Properties

Label 400.6.c.l.49.2
Level 400400
Weight 66
Character 400.49
Analytic conductor 64.15464.154
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,6,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-1236] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,129)\Q(i, \sqrt{129})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+65x2+1024 x^{4} + 65x^{2} + 1024 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 49.2
Root 5.17891i-5.17891i of defining polynomial
Character χ\chi == 400.49
Dual form 400.6.c.l.49.3

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q16.7156iq3+94.1469iq736.4124q9143.706q11+421.412iq131982.11iq171317.76q19+1573.73q21+4020.02iq233453.24iq27+6417.28q29+2350.64q31+2402.14iq33+7876.58iq37+7044.18q39+15081.6q411141.40iq4321557.3iq47+7943.36q4933132.3q51+9560.44iq53+22027.2iq57+42740.7q59+32132.1q613428.11iq6330371.4iq67+67197.2q6936006.7q7163438.0iq7313529.5iq7789922.8q7966571.4q8138211.2iq83107269.iq875745.69q8939674.7q9139292.5iq93178780.iq97+5232.69q99+O(q100)q-16.7156i q^{3} +94.1469i q^{7} -36.4124 q^{9} -143.706 q^{11} +421.412i q^{13} -1982.11i q^{17} -1317.76 q^{19} +1573.73 q^{21} +4020.02i q^{23} -3453.24i q^{27} +6417.28 q^{29} +2350.64 q^{31} +2402.14i q^{33} +7876.58i q^{37} +7044.18 q^{39} +15081.6 q^{41} -1141.40i q^{43} -21557.3i q^{47} +7943.36 q^{49} -33132.3 q^{51} +9560.44i q^{53} +22027.2i q^{57} +42740.7 q^{59} +32132.1 q^{61} -3428.11i q^{63} -30371.4i q^{67} +67197.2 q^{69} -36006.7 q^{71} -63438.0i q^{73} -13529.5i q^{77} -89922.8 q^{79} -66571.4 q^{81} -38211.2i q^{83} -107269. i q^{87} -5745.69 q^{89} -39674.7 q^{91} -39292.5i q^{93} -178780. i q^{97} +5232.69 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q1236q91120q112000q19+5568q212680q29+4496q3141424q39+46152q41+45948q49171600q51+125168q59+28216q61+224448q6994416q71++494688q99+O(q100) 4 q - 1236 q^{9} - 1120 q^{11} - 2000 q^{19} + 5568 q^{21} - 2680 q^{29} + 4496 q^{31} - 41424 q^{39} + 46152 q^{41} + 45948 q^{49} - 171600 q^{51} + 125168 q^{59} + 28216 q^{61} + 224448 q^{69} - 94416 q^{71}+ \cdots + 494688 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 16.7156i − 1.07231i −0.844120 0.536154i 0.819877π-0.819877\pi
0.844120 0.536154i 0.180123π-0.180123\pi
44 0 0
55 0 0
66 0 0
77 94.1469i 0.726208i 0.931749 + 0.363104i 0.118283π0.118283\pi
−0.931749 + 0.363104i 0.881717π0.881717\pi
88 0 0
99 −36.4124 −0.149845
1010 0 0
1111 −143.706 −0.358091 −0.179046 0.983841i 0.557301π-0.557301\pi
−0.179046 + 0.983841i 0.557301π0.557301\pi
1212 0 0
1313 421.412i 0.691590i 0.938310 + 0.345795i 0.112391π0.112391\pi
−0.938310 + 0.345795i 0.887609π0.887609\pi
1414 0 0
1515 0 0
1616 0 0
1717 − 1982.11i − 1.66344i −0.555198 0.831718i 0.687358π-0.687358\pi
0.555198 0.831718i 0.312642π-0.312642\pi
1818 0 0
1919 −1317.76 −0.837439 −0.418720 0.908116i 0.637521π-0.637521\pi
−0.418720 + 0.908116i 0.637521π0.637521\pi
2020 0 0
2121 1573.73 0.778719
2222 0 0
2323 4020.02i 1.58456i 0.610157 + 0.792280i 0.291106π0.291106\pi
−0.610157 + 0.792280i 0.708894π0.708894\pi
2424 0 0
2525 0 0
2626 0 0
2727 − 3453.24i − 0.911628i
2828 0 0
2929 6417.28 1.41695 0.708477 0.705734i 0.249383π-0.249383\pi
0.708477 + 0.705734i 0.249383π0.249383\pi
3030 0 0
3131 2350.64 0.439322 0.219661 0.975576i 0.429505π-0.429505\pi
0.219661 + 0.975576i 0.429505π0.429505\pi
3232 0 0
3333 2402.14i 0.383984i
3434 0 0
3535 0 0
3636 0 0
3737 7876.58i 0.945874i 0.881096 + 0.472937i 0.156806π0.156806\pi
−0.881096 + 0.472937i 0.843194π0.843194\pi
3838 0 0
3939 7044.18 0.741598
4040 0 0
4141 15081.6 1.40116 0.700582 0.713572i 0.252924π-0.252924\pi
0.700582 + 0.713572i 0.252924π0.252924\pi
4242 0 0
4343 − 1141.40i − 0.0941384i −0.998892 0.0470692i 0.985012π-0.985012\pi
0.998892 0.0470692i 0.0149881π-0.0149881\pi
4444 0 0
4545 0 0
4646 0 0
4747 − 21557.3i − 1.42348i −0.702445 0.711738i 0.747908π-0.747908\pi
0.702445 0.711738i 0.252092π-0.252092\pi
4848 0 0
4949 7943.36 0.472622
5050 0 0
5151 −33132.3 −1.78372
5252 0 0
5353 9560.44i 0.467507i 0.972296 + 0.233754i 0.0751009π0.0751009\pi
−0.972296 + 0.233754i 0.924899π0.924899\pi
5454 0 0
5555 0 0
5656 0 0
5757 22027.2i 0.897993i
5858 0 0
5959 42740.7 1.59850 0.799248 0.601002i 0.205232π-0.205232\pi
0.799248 + 0.601002i 0.205232π0.205232\pi
6060 0 0
6161 32132.1 1.10564 0.552820 0.833301i 0.313552π-0.313552\pi
0.552820 + 0.833301i 0.313552π0.313552\pi
6262 0 0
6363 − 3428.11i − 0.108819i
6464 0 0
6565 0 0
6666 0 0
6767 − 30371.4i − 0.826567i −0.910602 0.413283i 0.864382π-0.864382\pi
0.910602 0.413283i 0.135618π-0.135618\pi
6868 0 0
6969 67197.2 1.69914
7070 0 0
7171 −36006.7 −0.847692 −0.423846 0.905734i 0.639320π-0.639320\pi
−0.423846 + 0.905734i 0.639320π0.639320\pi
7272 0 0
7373 − 63438.0i − 1.39329i −0.717414 0.696647i 0.754674π-0.754674\pi
0.717414 0.696647i 0.245326π-0.245326\pi
7474 0 0
7575 0 0
7676 0 0
7777 − 13529.5i − 0.260049i
7878 0 0
7979 −89922.8 −1.62107 −0.810536 0.585689i 0.800824π-0.800824\pi
−0.810536 + 0.585689i 0.800824π0.800824\pi
8080 0 0
8181 −66571.4 −1.12739
8282 0 0
8383 − 38211.2i − 0.608829i −0.952540 0.304414i 0.901539π-0.901539\pi
0.952540 0.304414i 0.0984608π-0.0984608\pi
8484 0 0
8585 0 0
8686 0 0
8787 − 107269.i − 1.51941i
8888 0 0
8989 −5745.69 −0.0768895 −0.0384447 0.999261i 0.512240π-0.512240\pi
−0.0384447 + 0.999261i 0.512240π0.512240\pi
9090 0 0
9191 −39674.7 −0.502238
9292 0 0
9393 − 39292.5i − 0.471088i
9494 0 0
9595 0 0
9696 0 0
9797 − 178780.i − 1.92926i −0.263613 0.964629i 0.584914π-0.584914\pi
0.263613 0.964629i 0.415086π-0.415086\pi
9898 0 0
9999 5232.69 0.0536583
100100 0 0
101101 152223. 1.48483 0.742417 0.669938i 0.233679π-0.233679\pi
0.742417 + 0.669938i 0.233679π0.233679\pi
102102 0 0
103103 35830.1i 0.332778i 0.986060 + 0.166389i 0.0532108π0.0532108\pi
−0.986060 + 0.166389i 0.946789π0.946789\pi
104104 0 0
105105 0 0
106106 0 0
107107 70030.2i 0.591324i 0.955293 + 0.295662i 0.0955403π0.0955403\pi
−0.955293 + 0.295662i 0.904460π0.904460\pi
108108 0 0
109109 −38466.9 −0.310114 −0.155057 0.987906i 0.549556π-0.549556\pi
−0.155057 + 0.987906i 0.549556π0.549556\pi
110110 0 0
111111 131662. 1.01427
112112 0 0
113113 39951.6i 0.294333i 0.989112 + 0.147166i 0.0470153π0.0470153\pi
−0.989112 + 0.147166i 0.952985π0.952985\pi
114114 0 0
115115 0 0
116116 0 0
117117 − 15344.6i − 0.103632i
118118 0 0
119119 186610. 1.20800
120120 0 0
121121 −140400. −0.871771
122122 0 0
123123 − 252099.i − 1.50248i
124124 0 0
125125 0 0
126126 0 0
127127 − 233239.i − 1.28319i −0.767043 0.641596i 0.778273π-0.778273\pi
0.767043 0.641596i 0.221727π-0.221727\pi
128128 0 0
129129 −19079.2 −0.100945
130130 0 0
131131 −55237.0 −0.281224 −0.140612 0.990065i 0.544907π-0.544907\pi
−0.140612 + 0.990065i 0.544907π0.544907\pi
132132 0 0
133133 − 124063.i − 0.608155i
134134 0 0
135135 0 0
136136 0 0
137137 − 261520.i − 1.19043i −0.803566 0.595215i 0.797067π-0.797067\pi
0.803566 0.595215i 0.202933π-0.202933\pi
138138 0 0
139139 293366. 1.28787 0.643935 0.765080i 0.277301π-0.277301\pi
0.643935 + 0.765080i 0.277301π0.277301\pi
140140 0 0
141141 −360345. −1.52641
142142 0 0
143143 − 60559.6i − 0.247653i
144144 0 0
145145 0 0
146146 0 0
147147 − 132778.i − 0.506797i
148148 0 0
149149 304505. 1.12364 0.561822 0.827258i 0.310101π-0.310101\pi
0.561822 + 0.827258i 0.310101π0.310101\pi
150150 0 0
151151 337909. 1.20603 0.603015 0.797730i 0.293966π-0.293966\pi
0.603015 + 0.797730i 0.293966π0.293966\pi
152152 0 0
153153 72173.5i 0.249258i
154154 0 0
155155 0 0
156156 0 0
157157 − 68385.9i − 0.221420i −0.993853 0.110710i 0.964687π-0.964687\pi
0.993853 0.110710i 0.0353125π-0.0353125\pi
158158 0 0
159159 159809. 0.501312
160160 0 0
161161 −378473. −1.15072
162162 0 0
163163 404471.i 1.19239i 0.802840 + 0.596195i 0.203322π0.203322\pi
−0.802840 + 0.596195i 0.796678π0.796678\pi
164164 0 0
165165 0 0
166166 0 0
167167 411733.i 1.14242i 0.820805 + 0.571209i 0.193525π0.193525\pi
−0.820805 + 0.571209i 0.806475π0.806475\pi
168168 0 0
169169 193705. 0.521703
170170 0 0
171171 47982.9 0.125486
172172 0 0
173173 − 162247.i − 0.412155i −0.978536 0.206077i 0.933930π-0.933930\pi
0.978536 0.206077i 0.0660698π-0.0660698\pi
174174 0 0
175175 0 0
176176 0 0
177177 − 714438.i − 1.71408i
178178 0 0
179179 384396. 0.896698 0.448349 0.893859i 0.352012π-0.352012\pi
0.448349 + 0.893859i 0.352012π0.352012\pi
180180 0 0
181181 579219. 1.31415 0.657077 0.753823i 0.271792π-0.271792\pi
0.657077 + 0.753823i 0.271792π0.271792\pi
182182 0 0
183183 − 537108.i − 1.18559i
184184 0 0
185185 0 0
186186 0 0
187187 284842.i 0.595662i
188188 0 0
189189 325112. 0.662031
190190 0 0
191191 −142455. −0.282550 −0.141275 0.989970i 0.545120π-0.545120\pi
−0.141275 + 0.989970i 0.545120π0.545120\pi
192192 0 0
193193 267272.i 0.516487i 0.966080 + 0.258244i 0.0831438π0.0831438\pi
−0.966080 + 0.258244i 0.916856π0.916856\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 14189.5i − 0.0260496i −0.999915 0.0130248i 0.995854π-0.995854\pi
0.999915 0.0130248i 0.00414604π-0.00414604\pi
198198 0 0
199199 169198. 0.302875 0.151437 0.988467i 0.451610π-0.451610\pi
0.151437 + 0.988467i 0.451610π0.451610\pi
200200 0 0
201201 −507677. −0.886335
202202 0 0
203203 604167.i 1.02900i
204204 0 0
205205 0 0
206206 0 0
207207 − 146379.i − 0.237439i
208208 0 0
209209 189371. 0.299880
210210 0 0
211211 407591. 0.630259 0.315129 0.949049i 0.397952π-0.397952\pi
0.315129 + 0.949049i 0.397952π0.397952\pi
212212 0 0
213213 601875.i 0.908987i
214214 0 0
215215 0 0
216216 0 0
217217 221306.i 0.319039i
218218 0 0
219219 −1.06041e6 −1.49404
220220 0 0
221221 835287. 1.15042
222222 0 0
223223 103743.i 0.139700i 0.997558 + 0.0698500i 0.0222521π0.0222521\pi
−0.997558 + 0.0698500i 0.977748π0.977748\pi
224224 0 0
225225 0 0
226226 0 0
227227 − 803726.i − 1.03524i −0.855609 0.517622i 0.826817π-0.826817\pi
0.855609 0.517622i 0.173183π-0.173183\pi
228228 0 0
229229 −1.35955e6 −1.71319 −0.856596 0.515988i 0.827425π-0.827425\pi
−0.856596 + 0.515988i 0.827425π0.827425\pi
230230 0 0
231231 −226154. −0.278852
232232 0 0
233233 − 622827.i − 0.751584i −0.926704 0.375792i 0.877371π-0.877371\pi
0.926704 0.375792i 0.122629π-0.122629\pi
234234 0 0
235235 0 0
236236 0 0
237237 1.50312e6i 1.73829i
238238 0 0
239239 −642843. −0.727964 −0.363982 0.931406i 0.618583π-0.618583\pi
−0.363982 + 0.931406i 0.618583π0.618583\pi
240240 0 0
241241 1.11814e6 1.24009 0.620046 0.784566i 0.287114π-0.287114\pi
0.620046 + 0.784566i 0.287114π0.287114\pi
242242 0 0
243243 273644.i 0.297283i
244244 0 0
245245 0 0
246246 0 0
247247 − 555322.i − 0.579165i
248248 0 0
249249 −638724. −0.652852
250250 0 0
251251 −731067. −0.732442 −0.366221 0.930528i 0.619349π-0.619349\pi
−0.366221 + 0.930528i 0.619349π0.619349\pi
252252 0 0
253253 − 577702.i − 0.567418i
254254 0 0
255255 0 0
256256 0 0
257257 1.76622e6i 1.66806i 0.551720 + 0.834030i 0.313972π0.313972\pi
−0.551720 + 0.834030i 0.686028π0.686028\pi
258258 0 0
259259 −741555. −0.686901
260260 0 0
261261 −233668. −0.212324
262262 0 0
263263 − 1.00926e6i − 0.899735i −0.893095 0.449868i 0.851471π-0.851471\pi
0.893095 0.449868i 0.148529π-0.148529\pi
264264 0 0
265265 0 0
266266 0 0
267267 96042.8i 0.0824492i
268268 0 0
269269 775681. 0.653585 0.326793 0.945096i 0.394032π-0.394032\pi
0.326793 + 0.945096i 0.394032π0.394032\pi
270270 0 0
271271 −1.21395e6 −1.00410 −0.502052 0.864837i 0.667422π-0.667422\pi
−0.502052 + 0.864837i 0.667422π0.667422\pi
272272 0 0
273273 663187.i 0.538554i
274274 0 0
275275 0 0
276276 0 0
277277 218505.i 0.171104i 0.996334 + 0.0855522i 0.0272654π0.0272654\pi
−0.996334 + 0.0855522i 0.972735π0.972735\pi
278278 0 0
279279 −85592.6 −0.0658303
280280 0 0
281281 −316219. −0.238903 −0.119452 0.992840i 0.538114π-0.538114\pi
−0.119452 + 0.992840i 0.538114π0.538114\pi
282282 0 0
283283 927934.i 0.688733i 0.938835 + 0.344366i 0.111906π0.111906\pi
−0.938835 + 0.344366i 0.888094π0.888094\pi
284284 0 0
285285 0 0
286286 0 0
287287 1.41989e6i 1.01754i
288288 0 0
289289 −2.50892e6 −1.76702
290290 0 0
291291 −2.98842e6 −2.06876
292292 0 0
293293 262992.i 0.178967i 0.995988 + 0.0894835i 0.0285216π0.0285216\pi
−0.995988 + 0.0894835i 0.971478π0.971478\pi
294294 0 0
295295 0 0
296296 0 0
297297 496252.i 0.326446i
298298 0 0
299299 −1.69409e6 −1.09587
300300 0 0
301301 107459. 0.0683640
302302 0 0
303303 − 2.54451e6i − 1.59220i
304304 0 0
305305 0 0
306306 0 0
307307 2.15704e6i 1.30621i 0.757269 + 0.653104i 0.226533π0.226533\pi
−0.757269 + 0.653104i 0.773467π0.773467\pi
308308 0 0
309309 598923. 0.356841
310310 0 0
311311 2.33078e6 1.36647 0.683235 0.730199i 0.260573π-0.260573\pi
0.683235 + 0.730199i 0.260573π0.260573\pi
312312 0 0
313313 − 1.12235e6i − 0.647539i −0.946136 0.323769i 0.895050π-0.895050\pi
0.946136 0.323769i 0.104950π-0.104950\pi
314314 0 0
315315 0 0
316316 0 0
317317 1.27955e6i 0.715169i 0.933881 + 0.357584i 0.116400π0.116400\pi
−0.933881 + 0.357584i 0.883600π0.883600\pi
318318 0 0
319319 −922203. −0.507399
320320 0 0
321321 1.17060e6 0.634082
322322 0 0
323323 2.61196e6i 1.39303i
324324 0 0
325325 0 0
326326 0 0
327327 642998.i 0.332537i
328328 0 0
329329 2.02956e6 1.03374
330330 0 0
331331 2.09571e6 1.05138 0.525691 0.850675i 0.323807π-0.323807\pi
0.525691 + 0.850675i 0.323807π0.323807\pi
332332 0 0
333333 − 286805.i − 0.141735i
334334 0 0
335335 0 0
336336 0 0
337337 571289.i 0.274019i 0.990570 + 0.137010i 0.0437491π0.0437491\pi
−0.990570 + 0.137010i 0.956251π0.956251\pi
338338 0 0
339339 667817. 0.315615
340340 0 0
341341 −337802. −0.157317
342342 0 0
343343 2.33017e6i 1.06943i
344344 0 0
345345 0 0
346346 0 0
347347 2.24067e6i 0.998973i 0.866322 + 0.499486i 0.166478π0.166478\pi
−0.866322 + 0.499486i 0.833522π0.833522\pi
348348 0 0
349349 −130448. −0.0573290 −0.0286645 0.999589i 0.509125π-0.509125\pi
−0.0286645 + 0.999589i 0.509125π0.509125\pi
350350 0 0
351351 1.45524e6 0.630473
352352 0 0
353353 1.95452e6i 0.834839i 0.908714 + 0.417420i 0.137065π0.137065\pi
−0.908714 + 0.417420i 0.862935π0.862935\pi
354354 0 0
355355 0 0
356356 0 0
357357 − 3.11930e6i − 1.29535i
358358 0 0
359359 −850543. −0.348305 −0.174153 0.984719i 0.555719π-0.555719\pi
−0.174153 + 0.984719i 0.555719π0.555719\pi
360360 0 0
361361 −739600. −0.298696
362362 0 0
363363 2.34687e6i 0.934807i
364364 0 0
365365 0 0
366366 0 0
367367 − 1.50673e6i − 0.583941i −0.956427 0.291970i 0.905689π-0.905689\pi
0.956427 0.291970i 0.0943109π-0.0943109\pi
368368 0 0
369369 −549159. −0.209958
370370 0 0
371371 −900086. −0.339507
372372 0 0
373373 2.90602e6i 1.08150i 0.841184 + 0.540749i 0.181859π0.181859\pi
−0.841184 + 0.540749i 0.818141π0.818141\pi
374374 0 0
375375 0 0
376376 0 0
377377 2.70432e6i 0.979952i
378378 0 0
379379 5.16710e6 1.84777 0.923887 0.382665i 0.124994π-0.124994\pi
0.923887 + 0.382665i 0.124994π0.124994\pi
380380 0 0
381381 −3.89874e6 −1.37598
382382 0 0
383383 − 3.85088e6i − 1.34142i −0.741721 0.670708i 0.765990π-0.765990\pi
0.741721 0.670708i 0.234010π-0.234010\pi
384384 0 0
385385 0 0
386386 0 0
387387 41561.1i 0.0141062i
388388 0 0
389389 −5.49855e6 −1.84236 −0.921179 0.389138i 0.872773π-0.872773\pi
−0.921179 + 0.389138i 0.872773π0.872773\pi
390390 0 0
391391 7.96814e6 2.63582
392392 0 0
393393 923321.i 0.301558i
394394 0 0
395395 0 0
396396 0 0
397397 − 1.71425e6i − 0.545881i −0.962031 0.272941i 0.912004π-0.912004\pi
0.962031 0.272941i 0.0879963π-0.0879963\pi
398398 0 0
399399 −2.07380e6 −0.652130
400400 0 0
401401 3.63329e6 1.12834 0.564169 0.825660i 0.309197π-0.309197\pi
0.564169 + 0.825660i 0.309197π0.309197\pi
402402 0 0
403403 990591.i 0.303831i
404404 0 0
405405 0 0
406406 0 0
407407 − 1.13191e6i − 0.338709i
408408 0 0
409409 1.38246e6 0.408642 0.204321 0.978904i 0.434501π-0.434501\pi
0.204321 + 0.978904i 0.434501π0.434501\pi
410410 0 0
411411 −4.37148e6 −1.27651
412412 0 0
413413 4.02390e6i 1.16084i
414414 0 0
415415 0 0
416416 0 0
417417 − 4.90379e6i − 1.38099i
418418 0 0
419419 2.55435e6 0.710795 0.355398 0.934715i 0.384345π-0.384345\pi
0.355398 + 0.934715i 0.384345π0.384345\pi
420420 0 0
421421 −1.68110e6 −0.462263 −0.231132 0.972923i 0.574243π-0.574243\pi
−0.231132 + 0.972923i 0.574243π0.574243\pi
422422 0 0
423423 784954.i 0.213301i
424424 0 0
425425 0 0
426426 0 0
427427 3.02513e6i 0.802925i
428428 0 0
429429 −1.01229e6 −0.265560
430430 0 0
431431 2.32369e6 0.602539 0.301269 0.953539i 0.402590π-0.402590\pi
0.301269 + 0.953539i 0.402590π0.402590\pi
432432 0 0
433433 − 4.06439e6i − 1.04178i −0.853624 0.520890i 0.825600π-0.825600\pi
0.853624 0.520890i 0.174400π-0.174400\pi
434434 0 0
435435 0 0
436436 0 0
437437 − 5.29744e6i − 1.32697i
438438 0 0
439439 6.39272e6 1.58316 0.791579 0.611066i 0.209259π-0.209259\pi
0.791579 + 0.611066i 0.209259π0.209259\pi
440440 0 0
441441 −289237. −0.0708202
442442 0 0
443443 − 3.23515e6i − 0.783222i −0.920131 0.391611i 0.871918π-0.871918\pi
0.920131 0.391611i 0.128082π-0.128082\pi
444444 0 0
445445 0 0
446446 0 0
447447 − 5.08999e6i − 1.20489i
448448 0 0
449449 2.74812e6 0.643310 0.321655 0.946857i 0.395761π-0.395761\pi
0.321655 + 0.946857i 0.395761π0.395761\pi
450450 0 0
451451 −2.16732e6 −0.501745
452452 0 0
453453 − 5.64837e6i − 1.29324i
454454 0 0
455455 0 0
456456 0 0
457457 5.37326e6i 1.20350i 0.798684 + 0.601751i 0.205530π0.205530\pi
−0.798684 + 0.601751i 0.794470π0.794470\pi
458458 0 0
459459 −6.84472e6 −1.51644
460460 0 0
461461 −8.19928e6 −1.79690 −0.898449 0.439078i 0.855305π-0.855305\pi
−0.898449 + 0.439078i 0.855305π0.855305\pi
462462 0 0
463463 − 3.76963e6i − 0.817233i −0.912706 0.408617i 0.866011π-0.866011\pi
0.912706 0.408617i 0.133989π-0.133989\pi
464464 0 0
465465 0 0
466466 0 0
467467 6.03412e6i 1.28033i 0.768237 + 0.640165i 0.221134π0.221134\pi
−0.768237 + 0.640165i 0.778866π0.778866\pi
468468 0 0
469469 2.85937e6 0.600259
470470 0 0
471471 −1.14311e6 −0.237431
472472 0 0
473473 164026.i 0.0337101i
474474 0 0
475475 0 0
476476 0 0
477477 − 348119.i − 0.0700537i
478478 0 0
479479 −5.26406e6 −1.04829 −0.524146 0.851629i 0.675615π-0.675615\pi
−0.524146 + 0.851629i 0.675615π0.675615\pi
480480 0 0
481481 −3.31929e6 −0.654157
482482 0 0
483483 6.32641e6i 1.23393i
484484 0 0
485485 0 0
486486 0 0
487487 − 2.19979e6i − 0.420300i −0.977669 0.210150i 0.932605π-0.932605\pi
0.977669 0.210150i 0.0673952π-0.0673952\pi
488488 0 0
489489 6.76099e6 1.27861
490490 0 0
491491 −6.47314e6 −1.21174 −0.605872 0.795562i 0.707176π-0.707176\pi
−0.605872 + 0.795562i 0.707176π0.707176\pi
492492 0 0
493493 − 1.27198e7i − 2.35701i
494494 0 0
495495 0 0
496496 0 0
497497 − 3.38992e6i − 0.615600i
498498 0 0
499499 8.62090e6 1.54989 0.774946 0.632028i 0.217777π-0.217777\pi
0.774946 + 0.632028i 0.217777π0.217777\pi
500500 0 0
501501 6.88238e6 1.22502
502502 0 0
503503 − 8.10557e6i − 1.42845i −0.699918 0.714223i 0.746780π-0.746780\pi
0.699918 0.714223i 0.253220π-0.253220\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 3.23789e6i − 0.559426i
508508 0 0
509509 6.39610e6 1.09426 0.547131 0.837047i 0.315720π-0.315720\pi
0.547131 + 0.837047i 0.315720π0.315720\pi
510510 0 0
511511 5.97250e6 1.01182
512512 0 0
513513 4.55055e6i 0.763433i
514514 0 0
515515 0 0
516516 0 0
517517 3.09792e6i 0.509735i
518518 0 0
519519 −2.71205e6 −0.441957
520520 0 0
521521 7.53647e6 1.21639 0.608197 0.793786i 0.291893π-0.291893\pi
0.608197 + 0.793786i 0.291893π0.291893\pi
522522 0 0
523523 − 1.87780e6i − 0.300189i −0.988672 0.150095i 0.952042π-0.952042\pi
0.988672 0.150095i 0.0479578π-0.0479578\pi
524524 0 0
525525 0 0
526526 0 0
527527 − 4.65924e6i − 0.730784i
528528 0 0
529529 −9.72424e6 −1.51083
530530 0 0
531531 −1.55629e6 −0.239527
532532 0 0
533533 6.35559e6i 0.969031i
534534 0 0
535535 0 0
536536 0 0
537537 − 6.42542e6i − 0.961537i
538538 0 0
539539 −1.14151e6 −0.169242
540540 0 0
541541 2.44482e6 0.359131 0.179566 0.983746i 0.442531π-0.442531\pi
0.179566 + 0.983746i 0.442531π0.442531\pi
542542 0 0
543543 − 9.68202e6i − 1.40918i
544544 0 0
545545 0 0
546546 0 0
547547 − 1.09485e7i − 1.56453i −0.622944 0.782266i 0.714064π-0.714064\pi
0.622944 0.782266i 0.285936π-0.285936\pi
548548 0 0
549549 −1.17001e6 −0.165675
550550 0 0
551551 −8.45645e6 −1.18661
552552 0 0
553553 − 8.46595e6i − 1.17723i
554554 0 0
555555 0 0
556556 0 0
557557 768938.i 0.105015i 0.998621 + 0.0525077i 0.0167214π0.0167214\pi
−0.998621 + 0.0525077i 0.983279π0.983279\pi
558558 0 0
559559 481000. 0.0651052
560560 0 0
561561 4.76131e6 0.638733
562562 0 0
563563 1.47386e7i 1.95968i 0.199792 + 0.979838i 0.435974π0.435974\pi
−0.199792 + 0.979838i 0.564026π0.564026\pi
564564 0 0
565565 0 0
566566 0 0
567567 − 6.26749e6i − 0.818721i
568568 0 0
569569 3.33696e6 0.432086 0.216043 0.976384i 0.430685π-0.430685\pi
0.216043 + 0.976384i 0.430685π0.430685\pi
570570 0 0
571571 −1.54413e7 −1.98195 −0.990974 0.134051i 0.957201π-0.957201\pi
−0.990974 + 0.134051i 0.957201π0.957201\pi
572572 0 0
573573 2.38123e6i 0.302981i
574574 0 0
575575 0 0
576576 0 0
577577 4.05636e6i 0.507221i 0.967306 + 0.253610i 0.0816181π0.0816181\pi
−0.967306 + 0.253610i 0.918382π0.918382\pi
578578 0 0
579579 4.46762e6 0.553834
580580 0 0
581581 3.59746e6 0.442136
582582 0 0
583583 − 1.37389e6i − 0.167410i
584584 0 0
585585 0 0
586586 0 0
587587 − 1.22567e7i − 1.46818i −0.679052 0.734090i 0.737609π-0.737609\pi
0.679052 0.734090i 0.262391π-0.262391\pi
588588 0 0
589589 −3.09759e6 −0.367905
590590 0 0
591591 −237186. −0.0279332
592592 0 0
593593 8.58993e6i 1.00312i 0.865123 + 0.501560i 0.167240π0.167240\pi
−0.865123 + 0.501560i 0.832760π0.832760\pi
594594 0 0
595595 0 0
596596 0 0
597597 − 2.82825e6i − 0.324775i
598598 0 0
599599 8.85849e6 1.00877 0.504386 0.863479i 0.331719π-0.331719\pi
0.504386 + 0.863479i 0.331719π0.331719\pi
600600 0 0
601601 −8.50579e6 −0.960569 −0.480284 0.877113i 0.659467π-0.659467\pi
−0.480284 + 0.877113i 0.659467π0.659467\pi
602602 0 0
603603 1.10590e6i 0.123857i
604604 0 0
605605 0 0
606606 0 0
607607 − 3.15481e6i − 0.347537i −0.984787 0.173768i 0.944406π-0.944406\pi
0.984787 0.173768i 0.0555944π-0.0555944\pi
608608 0 0
609609 1.00990e7 1.10341
610610 0 0
611611 9.08453e6 0.984463
612612 0 0
613613 3.20689e6i 0.344694i 0.985036 + 0.172347i 0.0551350π0.0551350\pi
−0.985036 + 0.172347i 0.944865π0.944865\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.31916e6i 0.139504i 0.997564 + 0.0697519i 0.0222207π0.0222207\pi
−0.997564 + 0.0697519i 0.977779π0.977779\pi
618618 0 0
619619 −3.36061e6 −0.352526 −0.176263 0.984343i 0.556401π-0.556401\pi
−0.176263 + 0.984343i 0.556401π0.556401\pi
620620 0 0
621621 1.38821e7 1.44453
622622 0 0
623623 − 540939.i − 0.0558377i
624624 0 0
625625 0 0
626626 0 0
627627 − 3.16545e6i − 0.321563i
628628 0 0
629629 1.56123e7 1.57340
630630 0 0
631631 1.46547e7 1.46522 0.732610 0.680648i 0.238302π-0.238302\pi
0.732610 + 0.680648i 0.238302π0.238302\pi
632632 0 0
633633 − 6.81315e6i − 0.675832i
634634 0 0
635635 0 0
636636 0 0
637637 3.34743e6i 0.326861i
638638 0 0
639639 1.31109e6 0.127023
640640 0 0
641641 −5.67545e6 −0.545576 −0.272788 0.962074i 0.587946π-0.587946\pi
−0.272788 + 0.962074i 0.587946π0.587946\pi
642642 0 0
643643 1.81422e7i 1.73047i 0.501370 + 0.865233i 0.332830π0.332830\pi
−0.501370 + 0.865233i 0.667170π0.667170\pi
644644 0 0
645645 0 0
646646 0 0
647647 472390.i 0.0443649i 0.999754 + 0.0221825i 0.00706148π0.00706148\pi
−0.999754 + 0.0221825i 0.992939π0.992939\pi
648648 0 0
649649 −6.14210e6 −0.572407
650650 0 0
651651 3.69927e6 0.342108
652652 0 0
653653 9.79442e6i 0.898867i 0.893314 + 0.449434i 0.148374π0.148374\pi
−0.893314 + 0.449434i 0.851626π0.851626\pi
654654 0 0
655655 0 0
656656 0 0
657657 2.30993e6i 0.208778i
658658 0 0
659659 −9.83251e6 −0.881964 −0.440982 0.897516i 0.645370π-0.645370\pi
−0.440982 + 0.897516i 0.645370π0.645370\pi
660660 0 0
661661 1.84120e6 0.163907 0.0819535 0.996636i 0.473884π-0.473884\pi
0.0819535 + 0.996636i 0.473884π0.473884\pi
662662 0 0
663663 − 1.39624e7i − 1.23360i
664664 0 0
665665 0 0
666666 0 0
667667 2.57976e7i 2.24525i
668668 0 0
669669 1.73413e6 0.149802
670670 0 0
671671 −4.61758e6 −0.395920
672672 0 0
673673 − 1.02990e7i − 0.876510i −0.898851 0.438255i 0.855597π-0.855597\pi
0.898851 0.438255i 0.144403π-0.144403\pi
674674 0 0
675675 0 0
676676 0 0
677677 3.63461e6i 0.304779i 0.988320 + 0.152390i 0.0486969π0.0486969\pi
−0.988320 + 0.152390i 0.951303π0.951303\pi
678678 0 0
679679 1.68316e7 1.40104
680680 0 0
681681 −1.34348e7 −1.11010
682682 0 0
683683 9.78443e6i 0.802571i 0.915953 + 0.401286i 0.131437π0.131437\pi
−0.915953 + 0.401286i 0.868563π0.868563\pi
684684 0 0
685685 0 0
686686 0 0
687687 2.27257e7i 1.83707i
688688 0 0
689689 −4.02889e6 −0.323323
690690 0 0
691691 −4.67949e6 −0.372824 −0.186412 0.982472i 0.559686π-0.559686\pi
−0.186412 + 0.982472i 0.559686π0.559686\pi
692692 0 0
693693 492641.i 0.0389671i
694694 0 0
695695 0 0
696696 0 0
697697 − 2.98935e7i − 2.33075i
698698 0 0
699699 −1.04110e7 −0.805930
700700 0 0
701701 −565147. −0.0434376 −0.0217188 0.999764i 0.506914π-0.506914\pi
−0.0217188 + 0.999764i 0.506914π0.506914\pi
702702 0 0
703703 − 1.03795e7i − 0.792112i
704704 0 0
705705 0 0
706706 0 0
707707 1.43314e7i 1.07830i
708708 0 0
709709 1.00907e6 0.0753889 0.0376944 0.999289i 0.487999π-0.487999\pi
0.0376944 + 0.999289i 0.487999π0.487999\pi
710710 0 0
711711 3.27431e6 0.242910
712712 0 0
713713 9.44964e6i 0.696132i
714714 0 0
715715 0 0
716716 0 0
717717 1.07455e7i 0.780602i
718718 0 0
719719 −6.02329e6 −0.434522 −0.217261 0.976114i 0.569712π-0.569712\pi
−0.217261 + 0.976114i 0.569712π0.569712\pi
720720 0 0
721721 −3.37329e6 −0.241666
722722 0 0
723723 − 1.86904e7i − 1.32976i
724724 0 0
725725 0 0
726726 0 0
727727 − 2.30828e6i − 0.161977i −0.996715 0.0809883i 0.974192π-0.974192\pi
0.996715 0.0809883i 0.0258076π-0.0258076\pi
728728 0 0
729729 −1.16027e7 −0.808612
730730 0 0
731731 −2.26238e6 −0.156593
732732 0 0
733733 − 1.65224e7i − 1.13583i −0.823088 0.567914i 0.807751π-0.807751\pi
0.823088 0.567914i 0.192249π-0.192249\pi
734734 0 0
735735 0 0
736736 0 0
737737 4.36456e6i 0.295986i
738738 0 0
739739 2.41051e7 1.62367 0.811834 0.583888i 0.198469π-0.198469\pi
0.811834 + 0.583888i 0.198469π0.198469\pi
740740 0 0
741741 −9.28255e6 −0.621043
742742 0 0
743743 2.54593e7i 1.69190i 0.533262 + 0.845950i 0.320966π0.320966\pi
−0.533262 + 0.845950i 0.679034π0.679034\pi
744744 0 0
745745 0 0
746746 0 0
747747 1.39136e6i 0.0912301i
748748 0 0
749749 −6.59312e6 −0.429424
750750 0 0
751751 1.25073e7 0.809215 0.404608 0.914490i 0.367408π-0.367408\pi
0.404608 + 0.914490i 0.367408π0.367408\pi
752752 0 0
753753 1.22203e7i 0.785404i
754754 0 0
755755 0 0
756756 0 0
757757 5.34914e6i 0.339269i 0.985507 + 0.169635i 0.0542588π0.0542588\pi
−0.985507 + 0.169635i 0.945741π0.945741\pi
758758 0 0
759759 −9.65666e6 −0.608447
760760 0 0
761761 −1.80369e7 −1.12901 −0.564507 0.825428i 0.690934π-0.690934\pi
−0.564507 + 0.825428i 0.690934π0.690934\pi
762762 0 0
763763 − 3.62154e6i − 0.225207i
764764 0 0
765765 0 0
766766 0 0
767767 1.80115e7i 1.10550i
768768 0 0
769769 −2.41928e7 −1.47526 −0.737632 0.675203i 0.764056π-0.764056\pi
−0.737632 + 0.675203i 0.764056π0.764056\pi
770770 0 0
771771 2.95234e7 1.78867
772772 0 0
773773 − 3.22531e6i − 0.194143i −0.995277 0.0970716i 0.969052π-0.969052\pi
0.995277 0.0970716i 0.0309476π-0.0309476\pi
774774 0 0
775775 0 0
776776 0 0
777777 1.23956e7i 0.736570i
778778 0 0
779779 −1.98740e7 −1.17339
780780 0 0
781781 5.17439e6 0.303551
782782 0 0
783783 − 2.21604e7i − 1.29174i
784784 0 0
785785 0 0
786786 0 0
787787 − 1.12227e6i − 0.0645896i −0.999478 0.0322948i 0.989718π-0.989718\pi
0.999478 0.0322948i 0.0102815π-0.0102815\pi
788788 0 0
789789 −1.68705e7 −0.964793
790790 0 0
791791 −3.76132e6 −0.213747
792792 0 0
793793 1.35408e7i 0.764650i
794794 0 0
795795 0 0
796796 0 0
797797 1.48763e7i 0.829560i 0.909922 + 0.414780i 0.136141π0.136141\pi
−0.909922 + 0.414780i 0.863859π0.863859\pi
798798 0 0
799799 −4.27291e7 −2.36786
800800 0 0
801801 209214. 0.0115215
802802 0 0
803803 9.11644e6i 0.498926i
804804 0 0
805805 0 0
806806 0 0
807807 − 1.29660e7i − 0.700845i
808808 0 0
809809 −1.86436e7 −1.00152 −0.500759 0.865587i 0.666946π-0.666946\pi
−0.500759 + 0.865587i 0.666946π0.666946\pi
810810 0 0
811811 −4.50701e6 −0.240623 −0.120311 0.992736i 0.538389π-0.538389\pi
−0.120311 + 0.992736i 0.538389π0.538389\pi
812812 0 0
813813 2.02920e7i 1.07671i
814814 0 0
815815 0 0
816816 0 0
817817 1.50409e6i 0.0788352i
818818 0 0
819819 1.44465e6 0.0752580
820820 0 0
821821 −2.26560e7 −1.17307 −0.586537 0.809922i 0.699509π-0.699509\pi
−0.586537 + 0.809922i 0.699509π0.699509\pi
822822 0 0
823823 2.76806e7i 1.42454i 0.701903 + 0.712272i 0.252334π0.252334\pi
−0.701903 + 0.712272i 0.747666π0.747666\pi
824824 0 0
825825 0 0
826826 0 0
827827 − 7.42673e6i − 0.377602i −0.982015 0.188801i 0.939540π-0.939540\pi
0.982015 0.188801i 0.0604600π-0.0604600\pi
828828 0 0
829829 −3.41770e7 −1.72722 −0.863610 0.504160i 0.831802π-0.831802\pi
−0.863610 + 0.504160i 0.831802π0.831802\pi
830830 0 0
831831 3.65244e6 0.183477
832832 0 0
833833 − 1.57446e7i − 0.786177i
834834 0 0
835835 0 0
836836 0 0
837837 − 8.11734e6i − 0.400498i
838838 0 0
839839 155990. 0.00765051 0.00382526 0.999993i 0.498782π-0.498782\pi
0.00382526 + 0.999993i 0.498782π0.498782\pi
840840 0 0
841841 2.06703e7 1.00776
842842 0 0
843843 5.28580e6i 0.256178i
844844 0 0
845845 0 0
846846 0 0
847847 − 1.32182e7i − 0.633087i
848848 0 0
849849 1.55110e7 0.738534
850850 0 0
851851 −3.16640e7 −1.49879
852852 0 0
853853 − 2.52778e7i − 1.18951i −0.803908 0.594754i 0.797250π-0.797250\pi
0.803908 0.594754i 0.202750π-0.202750\pi
854854 0 0
855855 0 0
856856 0 0
857857 − 1.40854e6i − 0.0655112i −0.999463 0.0327556i 0.989572π-0.989572\pi
0.999463 0.0327556i 0.0104283π-0.0104283\pi
858858 0 0
859859 −246158. −0.0113823 −0.00569116 0.999984i 0.501812π-0.501812\pi
−0.00569116 + 0.999984i 0.501812π0.501812\pi
860860 0 0
861861 2.37344e7 1.09111
862862 0 0
863863 − 1.17019e7i − 0.534849i −0.963579 0.267424i 0.913827π-0.913827\pi
0.963579 0.267424i 0.0861725π-0.0861725\pi
864864 0 0
865865 0 0
866866 0 0
867867 4.19381e7i 1.89479i
868868 0 0
869869 1.29225e7 0.580492
870870 0 0
871871 1.27989e7 0.571646
872872 0 0
873873 6.50982e6i 0.289090i
874874 0 0
875875 0 0
876876 0 0
877877 7.85174e6i 0.344720i 0.985034 + 0.172360i 0.0551393π0.0551393\pi
−0.985034 + 0.172360i 0.944861π0.944861\pi
878878 0 0
879879 4.39607e6 0.191908
880880 0 0
881881 105461. 0.00457777 0.00228888 0.999997i 0.499271π-0.499271\pi
0.00228888 + 0.999997i 0.499271π0.499271\pi
882882 0 0
883883 − 1.43760e7i − 0.620491i −0.950656 0.310245i 0.899589π-0.899589\pi
0.950656 0.310245i 0.100411π-0.100411\pi
884884 0 0
885885 0 0
886886 0 0
887887 2.71725e7i 1.15963i 0.814748 + 0.579816i 0.196875π0.196875\pi
−0.814748 + 0.579816i 0.803125π0.803125\pi
888888 0 0
889889 2.19587e7 0.931864
890890 0 0
891891 9.56672e6 0.403709
892892 0 0
893893 2.84075e7i 1.19208i
894894 0 0
895895 0 0
896896 0 0
897897 2.83177e7i 1.17511i
898898 0 0
899899 1.50847e7 0.622499
900900 0 0
901901 1.89499e7 0.777668
902902 0 0
903903 − 1.79625e6i − 0.0733073i
904904 0 0
905905 0 0
906906 0 0
907907 − 5.25290e6i − 0.212022i −0.994365 0.106011i 0.966192π-0.966192\pi
0.994365 0.106011i 0.0338079π-0.0338079\pi
908908 0 0
909909 −5.54282e6 −0.222495
910910 0 0
911911 −2.68057e7 −1.07012 −0.535059 0.844815i 0.679711π-0.679711\pi
−0.535059 + 0.844815i 0.679711π0.679711\pi
912912 0 0
913913 5.49118e6i 0.218016i
914914 0 0
915915 0 0
916916 0 0
917917 − 5.20039e6i − 0.204227i
918918 0 0
919919 −1.25954e7 −0.491951 −0.245976 0.969276i 0.579108π-0.579108\pi
−0.245976 + 0.969276i 0.579108π0.579108\pi
920920 0 0
921921 3.60563e7 1.40066
922922 0 0
923923 − 1.51737e7i − 0.586255i
924924 0 0
925925 0 0
926926 0 0
927927 − 1.30466e6i − 0.0498652i
928928 0 0
929929 3.23322e7 1.22912 0.614562 0.788868i 0.289333π-0.289333\pi
0.614562 + 0.788868i 0.289333π0.289333\pi
930930 0 0
931931 −1.04675e7 −0.395792
932932 0 0
933933 − 3.89604e7i − 1.46528i
934934 0 0
935935 0 0
936936 0 0
937937 − 2.04882e7i − 0.762350i −0.924503 0.381175i 0.875519π-0.875519\pi
0.924503 0.381175i 0.124481π-0.124481\pi
938938 0 0
939939 −1.87607e7 −0.694361
940940 0 0
941941 −5.87135e6 −0.216154 −0.108077 0.994143i 0.534469π-0.534469\pi
−0.108077 + 0.994143i 0.534469π0.534469\pi
942942 0 0
943943 6.06285e7i 2.22023i
944944 0 0
945945 0 0
946946 0 0
947947 − 1.86718e7i − 0.676567i −0.941044 0.338284i 0.890154π-0.890154\pi
0.941044 0.338284i 0.109846π-0.109846\pi
948948 0 0
949949 2.67336e7 0.963588
950950 0 0
951951 2.13885e7 0.766882
952952 0 0
953953 1.55896e7i 0.556037i 0.960576 + 0.278018i 0.0896776π0.0896776\pi
−0.960576 + 0.278018i 0.910322π0.910322\pi
954954 0 0
955955 0 0
956956 0 0
957957 1.54152e7i 0.544088i
958958 0 0
959959 2.46213e7 0.864500
960960 0 0
961961 −2.31036e7 −0.806996
962962 0 0
963963 − 2.54997e6i − 0.0886071i
964964 0 0
965965 0 0
966966 0 0
967967 − 3.24491e7i − 1.11593i −0.829865 0.557964i 0.811583π-0.811583\pi
0.829865 0.557964i 0.188417π-0.188417\pi
968968 0 0
969969 4.36605e7 1.49375
970970 0 0
971971 −3.73661e7 −1.27183 −0.635916 0.771758i 0.719378π-0.719378\pi
−0.635916 + 0.771758i 0.719378π0.719378\pi
972972 0 0
973973 2.76195e7i 0.935261i
974974 0 0
975975 0 0
976976 0 0
977977 5.23874e7i 1.75586i 0.478787 + 0.877931i 0.341077π0.341077\pi
−0.478787 + 0.877931i 0.658923π0.658923\pi
978978 0 0
979979 825691. 0.0275335
980980 0 0
981981 1.40067e6 0.0464690
982982 0 0
983983 4.75140e7i 1.56833i 0.620551 + 0.784166i 0.286909π0.286909\pi
−0.620551 + 0.784166i 0.713091π0.713091\pi
984984 0 0
985985 0 0
986986 0 0
987987 − 3.39253e7i − 1.10849i
988988 0 0
989989 4.58846e6 0.149168
990990 0 0
991991 −2.47278e7 −0.799835 −0.399918 0.916551i 0.630961π-0.630961\pi
−0.399918 + 0.916551i 0.630961π0.630961\pi
992992 0 0
993993 − 3.50311e7i − 1.12741i
994994 0 0
995995 0 0
996996 0 0
997997 − 1.25139e7i − 0.398709i −0.979927 0.199355i 0.936115π-0.936115\pi
0.979927 0.199355i 0.0638845π-0.0638845\pi
998998 0 0
999999 2.71997e7 0.862285
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.6.c.l.49.2 4
4.3 odd 2 200.6.c.e.49.3 4
5.2 odd 4 80.6.a.i.1.1 2
5.3 odd 4 400.6.a.q.1.2 2
5.4 even 2 inner 400.6.c.l.49.3 4
15.2 even 4 720.6.a.z.1.1 2
20.3 even 4 200.6.a.g.1.1 2
20.7 even 4 40.6.a.d.1.2 2
20.19 odd 2 200.6.c.e.49.2 4
40.27 even 4 320.6.a.w.1.1 2
40.37 odd 4 320.6.a.q.1.2 2
60.47 odd 4 360.6.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.a.d.1.2 2 20.7 even 4
80.6.a.i.1.1 2 5.2 odd 4
200.6.a.g.1.1 2 20.3 even 4
200.6.c.e.49.2 4 20.19 odd 2
200.6.c.e.49.3 4 4.3 odd 2
320.6.a.q.1.2 2 40.37 odd 4
320.6.a.w.1.1 2 40.27 even 4
360.6.a.l.1.2 2 60.47 odd 4
400.6.a.q.1.2 2 5.3 odd 4
400.6.c.l.49.2 4 1.1 even 1 trivial
400.6.c.l.49.3 4 5.4 even 2 inner
720.6.a.z.1.1 2 15.2 even 4