Newspace parameters
| Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 400.r (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(10.8992105744\) |
| Analytic rank: | \(0\) |
| Dimension: | \(28\) |
| Relative dimension: | \(14\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 51.1 | −1.99847 | + | 0.0782547i | 0.600049 | − | 0.600049i | 3.98775 | − | 0.312779i | 0 | −1.15222 | + | 1.24614i | 0.116286 | −7.94492 | + | 0.937139i | 8.27988i | 0 | ||||||||
| 51.2 | −1.94649 | − | 0.459548i | −3.49919 | + | 3.49919i | 3.57763 | + | 1.78901i | 0 | 8.41917 | − | 5.20308i | −3.47820 | −6.14168 | − | 5.12638i | − | 15.4886i | 0 | |||||||
| 51.3 | −1.53982 | + | 1.27630i | 2.78870 | − | 2.78870i | 0.742099 | − | 3.93056i | 0 | −0.734871 | + | 7.85332i | 1.99582 | 3.87389 | + | 6.99950i | − | 6.55367i | 0 | |||||||
| 51.4 | −1.45774 | − | 1.36931i | −0.258661 | + | 0.258661i | 0.249991 | + | 3.99218i | 0 | 0.731245 | − | 0.0228729i | 10.8029 | 5.10210 | − | 6.16186i | 8.86619i | 0 | ||||||||
| 51.5 | −1.31780 | + | 1.50446i | −2.26876 | + | 2.26876i | −0.526785 | − | 3.96516i | 0 | −0.423473 | − | 6.40304i | −6.63497 | 6.65962 | + | 4.43278i | − | 1.29458i | 0 | |||||||
| 51.6 | −1.14089 | − | 1.64267i | 1.62818 | − | 1.62818i | −1.39676 | + | 3.74821i | 0 | −4.53213 | − | 0.817001i | −11.3290 | 7.75063 | − | 1.98186i | 3.69807i | 0 | ||||||||
| 51.7 | −0.166739 | + | 1.99304i | −0.532090 | + | 0.532090i | −3.94440 | − | 0.664633i | 0 | −0.971755 | − | 1.14919i | 3.37769 | 1.98232 | − | 7.75051i | 8.43376i | 0 | ||||||||
| 51.8 | 0.448476 | + | 1.94907i | 3.45893 | − | 3.45893i | −3.59774 | + | 1.74822i | 0 | 8.29293 | + | 5.19044i | −8.30977 | −5.02090 | − | 6.22821i | − | 14.9283i | 0 | |||||||
| 51.9 | 0.838693 | − | 1.81565i | 0.825268 | − | 0.825268i | −2.59319 | − | 3.04555i | 0 | −0.806253 | − | 2.19055i | −8.39588 | −7.70455 | + | 2.15405i | 7.63787i | 0 | ||||||||
| 51.10 | 1.04893 | + | 1.70286i | −4.12293 | + | 4.12293i | −1.79949 | + | 3.57237i | 0 | −11.3454 | − | 2.69612i | 7.21305 | −7.97080 | + | 0.682875i | − | 24.9970i | 0 | |||||||
| 51.11 | 1.64869 | + | 1.13217i | 1.18548 | − | 1.18548i | 1.43637 | + | 3.73321i | 0 | 3.29666 | − | 0.612320i | 6.06481 | −1.85852 | + | 7.78113i | 6.18928i | 0 | ||||||||
| 51.12 | 1.69904 | − | 1.05512i | −1.83498 | + | 1.83498i | 1.77346 | − | 3.58537i | 0 | −1.18158 | + | 5.05382i | 7.32730 | −0.769814 | − | 7.96288i | 2.26569i | 0 | ||||||||
| 51.13 | 1.90775 | − | 0.600411i | 3.01738 | − | 3.01738i | 3.27901 | − | 2.29087i | 0 | 3.94474 | − | 7.56808i | −1.89720 | 4.88007 | − | 6.33916i | − | 9.20918i | 0 | |||||||
| 51.14 | 1.97637 | + | 0.306552i | −1.98737 | + | 1.98737i | 3.81205 | + | 1.21172i | 0 | −4.53700 | + | 3.31854i | −10.8528 | 7.16256 | + | 3.56339i | 1.10072i | 0 | ||||||||
| 251.1 | −1.99847 | − | 0.0782547i | 0.600049 | + | 0.600049i | 3.98775 | + | 0.312779i | 0 | −1.15222 | − | 1.24614i | 0.116286 | −7.94492 | − | 0.937139i | − | 8.27988i | 0 | |||||||
| 251.2 | −1.94649 | + | 0.459548i | −3.49919 | − | 3.49919i | 3.57763 | − | 1.78901i | 0 | 8.41917 | + | 5.20308i | −3.47820 | −6.14168 | + | 5.12638i | 15.4886i | 0 | ||||||||
| 251.3 | −1.53982 | − | 1.27630i | 2.78870 | + | 2.78870i | 0.742099 | + | 3.93056i | 0 | −0.734871 | − | 7.85332i | 1.99582 | 3.87389 | − | 6.99950i | 6.55367i | 0 | ||||||||
| 251.4 | −1.45774 | + | 1.36931i | −0.258661 | − | 0.258661i | 0.249991 | − | 3.99218i | 0 | 0.731245 | + | 0.0228729i | 10.8029 | 5.10210 | + | 6.16186i | − | 8.86619i | 0 | |||||||
| 251.5 | −1.31780 | − | 1.50446i | −2.26876 | − | 2.26876i | −0.526785 | + | 3.96516i | 0 | −0.423473 | + | 6.40304i | −6.63497 | 6.65962 | − | 4.43278i | 1.29458i | 0 | ||||||||
| 251.6 | −1.14089 | + | 1.64267i | 1.62818 | + | 1.62818i | −1.39676 | − | 3.74821i | 0 | −4.53213 | + | 0.817001i | −11.3290 | 7.75063 | + | 1.98186i | − | 3.69807i | 0 | |||||||
| See all 28 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 16.f | odd | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 400.3.r.d | ✓ | 28 |
| 5.b | even | 2 | 1 | 400.3.r.e | yes | 28 | |
| 5.c | odd | 4 | 1 | 400.3.k.e | 28 | ||
| 5.c | odd | 4 | 1 | 400.3.k.f | 28 | ||
| 16.f | odd | 4 | 1 | inner | 400.3.r.d | ✓ | 28 |
| 80.j | even | 4 | 1 | 400.3.k.e | 28 | ||
| 80.k | odd | 4 | 1 | 400.3.r.e | yes | 28 | |
| 80.s | even | 4 | 1 | 400.3.k.f | 28 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 400.3.k.e | 28 | 5.c | odd | 4 | 1 | ||
| 400.3.k.e | 28 | 80.j | even | 4 | 1 | ||
| 400.3.k.f | 28 | 5.c | odd | 4 | 1 | ||
| 400.3.k.f | 28 | 80.s | even | 4 | 1 | ||
| 400.3.r.d | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
| 400.3.r.d | ✓ | 28 | 16.f | odd | 4 | 1 | inner |
| 400.3.r.e | yes | 28 | 5.b | even | 2 | 1 | |
| 400.3.r.e | yes | 28 | 80.k | odd | 4 | 1 | |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{28} + 2 T_{3}^{27} + 2 T_{3}^{26} - 54 T_{3}^{25} + 1467 T_{3}^{24} + 1604 T_{3}^{23} + \cdots + 3422133001 \)
acting on \(S_{3}^{\mathrm{new}}(400, [\chi])\).