.d.749.15 20 40.3 even 4
1000.2.f.d.749.16 20 20.7 even 4
4000.2.d.c.2001.13 40 1.1 even 1 trivial
4000.2.d.c.2001.14 40 8.5 even 2 inner
4000.2.d.c.2001.27 40 40.29 even 2 inner
4000.2.d.c.2001.28 40 5.4 even 2 inner
4000.2.f.c.3249.19 20 40.37 odd 4
4000.2.f.c.3249.20 20 5.3 odd 4
4000.2.f.d.3249.1 20 5.2 odd 4
4000.2.f.d.3249.2 20 40.13 odd 4