Properties

Label 400.2.bi.d.63.6
Level $400$
Weight $2$
Character 400.63
Analytic conductor $3.194$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(47,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 0, 17])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 63.6
Character \(\chi\) \(=\) 400.63
Dual form 400.2.bi.d.127.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.192345 + 0.0980047i) q^{3} +(1.96025 - 1.07584i) q^{5} +(3.64023 + 3.64023i) q^{7} +(-1.73596 - 2.38935i) q^{9} +(1.40862 - 1.93880i) q^{11} +(-3.87519 - 0.613769i) q^{13} +(0.482481 - 0.0148199i) q^{15} +(1.70615 + 3.34851i) q^{17} +(-1.33643 + 4.11310i) q^{19} +(0.343420 + 1.05694i) q^{21} +(4.03892 - 0.639702i) q^{23} +(2.68512 - 4.21783i) q^{25} +(-0.201047 - 1.26936i) q^{27} +(6.80076 - 2.20970i) q^{29} +(-4.89500 - 1.59048i) q^{31} +(0.460954 - 0.234868i) q^{33} +(11.0521 + 3.21942i) q^{35} +(1.32726 - 8.37999i) q^{37} +(-0.685221 - 0.497842i) q^{39} +(-3.51583 + 2.55440i) q^{41} +(0.236979 - 0.236979i) q^{43} +(-5.97348 - 2.81609i) q^{45} +(-3.73202 + 7.32450i) q^{47} +19.5025i q^{49} +0.811279i q^{51} +(1.46515 - 2.87552i) q^{53} +(0.675398 - 5.31599i) q^{55} +(-0.660158 + 0.660158i) q^{57} +(-8.27043 + 6.00882i) q^{59} +(-5.77599 - 4.19650i) q^{61} +(2.37847 - 15.0171i) q^{63} +(-8.25664 + 2.96596i) q^{65} +(-3.40155 + 1.73318i) q^{67} +(0.839560 + 0.272790i) q^{69} +(-10.6414 + 3.45761i) q^{71} +(0.176191 + 1.11243i) q^{73} +(0.929837 - 0.548125i) q^{75} +(12.1854 - 1.92998i) q^{77} +(-3.53547 - 10.8811i) q^{79} +(-2.65222 + 8.16269i) q^{81} +(-6.66869 - 13.0880i) q^{83} +(6.94694 + 4.72835i) q^{85} +(1.52465 + 0.241481i) q^{87} +(-0.149113 + 0.205237i) q^{89} +(-11.8723 - 16.3408i) q^{91} +(-0.785654 - 0.785654i) q^{93} +(1.80533 + 9.50047i) q^{95} +(-6.59923 - 3.36248i) q^{97} -7.07780 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{5} - 4 q^{13} - 24 q^{17} - 48 q^{25} - 40 q^{29} - 64 q^{33} - 20 q^{37} - 24 q^{45} + 28 q^{53} + 48 q^{57} + 112 q^{65} + 140 q^{69} + 108 q^{73} + 136 q^{77} - 20 q^{81} - 24 q^{85} + 80 q^{89}+ \cdots - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.192345 + 0.0980047i 0.111050 + 0.0565830i 0.508633 0.860983i \(-0.330151\pi\)
−0.397583 + 0.917566i \(0.630151\pi\)
\(4\) 0 0
\(5\) 1.96025 1.07584i 0.876648 0.481132i
\(6\) 0 0
\(7\) 3.64023 + 3.64023i 1.37588 + 1.37588i 0.851465 + 0.524411i \(0.175715\pi\)
0.524411 + 0.851465i \(0.324285\pi\)
\(8\) 0 0
\(9\) −1.73596 2.38935i −0.578655 0.796450i
\(10\) 0 0
\(11\) 1.40862 1.93880i 0.424716 0.584572i −0.542014 0.840369i \(-0.682338\pi\)
0.966730 + 0.255798i \(0.0823381\pi\)
\(12\) 0 0
\(13\) −3.87519 0.613769i −1.07478 0.170229i −0.406139 0.913811i \(-0.633125\pi\)
−0.668644 + 0.743582i \(0.733125\pi\)
\(14\) 0 0
\(15\) 0.482481 0.0148199i 0.124576 0.00382649i
\(16\) 0 0
\(17\) 1.70615 + 3.34851i 0.413802 + 0.812132i 0.999998 + 0.00196314i \(0.000624888\pi\)
−0.586196 + 0.810169i \(0.699375\pi\)
\(18\) 0 0
\(19\) −1.33643 + 4.11310i −0.306598 + 0.943610i 0.672479 + 0.740116i \(0.265230\pi\)
−0.979076 + 0.203494i \(0.934770\pi\)
\(20\) 0 0
\(21\) 0.343420 + 1.05694i 0.0749404 + 0.230643i
\(22\) 0 0
\(23\) 4.03892 0.639702i 0.842174 0.133387i 0.279582 0.960122i \(-0.409804\pi\)
0.562592 + 0.826735i \(0.309804\pi\)
\(24\) 0 0
\(25\) 2.68512 4.21783i 0.537024 0.843567i
\(26\) 0 0
\(27\) −0.201047 1.26936i −0.0386915 0.244288i
\(28\) 0 0
\(29\) 6.80076 2.20970i 1.26287 0.410331i 0.400353 0.916361i \(-0.368888\pi\)
0.862516 + 0.506030i \(0.168888\pi\)
\(30\) 0 0
\(31\) −4.89500 1.59048i −0.879168 0.285659i −0.165556 0.986200i \(-0.552942\pi\)
−0.713612 + 0.700541i \(0.752942\pi\)
\(32\) 0 0
\(33\) 0.460954 0.234868i 0.0802417 0.0408852i
\(34\) 0 0
\(35\) 11.0521 + 3.21942i 1.86814 + 0.544182i
\(36\) 0 0
\(37\) 1.32726 8.37999i 0.218200 1.37766i −0.598742 0.800942i \(-0.704332\pi\)
0.816942 0.576720i \(-0.195668\pi\)
\(38\) 0 0
\(39\) −0.685221 0.497842i −0.109723 0.0797185i
\(40\) 0 0
\(41\) −3.51583 + 2.55440i −0.549080 + 0.398930i −0.827446 0.561545i \(-0.810207\pi\)
0.278366 + 0.960475i \(0.410207\pi\)
\(42\) 0 0
\(43\) 0.236979 0.236979i 0.0361389 0.0361389i −0.688806 0.724945i \(-0.741865\pi\)
0.724945 + 0.688806i \(0.241865\pi\)
\(44\) 0 0
\(45\) −5.97348 2.81609i −0.890474 0.419797i
\(46\) 0 0
\(47\) −3.73202 + 7.32450i −0.544371 + 1.06839i 0.440927 + 0.897543i \(0.354650\pi\)
−0.985298 + 0.170846i \(0.945350\pi\)
\(48\) 0 0
\(49\) 19.5025i 2.78607i
\(50\) 0 0
\(51\) 0.811279i 0.113602i
\(52\) 0 0
\(53\) 1.46515 2.87552i 0.201254 0.394982i −0.768217 0.640189i \(-0.778856\pi\)
0.969471 + 0.245207i \(0.0788559\pi\)
\(54\) 0 0
\(55\) 0.675398 5.31599i 0.0910707 0.716808i
\(56\) 0 0
\(57\) −0.660158 + 0.660158i −0.0874401 + 0.0874401i
\(58\) 0 0
\(59\) −8.27043 + 6.00882i −1.07672 + 0.782282i −0.977108 0.212745i \(-0.931760\pi\)
−0.0996107 + 0.995026i \(0.531760\pi\)
\(60\) 0 0
\(61\) −5.77599 4.19650i −0.739540 0.537307i 0.153027 0.988222i \(-0.451098\pi\)
−0.892567 + 0.450915i \(0.851098\pi\)
\(62\) 0 0
\(63\) 2.37847 15.0171i 0.299659 1.89197i
\(64\) 0 0
\(65\) −8.25664 + 2.96596i −1.02411 + 0.367882i
\(66\) 0 0
\(67\) −3.40155 + 1.73318i −0.415566 + 0.211741i −0.649256 0.760570i \(-0.724920\pi\)
0.233691 + 0.972311i \(0.424920\pi\)
\(68\) 0 0
\(69\) 0.839560 + 0.272790i 0.101071 + 0.0328400i
\(70\) 0 0
\(71\) −10.6414 + 3.45761i −1.26291 + 0.410343i −0.862529 0.506008i \(-0.831121\pi\)
−0.400377 + 0.916351i \(0.631121\pi\)
\(72\) 0 0
\(73\) 0.176191 + 1.11243i 0.0206216 + 0.130200i 0.995851 0.0909945i \(-0.0290046\pi\)
−0.975230 + 0.221194i \(0.929005\pi\)
\(74\) 0 0
\(75\) 0.929837 0.548125i 0.107368 0.0632920i
\(76\) 0 0
\(77\) 12.1854 1.92998i 1.38865 0.219941i
\(78\) 0 0
\(79\) −3.53547 10.8811i −0.397772 1.22422i −0.926782 0.375601i \(-0.877436\pi\)
0.529010 0.848616i \(-0.322564\pi\)
\(80\) 0 0
\(81\) −2.65222 + 8.16269i −0.294691 + 0.906965i
\(82\) 0 0
\(83\) −6.66869 13.0880i −0.731983 1.43660i −0.893191 0.449678i \(-0.851539\pi\)
0.161207 0.986921i \(-0.448461\pi\)
\(84\) 0 0
\(85\) 6.94694 + 4.72835i 0.753502 + 0.512861i
\(86\) 0 0
\(87\) 1.52465 + 0.241481i 0.163460 + 0.0258895i
\(88\) 0 0
\(89\) −0.149113 + 0.205237i −0.0158060 + 0.0217550i −0.816847 0.576855i \(-0.804280\pi\)
0.801041 + 0.598610i \(0.204280\pi\)
\(90\) 0 0
\(91\) −11.8723 16.3408i −1.24456 1.71298i
\(92\) 0 0
\(93\) −0.785654 0.785654i −0.0814685 0.0814685i
\(94\) 0 0
\(95\) 1.80533 + 9.50047i 0.185223 + 0.974728i
\(96\) 0 0
\(97\) −6.59923 3.36248i −0.670050 0.341408i 0.0856499 0.996325i \(-0.472703\pi\)
−0.755700 + 0.654918i \(0.772703\pi\)
\(98\) 0 0
\(99\) −7.07780 −0.711346
\(100\) 0 0
\(101\) −4.06971 −0.404951 −0.202476 0.979287i \(-0.564899\pi\)
−0.202476 + 0.979287i \(0.564899\pi\)
\(102\) 0 0
\(103\) 6.15037 + 3.13377i 0.606014 + 0.308780i 0.729939 0.683512i \(-0.239548\pi\)
−0.123925 + 0.992292i \(0.539548\pi\)
\(104\) 0 0
\(105\) 1.81029 + 1.70239i 0.176666 + 0.166136i
\(106\) 0 0
\(107\) 7.29262 + 7.29262i 0.705004 + 0.705004i 0.965480 0.260476i \(-0.0838795\pi\)
−0.260476 + 0.965480i \(0.583879\pi\)
\(108\) 0 0
\(109\) −2.62365 3.61114i −0.251300 0.345885i 0.664666 0.747141i \(-0.268574\pi\)
−0.915966 + 0.401256i \(0.868574\pi\)
\(110\) 0 0
\(111\) 1.07657 1.48177i 0.102183 0.140644i
\(112\) 0 0
\(113\) −7.03067 1.11355i −0.661390 0.104754i −0.183289 0.983059i \(-0.558675\pi\)
−0.478101 + 0.878305i \(0.658675\pi\)
\(114\) 0 0
\(115\) 7.22906 5.59922i 0.674113 0.522130i
\(116\) 0 0
\(117\) 5.26068 + 10.3247i 0.486350 + 0.954515i
\(118\) 0 0
\(119\) −5.97856 + 18.4001i −0.548053 + 1.68673i
\(120\) 0 0
\(121\) 1.62445 + 4.99953i 0.147677 + 0.454503i
\(122\) 0 0
\(123\) −0.926595 + 0.146758i −0.0835483 + 0.0132327i
\(124\) 0 0
\(125\) 0.725769 11.1568i 0.0649147 0.997891i
\(126\) 0 0
\(127\) 1.18966 + 7.51122i 0.105565 + 0.666513i 0.982551 + 0.185996i \(0.0595510\pi\)
−0.876985 + 0.480517i \(0.840449\pi\)
\(128\) 0 0
\(129\) 0.0688066 0.0223566i 0.00605809 0.00196839i
\(130\) 0 0
\(131\) 0.536039 + 0.174170i 0.0468340 + 0.0152173i 0.332340 0.943160i \(-0.392162\pi\)
−0.285506 + 0.958377i \(0.592162\pi\)
\(132\) 0 0
\(133\) −19.8375 + 10.1077i −1.72013 + 0.876451i
\(134\) 0 0
\(135\) −1.75973 2.27196i −0.151454 0.195539i
\(136\) 0 0
\(137\) −1.04483 + 6.59680i −0.0892658 + 0.563602i 0.902001 + 0.431733i \(0.142098\pi\)
−0.991267 + 0.131869i \(0.957902\pi\)
\(138\) 0 0
\(139\) 5.29234 + 3.84511i 0.448891 + 0.326138i 0.789158 0.614191i \(-0.210517\pi\)
−0.340267 + 0.940329i \(0.610517\pi\)
\(140\) 0 0
\(141\) −1.43567 + 1.04308i −0.120905 + 0.0878429i
\(142\) 0 0
\(143\) −6.64866 + 6.64866i −0.555989 + 0.555989i
\(144\) 0 0
\(145\) 10.9539 11.6481i 0.909668 0.967322i
\(146\) 0 0
\(147\) −1.91134 + 3.75121i −0.157644 + 0.309394i
\(148\) 0 0
\(149\) 9.21679i 0.755069i −0.925996 0.377534i \(-0.876772\pi\)
0.925996 0.377534i \(-0.123228\pi\)
\(150\) 0 0
\(151\) 20.2132i 1.64493i −0.568817 0.822464i \(-0.692599\pi\)
0.568817 0.822464i \(-0.307401\pi\)
\(152\) 0 0
\(153\) 5.03894 9.88948i 0.407374 0.799517i
\(154\) 0 0
\(155\) −11.3065 + 2.14852i −0.908161 + 0.172573i
\(156\) 0 0
\(157\) 1.68750 1.68750i 0.134677 0.134677i −0.636555 0.771232i \(-0.719641\pi\)
0.771232 + 0.636555i \(0.219641\pi\)
\(158\) 0 0
\(159\) 0.563628 0.409500i 0.0446986 0.0324754i
\(160\) 0 0
\(161\) 17.0313 + 12.3739i 1.34225 + 0.975202i
\(162\) 0 0
\(163\) 0.858800 5.42225i 0.0672664 0.424703i −0.930957 0.365128i \(-0.881025\pi\)
0.998224 0.0595754i \(-0.0189747\pi\)
\(164\) 0 0
\(165\) 0.650901 0.956312i 0.0506726 0.0744488i
\(166\) 0 0
\(167\) 5.47332 2.78880i 0.423538 0.215803i −0.229212 0.973376i \(-0.573615\pi\)
0.652750 + 0.757573i \(0.273615\pi\)
\(168\) 0 0
\(169\) 2.27663 + 0.739721i 0.175125 + 0.0569016i
\(170\) 0 0
\(171\) 12.1476 3.94700i 0.928952 0.301835i
\(172\) 0 0
\(173\) −0.725555 4.58098i −0.0551630 0.348285i −0.999797 0.0201588i \(-0.993583\pi\)
0.944634 0.328126i \(-0.106417\pi\)
\(174\) 0 0
\(175\) 25.1283 5.57942i 1.89952 0.421764i
\(176\) 0 0
\(177\) −2.17967 + 0.345226i −0.163834 + 0.0259487i
\(178\) 0 0
\(179\) −1.85134 5.69784i −0.138376 0.425877i 0.857724 0.514110i \(-0.171878\pi\)
−0.996100 + 0.0882335i \(0.971878\pi\)
\(180\) 0 0
\(181\) 0.667794 2.05526i 0.0496367 0.152766i −0.923166 0.384402i \(-0.874408\pi\)
0.972803 + 0.231636i \(0.0744077\pi\)
\(182\) 0 0
\(183\) −0.699706 1.37325i −0.0517237 0.101514i
\(184\) 0 0
\(185\) −6.41380 17.8548i −0.471552 1.31271i
\(186\) 0 0
\(187\) 8.89543 + 1.40890i 0.650498 + 0.103029i
\(188\) 0 0
\(189\) 3.88890 5.35261i 0.282876 0.389345i
\(190\) 0 0
\(191\) 13.4186 + 18.4691i 0.970935 + 1.33638i 0.941573 + 0.336809i \(0.109348\pi\)
0.0293620 + 0.999569i \(0.490652\pi\)
\(192\) 0 0
\(193\) 3.68505 + 3.68505i 0.265256 + 0.265256i 0.827185 0.561930i \(-0.189941\pi\)
−0.561930 + 0.827185i \(0.689941\pi\)
\(194\) 0 0
\(195\) −1.87880 0.238702i −0.134544 0.0170938i
\(196\) 0 0
\(197\) 15.5814 + 7.93911i 1.11013 + 0.565638i 0.910199 0.414172i \(-0.135929\pi\)
0.199929 + 0.979810i \(0.435929\pi\)
\(198\) 0 0
\(199\) −16.8827 −1.19678 −0.598392 0.801203i \(-0.704194\pi\)
−0.598392 + 0.801203i \(0.704194\pi\)
\(200\) 0 0
\(201\) −0.824131 −0.0581297
\(202\) 0 0
\(203\) 32.8001 + 16.7125i 2.30212 + 1.17299i
\(204\) 0 0
\(205\) −4.14375 + 8.78973i −0.289412 + 0.613901i
\(206\) 0 0
\(207\) −8.53990 8.53990i −0.593564 0.593564i
\(208\) 0 0
\(209\) 6.09198 + 8.38488i 0.421391 + 0.579995i
\(210\) 0 0
\(211\) −14.6938 + 20.2242i −1.01156 + 1.39229i −0.0936060 + 0.995609i \(0.529839\pi\)
−0.917955 + 0.396685i \(0.870161\pi\)
\(212\) 0 0
\(213\) −2.38569 0.377856i −0.163465 0.0258903i
\(214\) 0 0
\(215\) 0.209584 0.719488i 0.0142935 0.0490687i
\(216\) 0 0
\(217\) −12.0292 23.6086i −0.816595 1.60266i
\(218\) 0 0
\(219\) −0.0751335 + 0.231237i −0.00507705 + 0.0156256i
\(220\) 0 0
\(221\) −4.55644 14.0233i −0.306499 0.943308i
\(222\) 0 0
\(223\) −5.43272 + 0.860458i −0.363802 + 0.0576205i −0.335659 0.941983i \(-0.608959\pi\)
−0.0281422 + 0.999604i \(0.508959\pi\)
\(224\) 0 0
\(225\) −14.7392 + 0.906313i −0.982610 + 0.0604209i
\(226\) 0 0
\(227\) 2.06996 + 13.0692i 0.137388 + 0.867433i 0.956060 + 0.293171i \(0.0947107\pi\)
−0.818672 + 0.574261i \(0.805289\pi\)
\(228\) 0 0
\(229\) −15.9951 + 5.19713i −1.05699 + 0.343436i −0.785407 0.618980i \(-0.787546\pi\)
−0.271580 + 0.962416i \(0.587546\pi\)
\(230\) 0 0
\(231\) 2.53295 + 0.823004i 0.166656 + 0.0541497i
\(232\) 0 0
\(233\) 16.7045 8.51136i 1.09435 0.557598i 0.188874 0.982001i \(-0.439516\pi\)
0.905473 + 0.424404i \(0.139516\pi\)
\(234\) 0 0
\(235\) 0.564343 + 18.3729i 0.0368137 + 1.19852i
\(236\) 0 0
\(237\) 0.386365 2.43941i 0.0250971 0.158457i
\(238\) 0 0
\(239\) 16.9738 + 12.3322i 1.09795 + 0.797705i 0.980724 0.195400i \(-0.0626006\pi\)
0.117223 + 0.993106i \(0.462601\pi\)
\(240\) 0 0
\(241\) 4.09871 2.97788i 0.264021 0.191822i −0.447897 0.894085i \(-0.647827\pi\)
0.711918 + 0.702263i \(0.247827\pi\)
\(242\) 0 0
\(243\) −4.03641 + 4.03641i −0.258936 + 0.258936i
\(244\) 0 0
\(245\) 20.9816 + 38.2297i 1.34047 + 2.44240i
\(246\) 0 0
\(247\) 7.70340 15.1188i 0.490156 0.961985i
\(248\) 0 0
\(249\) 3.17098i 0.200953i
\(250\) 0 0
\(251\) 14.5567i 0.918814i 0.888226 + 0.459407i \(0.151938\pi\)
−0.888226 + 0.459407i \(0.848062\pi\)
\(252\) 0 0
\(253\) 4.44906 8.73178i 0.279710 0.548962i
\(254\) 0 0
\(255\) 0.872810 + 1.59031i 0.0546575 + 0.0995888i
\(256\) 0 0
\(257\) 5.24996 5.24996i 0.327483 0.327483i −0.524145 0.851629i \(-0.675615\pi\)
0.851629 + 0.524145i \(0.175615\pi\)
\(258\) 0 0
\(259\) 35.3366 25.6735i 2.19571 1.59528i
\(260\) 0 0
\(261\) −17.0856 12.4134i −1.05757 0.768372i
\(262\) 0 0
\(263\) 2.81939 17.8009i 0.173851 1.09765i −0.734244 0.678886i \(-0.762463\pi\)
0.908095 0.418765i \(-0.137537\pi\)
\(264\) 0 0
\(265\) −0.221555 7.21299i −0.0136100 0.443090i
\(266\) 0 0
\(267\) −0.0487953 + 0.0248624i −0.00298622 + 0.00152156i
\(268\) 0 0
\(269\) 20.7469 + 6.74109i 1.26496 + 0.411012i 0.863261 0.504758i \(-0.168418\pi\)
0.401703 + 0.915770i \(0.368418\pi\)
\(270\) 0 0
\(271\) −5.35164 + 1.73885i −0.325089 + 0.105628i −0.467015 0.884249i \(-0.654671\pi\)
0.141926 + 0.989877i \(0.454671\pi\)
\(272\) 0 0
\(273\) −0.682101 4.30662i −0.0412826 0.260648i
\(274\) 0 0
\(275\) −4.39523 11.1473i −0.265042 0.672206i
\(276\) 0 0
\(277\) −11.5798 + 1.83407i −0.695765 + 0.110198i −0.494292 0.869296i \(-0.664573\pi\)
−0.201473 + 0.979494i \(0.564573\pi\)
\(278\) 0 0
\(279\) 4.69733 + 14.4569i 0.281222 + 0.865511i
\(280\) 0 0
\(281\) 3.31191 10.1930i 0.197572 0.608064i −0.802365 0.596834i \(-0.796425\pi\)
0.999937 0.0112302i \(-0.00357477\pi\)
\(282\) 0 0
\(283\) −4.28246 8.40481i −0.254566 0.499614i 0.727988 0.685590i \(-0.240455\pi\)
−0.982554 + 0.185975i \(0.940455\pi\)
\(284\) 0 0
\(285\) −0.583845 + 2.00430i −0.0345840 + 0.118724i
\(286\) 0 0
\(287\) −22.0970 3.49982i −1.30435 0.206588i
\(288\) 0 0
\(289\) 1.69079 2.32717i 0.0994583 0.136893i
\(290\) 0 0
\(291\) −0.939791 1.29351i −0.0550915 0.0758269i
\(292\) 0 0
\(293\) 22.1179 + 22.1179i 1.29214 + 1.29214i 0.933461 + 0.358680i \(0.116773\pi\)
0.358680 + 0.933461i \(0.383227\pi\)
\(294\) 0 0
\(295\) −9.74752 + 20.6765i −0.567523 + 1.20383i
\(296\) 0 0
\(297\) −2.74424 1.39826i −0.159237 0.0811353i
\(298\) 0 0
\(299\) −16.0442 −0.927861
\(300\) 0 0
\(301\) 1.72531 0.0994453
\(302\) 0 0
\(303\) −0.782788 0.398850i −0.0449700 0.0229134i
\(304\) 0 0
\(305\) −15.8371 2.01211i −0.906832 0.115213i
\(306\) 0 0
\(307\) −12.3567 12.3567i −0.705237 0.705237i 0.260293 0.965530i \(-0.416181\pi\)
−0.965530 + 0.260293i \(0.916181\pi\)
\(308\) 0 0
\(309\) 0.875869 + 1.20553i 0.0498265 + 0.0685802i
\(310\) 0 0
\(311\) 15.1927 20.9110i 0.861500 1.18575i −0.119710 0.992809i \(-0.538196\pi\)
0.981210 0.192944i \(-0.0618036\pi\)
\(312\) 0 0
\(313\) 19.2520 + 3.04921i 1.08819 + 0.172352i 0.674651 0.738136i \(-0.264294\pi\)
0.413535 + 0.910488i \(0.364294\pi\)
\(314\) 0 0
\(315\) −11.4936 31.9960i −0.647593 1.80277i
\(316\) 0 0
\(317\) −5.86511 11.5109i −0.329417 0.646518i 0.665590 0.746317i \(-0.268180\pi\)
−0.995008 + 0.0997997i \(0.968180\pi\)
\(318\) 0 0
\(319\) 5.29553 16.2980i 0.296493 0.912511i
\(320\) 0 0
\(321\) 0.687988 + 2.11741i 0.0383998 + 0.118182i
\(322\) 0 0
\(323\) −16.0529 + 2.54253i −0.893207 + 0.141470i
\(324\) 0 0
\(325\) −12.9941 + 14.6968i −0.720784 + 0.815235i
\(326\) 0 0
\(327\) −0.150737 0.951715i −0.00833577 0.0526300i
\(328\) 0 0
\(329\) −40.2483 + 13.0775i −2.21896 + 0.720983i
\(330\) 0 0
\(331\) −1.66611 0.541352i −0.0915778 0.0297554i 0.262870 0.964831i \(-0.415331\pi\)
−0.354448 + 0.935076i \(0.615331\pi\)
\(332\) 0 0
\(333\) −22.3268 + 11.3761i −1.22350 + 0.623405i
\(334\) 0 0
\(335\) −4.80325 + 7.05699i −0.262430 + 0.385565i
\(336\) 0 0
\(337\) −3.39221 + 21.4175i −0.184785 + 1.16669i 0.704625 + 0.709579i \(0.251115\pi\)
−0.889411 + 0.457109i \(0.848885\pi\)
\(338\) 0 0
\(339\) −1.24318 0.903224i −0.0675204 0.0490564i
\(340\) 0 0
\(341\) −9.97885 + 7.25006i −0.540385 + 0.392613i
\(342\) 0 0
\(343\) −45.5119 + 45.5119i −2.45741 + 2.45741i
\(344\) 0 0
\(345\) 1.93922 0.368501i 0.104404 0.0198394i
\(346\) 0 0
\(347\) 2.76263 5.42196i 0.148306 0.291066i −0.804888 0.593427i \(-0.797775\pi\)
0.953194 + 0.302361i \(0.0977747\pi\)
\(348\) 0 0
\(349\) 24.3951i 1.30584i −0.757427 0.652920i \(-0.773544\pi\)
0.757427 0.652920i \(-0.226456\pi\)
\(350\) 0 0
\(351\) 5.04240i 0.269144i
\(352\) 0 0
\(353\) 3.10348 6.09091i 0.165181 0.324187i −0.793548 0.608508i \(-0.791768\pi\)
0.958729 + 0.284321i \(0.0917683\pi\)
\(354\) 0 0
\(355\) −17.1400 + 18.2263i −0.909695 + 0.967350i
\(356\) 0 0
\(357\) −2.95324 + 2.95324i −0.156302 + 0.156302i
\(358\) 0 0
\(359\) 24.2946 17.6510i 1.28222 0.931586i 0.282601 0.959238i \(-0.408803\pi\)
0.999618 + 0.0276516i \(0.00880290\pi\)
\(360\) 0 0
\(361\) 0.239760 + 0.174196i 0.0126189 + 0.00916818i
\(362\) 0 0
\(363\) −0.177523 + 1.12084i −0.00931755 + 0.0588287i
\(364\) 0 0
\(365\) 1.54217 + 1.99107i 0.0807210 + 0.104218i
\(366\) 0 0
\(367\) 8.52930 4.34589i 0.445226 0.226854i −0.216980 0.976176i \(-0.569621\pi\)
0.662205 + 0.749322i \(0.269621\pi\)
\(368\) 0 0
\(369\) 12.2067 + 3.96620i 0.635456 + 0.206472i
\(370\) 0 0
\(371\) 15.8010 5.13406i 0.820347 0.266547i
\(372\) 0 0
\(373\) 3.95804 + 24.9901i 0.204939 + 1.29394i 0.848767 + 0.528766i \(0.177345\pi\)
−0.643828 + 0.765170i \(0.722655\pi\)
\(374\) 0 0
\(375\) 1.23301 2.07482i 0.0636725 0.107143i
\(376\) 0 0
\(377\) −27.7105 + 4.38890i −1.42716 + 0.226040i
\(378\) 0 0
\(379\) −4.30479 13.2488i −0.221122 0.680545i −0.998662 0.0517108i \(-0.983533\pi\)
0.777540 0.628834i \(-0.216467\pi\)
\(380\) 0 0
\(381\) −0.507309 + 1.56134i −0.0259902 + 0.0799897i
\(382\) 0 0
\(383\) 0.125402 + 0.246115i 0.00640774 + 0.0125759i 0.894188 0.447691i \(-0.147754\pi\)
−0.887780 + 0.460267i \(0.847754\pi\)
\(384\) 0 0
\(385\) 21.8100 16.8928i 1.11154 0.860937i
\(386\) 0 0
\(387\) −0.977611 0.154838i −0.0496948 0.00787088i
\(388\) 0 0
\(389\) 12.0700 16.6130i 0.611975 0.842311i −0.384763 0.923015i \(-0.625717\pi\)
0.996738 + 0.0807040i \(0.0257168\pi\)
\(390\) 0 0
\(391\) 9.03306 + 12.4329i 0.456821 + 0.628761i
\(392\) 0 0
\(393\) 0.0860350 + 0.0860350i 0.00433989 + 0.00433989i
\(394\) 0 0
\(395\) −18.6367 17.5260i −0.937716 0.881826i
\(396\) 0 0
\(397\) 24.5705 + 12.5193i 1.23316 + 0.628326i 0.944313 0.329050i \(-0.106728\pi\)
0.288846 + 0.957376i \(0.406728\pi\)
\(398\) 0 0
\(399\) −4.80625 −0.240614
\(400\) 0 0
\(401\) 18.9289 0.945262 0.472631 0.881260i \(-0.343304\pi\)
0.472631 + 0.881260i \(0.343304\pi\)
\(402\) 0 0
\(403\) 17.9929 + 9.16782i 0.896288 + 0.456681i
\(404\) 0 0
\(405\) 3.58278 + 18.8542i 0.178030 + 0.936875i
\(406\) 0 0
\(407\) −14.3776 14.3776i −0.712669 0.712669i
\(408\) 0 0
\(409\) −13.9772 19.2380i −0.691130 0.951259i −1.00000 0.000154984i \(-0.999951\pi\)
0.308870 0.951104i \(-0.400049\pi\)
\(410\) 0 0
\(411\) −0.847485 + 1.16646i −0.0418033 + 0.0575373i
\(412\) 0 0
\(413\) −51.9797 8.23278i −2.55775 0.405109i
\(414\) 0 0
\(415\) −27.1529 18.4813i −1.33289 0.907211i
\(416\) 0 0
\(417\) 0.641117 + 1.25826i 0.0313956 + 0.0616174i
\(418\) 0 0
\(419\) −5.42361 + 16.6922i −0.264961 + 0.815466i 0.726742 + 0.686911i \(0.241034\pi\)
−0.991702 + 0.128555i \(0.958966\pi\)
\(420\) 0 0
\(421\) 4.42860 + 13.6298i 0.215837 + 0.664277i 0.999093 + 0.0425782i \(0.0135572\pi\)
−0.783256 + 0.621699i \(0.786443\pi\)
\(422\) 0 0
\(423\) 23.9795 3.79797i 1.16592 0.184664i
\(424\) 0 0
\(425\) 18.7047 + 1.79490i 0.907310 + 0.0870652i
\(426\) 0 0
\(427\) −5.74969 36.3021i −0.278247 1.75678i
\(428\) 0 0
\(429\) −1.93044 + 0.627237i −0.0932023 + 0.0302833i
\(430\) 0 0
\(431\) 2.94359 + 0.956432i 0.141788 + 0.0460697i 0.379051 0.925376i \(-0.376250\pi\)
−0.237263 + 0.971445i \(0.576250\pi\)
\(432\) 0 0
\(433\) 7.55599 3.84997i 0.363118 0.185018i −0.262907 0.964821i \(-0.584681\pi\)
0.626024 + 0.779804i \(0.284681\pi\)
\(434\) 0 0
\(435\) 3.24849 1.16692i 0.155753 0.0559498i
\(436\) 0 0
\(437\) −2.76657 + 17.4674i −0.132343 + 0.835580i
\(438\) 0 0
\(439\) −2.62691 1.90856i −0.125376 0.0910908i 0.523330 0.852130i \(-0.324689\pi\)
−0.648706 + 0.761039i \(0.724689\pi\)
\(440\) 0 0
\(441\) 46.5983 33.8556i 2.21897 1.61217i
\(442\) 0 0
\(443\) −20.4205 + 20.4205i −0.970209 + 0.970209i −0.999569 0.0293598i \(-0.990653\pi\)
0.0293598 + 0.999569i \(0.490653\pi\)
\(444\) 0 0
\(445\) −0.0714958 + 0.562736i −0.00338923 + 0.0266763i
\(446\) 0 0
\(447\) 0.903288 1.77280i 0.0427241 0.0838507i
\(448\) 0 0
\(449\) 2.88201i 0.136010i 0.997685 + 0.0680051i \(0.0216634\pi\)
−0.997685 + 0.0680051i \(0.978337\pi\)
\(450\) 0 0
\(451\) 10.4147i 0.490409i
\(452\) 0 0
\(453\) 1.98099 3.88791i 0.0930750 0.182670i
\(454\) 0 0
\(455\) −40.8528 19.2593i −1.91521 0.902889i
\(456\) 0 0
\(457\) −8.08023 + 8.08023i −0.377977 + 0.377977i −0.870372 0.492395i \(-0.836122\pi\)
0.492395 + 0.870372i \(0.336122\pi\)
\(458\) 0 0
\(459\) 3.90745 2.83893i 0.182384 0.132510i
\(460\) 0 0
\(461\) 7.08182 + 5.14524i 0.329833 + 0.239638i 0.740360 0.672211i \(-0.234655\pi\)
−0.410527 + 0.911849i \(0.634655\pi\)
\(462\) 0 0
\(463\) −1.06603 + 6.73066i −0.0495427 + 0.312800i 0.950455 + 0.310861i \(0.100617\pi\)
−0.999998 + 0.00193947i \(0.999383\pi\)
\(464\) 0 0
\(465\) −2.38532 0.694834i −0.110616 0.0322221i
\(466\) 0 0
\(467\) −8.40932 + 4.28476i −0.389137 + 0.198275i −0.637602 0.770366i \(-0.720074\pi\)
0.248466 + 0.968641i \(0.420074\pi\)
\(468\) 0 0
\(469\) −18.6916 6.07326i −0.863097 0.280437i
\(470\) 0 0
\(471\) 0.489965 0.159199i 0.0225764 0.00733551i
\(472\) 0 0
\(473\) −0.125641 0.793269i −0.00577700 0.0364745i
\(474\) 0 0
\(475\) 13.7599 + 16.6810i 0.631348 + 0.765377i
\(476\) 0 0
\(477\) −9.41406 + 1.49104i −0.431040 + 0.0682700i
\(478\) 0 0
\(479\) −9.45801 29.1088i −0.432147 1.33001i −0.895982 0.444091i \(-0.853527\pi\)
0.463834 0.885922i \(-0.346473\pi\)
\(480\) 0 0
\(481\) −10.2868 + 31.6594i −0.469036 + 1.44354i
\(482\) 0 0
\(483\) 2.06317 + 4.04921i 0.0938776 + 0.184245i
\(484\) 0 0
\(485\) −16.5536 + 0.508462i −0.751661 + 0.0230881i
\(486\) 0 0
\(487\) 37.7223 + 5.97462i 1.70936 + 0.270736i 0.933084 0.359657i \(-0.117106\pi\)
0.776276 + 0.630393i \(0.217106\pi\)
\(488\) 0 0
\(489\) 0.696591 0.958776i 0.0315009 0.0433573i
\(490\) 0 0
\(491\) 5.99777 + 8.25522i 0.270676 + 0.372553i 0.922618 0.385716i \(-0.126045\pi\)
−0.651942 + 0.758269i \(0.726045\pi\)
\(492\) 0 0
\(493\) 19.0023 + 19.0023i 0.855821 + 0.855821i
\(494\) 0 0
\(495\) −13.8742 + 7.61461i −0.623600 + 0.342251i
\(496\) 0 0
\(497\) −51.3237 26.1507i −2.30218 1.17302i
\(498\) 0 0
\(499\) 4.20384 0.188190 0.0940950 0.995563i \(-0.470004\pi\)
0.0940950 + 0.995563i \(0.470004\pi\)
\(500\) 0 0
\(501\) 1.32608 0.0592449
\(502\) 0 0
\(503\) 23.8597 + 12.1571i 1.06385 + 0.542059i 0.896137 0.443777i \(-0.146362\pi\)
0.167713 + 0.985836i \(0.446362\pi\)
\(504\) 0 0
\(505\) −7.97763 + 4.37837i −0.355000 + 0.194835i
\(506\) 0 0
\(507\) 0.365402 + 0.365402i 0.0162281 + 0.0162281i
\(508\) 0 0
\(509\) −10.7482 14.7937i −0.476407 0.655717i 0.501403 0.865214i \(-0.332817\pi\)
−0.977809 + 0.209497i \(0.932817\pi\)
\(510\) 0 0
\(511\) −3.40811 + 4.69086i −0.150766 + 0.207511i
\(512\) 0 0
\(513\) 5.48969 + 0.869482i 0.242376 + 0.0383886i
\(514\) 0 0
\(515\) 15.4277 0.473878i 0.679825 0.0208816i
\(516\) 0 0
\(517\) 8.94377 + 17.5531i 0.393346 + 0.771986i
\(518\) 0 0
\(519\) 0.309400 0.952236i 0.0135812 0.0417985i
\(520\) 0 0
\(521\) −8.01741 24.6751i −0.351249 1.08103i −0.958153 0.286258i \(-0.907589\pi\)
0.606903 0.794776i \(-0.292411\pi\)
\(522\) 0 0
\(523\) −23.5597 + 3.73149i −1.03019 + 0.163167i −0.648573 0.761152i \(-0.724634\pi\)
−0.381621 + 0.924319i \(0.624634\pi\)
\(524\) 0 0
\(525\) 5.38012 + 1.38952i 0.234807 + 0.0606436i
\(526\) 0 0
\(527\) −3.02586 19.1045i −0.131809 0.832207i
\(528\) 0 0
\(529\) −5.97063 + 1.93997i −0.259592 + 0.0843467i
\(530\) 0 0
\(531\) 28.7143 + 9.32986i 1.24610 + 0.404881i
\(532\) 0 0
\(533\) 15.1923 7.74087i 0.658052 0.335294i
\(534\) 0 0
\(535\) 22.1410 + 6.44961i 0.957241 + 0.278841i
\(536\) 0 0
\(537\) 0.202319 1.27739i 0.00873071 0.0551235i
\(538\) 0 0
\(539\) 37.8115 + 27.4717i 1.62866 + 1.18329i
\(540\) 0 0
\(541\) −13.7447 + 9.98610i −0.590930 + 0.429336i −0.842648 0.538465i \(-0.819005\pi\)
0.251718 + 0.967801i \(0.419005\pi\)
\(542\) 0 0
\(543\) 0.329872 0.329872i 0.0141562 0.0141562i
\(544\) 0 0
\(545\) −9.02802 4.25609i −0.386718 0.182311i
\(546\) 0 0
\(547\) 12.9848 25.4840i 0.555188 1.08962i −0.427442 0.904043i \(-0.640585\pi\)
0.982630 0.185576i \(-0.0594150\pi\)
\(548\) 0 0
\(549\) 21.0858i 0.899921i
\(550\) 0 0
\(551\) 30.9253i 1.31746i
\(552\) 0 0
\(553\) 26.7396 52.4795i 1.13709 2.23166i
\(554\) 0 0
\(555\) 0.516187 4.06286i 0.0219109 0.172459i
\(556\) 0 0
\(557\) 8.01664 8.01664i 0.339676 0.339676i −0.516569 0.856245i \(-0.672791\pi\)
0.856245 + 0.516569i \(0.172791\pi\)
\(558\) 0 0
\(559\) −1.06379 + 0.772886i −0.0449934 + 0.0326896i
\(560\) 0 0
\(561\) 1.57291 + 1.14279i 0.0664084 + 0.0482485i
\(562\) 0 0
\(563\) 1.31424 8.29781i 0.0553888 0.349711i −0.944393 0.328819i \(-0.893349\pi\)
0.999782 0.0208919i \(-0.00665058\pi\)
\(564\) 0 0
\(565\) −14.9798 + 5.38107i −0.630207 + 0.226383i
\(566\) 0 0
\(567\) −39.3687 + 20.0594i −1.65333 + 0.842414i
\(568\) 0 0
\(569\) 8.02073 + 2.60609i 0.336247 + 0.109253i 0.472274 0.881452i \(-0.343433\pi\)
−0.136027 + 0.990705i \(0.543433\pi\)
\(570\) 0 0
\(571\) 0.524445 0.170402i 0.0219473 0.00713112i −0.298023 0.954559i \(-0.596327\pi\)
0.319970 + 0.947428i \(0.396327\pi\)
\(572\) 0 0
\(573\) 0.770940 + 4.86752i 0.0322065 + 0.203344i
\(574\) 0 0
\(575\) 8.14684 18.7532i 0.339747 0.782062i
\(576\) 0 0
\(577\) 35.0943 5.55839i 1.46100 0.231399i 0.625211 0.780456i \(-0.285013\pi\)
0.835785 + 0.549057i \(0.185013\pi\)
\(578\) 0 0
\(579\) 0.347649 + 1.06995i 0.0144478 + 0.0444657i
\(580\) 0 0
\(581\) 23.3679 71.9189i 0.969463 2.98370i
\(582\) 0 0
\(583\) −3.51122 6.89116i −0.145420 0.285403i
\(584\) 0 0
\(585\) 21.4199 + 14.5792i 0.885605 + 0.602776i
\(586\) 0 0
\(587\) −30.1313 4.77233i −1.24365 0.196975i −0.500287 0.865860i \(-0.666772\pi\)
−0.743366 + 0.668884i \(0.766772\pi\)
\(588\) 0 0
\(589\) 13.0836 18.0081i 0.539101 0.742009i
\(590\) 0 0
\(591\) 2.21893 + 3.05410i 0.0912746 + 0.125629i
\(592\) 0 0
\(593\) 22.0262 + 22.0262i 0.904507 + 0.904507i 0.995822 0.0913149i \(-0.0291070\pi\)
−0.0913149 + 0.995822i \(0.529107\pi\)
\(594\) 0 0
\(595\) 8.07619 + 42.5007i 0.331092 + 1.74236i
\(596\) 0 0
\(597\) −3.24731 1.65459i −0.132903 0.0677177i
\(598\) 0 0
\(599\) 30.5977 1.25019 0.625095 0.780549i \(-0.285060\pi\)
0.625095 + 0.780549i \(0.285060\pi\)
\(600\) 0 0
\(601\) −19.1127 −0.779625 −0.389812 0.920894i \(-0.627460\pi\)
−0.389812 + 0.920894i \(0.627460\pi\)
\(602\) 0 0
\(603\) 10.0461 + 5.11876i 0.409110 + 0.208452i
\(604\) 0 0
\(605\) 8.56302 + 8.05265i 0.348136 + 0.327387i
\(606\) 0 0
\(607\) 33.4013 + 33.4013i 1.35572 + 1.35572i 0.879122 + 0.476596i \(0.158130\pi\)
0.476596 + 0.879122i \(0.341870\pi\)
\(608\) 0 0
\(609\) 4.67103 + 6.42913i 0.189280 + 0.260521i
\(610\) 0 0
\(611\) 18.9578 26.0932i 0.766952 1.05562i
\(612\) 0 0
\(613\) 27.6964 + 4.38668i 1.11865 + 0.177176i 0.688257 0.725467i \(-0.258376\pi\)
0.430390 + 0.902643i \(0.358376\pi\)
\(614\) 0 0
\(615\) −1.65846 + 1.28455i −0.0668757 + 0.0517982i
\(616\) 0 0
\(617\) 9.07774 + 17.8161i 0.365456 + 0.717248i 0.998376 0.0569694i \(-0.0181438\pi\)
−0.632920 + 0.774217i \(0.718144\pi\)
\(618\) 0 0
\(619\) 3.35008 10.3105i 0.134651 0.414413i −0.860885 0.508800i \(-0.830089\pi\)
0.995536 + 0.0943873i \(0.0300892\pi\)
\(620\) 0 0
\(621\) −1.62403 4.99824i −0.0651699 0.200572i
\(622\) 0 0
\(623\) −1.28991 + 0.204302i −0.0516793 + 0.00818519i
\(624\) 0 0
\(625\) −10.5802 22.6508i −0.423210 0.906032i
\(626\) 0 0
\(627\) 0.350003 + 2.20983i 0.0139778 + 0.0882522i
\(628\) 0 0
\(629\) 30.3250 9.85318i 1.20914 0.392872i
\(630\) 0 0
\(631\) 9.50644 + 3.08883i 0.378445 + 0.122964i 0.492062 0.870560i \(-0.336243\pi\)
−0.113616 + 0.993525i \(0.536243\pi\)
\(632\) 0 0
\(633\) −4.80834 + 2.44997i −0.191114 + 0.0973777i
\(634\) 0 0
\(635\) 10.4129 + 13.4439i 0.413224 + 0.533507i
\(636\) 0 0
\(637\) 11.9700 75.5758i 0.474270 2.99442i
\(638\) 0 0
\(639\) 26.7346 + 19.4238i 1.05760 + 0.768394i
\(640\) 0 0
\(641\) −34.9762 + 25.4117i −1.38148 + 1.00370i −0.384738 + 0.923026i \(0.625708\pi\)
−0.996740 + 0.0806767i \(0.974292\pi\)
\(642\) 0 0
\(643\) −23.5961 + 23.5961i −0.930540 + 0.930540i −0.997740 0.0672000i \(-0.978593\pi\)
0.0672000 + 0.997740i \(0.478593\pi\)
\(644\) 0 0
\(645\) 0.110826 0.117850i 0.00436376 0.00464033i
\(646\) 0 0
\(647\) −4.12167 + 8.08924i −0.162040 + 0.318021i −0.957723 0.287692i \(-0.907112\pi\)
0.795683 + 0.605713i \(0.207112\pi\)
\(648\) 0 0
\(649\) 24.4989i 0.961667i
\(650\) 0 0
\(651\) 5.71992i 0.224181i
\(652\) 0 0
\(653\) −14.6745 + 28.8003i −0.574257 + 1.12704i 0.403043 + 0.915181i \(0.367953\pi\)
−0.977300 + 0.211862i \(0.932047\pi\)
\(654\) 0 0
\(655\) 1.23815 0.235279i 0.0483784 0.00919311i
\(656\) 0 0
\(657\) 2.35211 2.35211i 0.0917647 0.0917647i
\(658\) 0 0
\(659\) 2.43517 1.76925i 0.0948607 0.0689204i −0.539344 0.842086i \(-0.681328\pi\)
0.634205 + 0.773165i \(0.281328\pi\)
\(660\) 0 0
\(661\) −19.3982 14.0936i −0.754501 0.548177i 0.142718 0.989763i \(-0.454416\pi\)
−0.897219 + 0.441587i \(0.854416\pi\)
\(662\) 0 0
\(663\) 0.497938 3.14386i 0.0193383 0.122097i
\(664\) 0 0
\(665\) −28.0121 + 41.1557i −1.08626 + 1.59595i
\(666\) 0 0
\(667\) 26.0542 13.2753i 1.00882 0.514020i
\(668\) 0 0
\(669\) −1.12928 0.366927i −0.0436607 0.0141862i
\(670\) 0 0
\(671\) −16.2724 + 5.28722i −0.628189 + 0.204111i
\(672\) 0 0
\(673\) 0.877205 + 5.53846i 0.0338138 + 0.213492i 0.998810 0.0487723i \(-0.0155309\pi\)
−0.964996 + 0.262264i \(0.915531\pi\)
\(674\) 0 0
\(675\) −5.89378 2.56040i −0.226852 0.0985500i
\(676\) 0 0
\(677\) 4.56981 0.723787i 0.175632 0.0278174i −0.0679989 0.997685i \(-0.521661\pi\)
0.243631 + 0.969868i \(0.421661\pi\)
\(678\) 0 0
\(679\) −11.7825 36.2629i −0.452172 1.39164i
\(680\) 0 0
\(681\) −0.882696 + 2.71666i −0.0338250 + 0.104103i
\(682\) 0 0
\(683\) −17.4960 34.3379i −0.669468 1.31390i −0.936653 0.350259i \(-0.886094\pi\)
0.267185 0.963645i \(-0.413906\pi\)
\(684\) 0 0
\(685\) 5.04900 + 14.0554i 0.192912 + 0.537030i
\(686\) 0 0
\(687\) −3.58592 0.567954i −0.136811 0.0216688i
\(688\) 0 0
\(689\) −7.44263 + 10.2439i −0.283542 + 0.390261i
\(690\) 0 0
\(691\) −8.23171 11.3300i −0.313149 0.431013i 0.623211 0.782054i \(-0.285828\pi\)
−0.936360 + 0.351041i \(0.885828\pi\)
\(692\) 0 0
\(693\) −25.7648 25.7648i −0.978724 0.978724i
\(694\) 0 0
\(695\) 14.5110 + 1.84363i 0.550435 + 0.0699329i
\(696\) 0 0
\(697\) −14.5520 7.41459i −0.551195 0.280848i
\(698\) 0 0
\(699\) 4.04718 0.153078
\(700\) 0 0
\(701\) 2.47009 0.0932940 0.0466470 0.998911i \(-0.485146\pi\)
0.0466470 + 0.998911i \(0.485146\pi\)
\(702\) 0 0
\(703\) 32.6940 + 16.6584i 1.23308 + 0.628284i
\(704\) 0 0
\(705\) −1.69208 + 3.58924i −0.0637274 + 0.135179i
\(706\) 0 0
\(707\) −14.8147 14.8147i −0.557163 0.557163i
\(708\) 0 0
\(709\) −26.4354 36.3852i −0.992802 1.36647i −0.929639 0.368472i \(-0.879881\pi\)
−0.0631631 0.998003i \(-0.520119\pi\)
\(710\) 0 0
\(711\) −19.8612 + 27.3366i −0.744854 + 1.02520i
\(712\) 0 0
\(713\) −20.7880 3.29249i −0.778515 0.123305i
\(714\) 0 0
\(715\) −5.88009 + 20.1859i −0.219903 + 0.754911i
\(716\) 0 0
\(717\) 2.05622 + 4.03556i 0.0767909 + 0.150711i
\(718\) 0 0
\(719\) −10.6362 + 32.7347i −0.396661 + 1.22080i 0.530999 + 0.847373i \(0.321817\pi\)
−0.927660 + 0.373426i \(0.878183\pi\)
\(720\) 0 0
\(721\) 10.9811 + 33.7964i 0.408958 + 1.25864i
\(722\) 0 0
\(723\) 1.08021 0.171089i 0.0401735 0.00636286i
\(724\) 0 0
\(725\) 8.94071 34.6178i 0.332050 1.28567i
\(726\) 0 0
\(727\) −1.77969 11.2365i −0.0660049 0.416738i −0.998461 0.0554556i \(-0.982339\pi\)
0.932456 0.361283i \(-0.117661\pi\)
\(728\) 0 0
\(729\) 23.3161 7.57586i 0.863559 0.280587i
\(730\) 0 0
\(731\) 1.19785 + 0.389204i 0.0443039 + 0.0143952i
\(732\) 0 0
\(733\) 4.24037 2.16058i 0.156622 0.0798027i −0.373923 0.927460i \(-0.621988\pi\)
0.530544 + 0.847657i \(0.321988\pi\)
\(734\) 0 0
\(735\) 0.289025 + 9.40959i 0.0106609 + 0.347078i
\(736\) 0 0
\(737\) −1.43122 + 9.03634i −0.0527195 + 0.332858i
\(738\) 0 0
\(739\) −17.0602 12.3950i −0.627570 0.455957i 0.227987 0.973664i \(-0.426786\pi\)
−0.855558 + 0.517707i \(0.826786\pi\)
\(740\) 0 0
\(741\) 2.96342 2.15305i 0.108864 0.0790943i
\(742\) 0 0
\(743\) 25.1785 25.1785i 0.923710 0.923710i −0.0735796 0.997289i \(-0.523442\pi\)
0.997289 + 0.0735796i \(0.0234423\pi\)
\(744\) 0 0
\(745\) −9.91582 18.0672i −0.363288 0.661930i
\(746\) 0 0
\(747\) −19.6953 + 38.6542i −0.720613 + 1.41428i
\(748\) 0 0
\(749\) 53.0936i 1.94000i
\(750\) 0 0
\(751\) 23.6461i 0.862858i −0.902147 0.431429i \(-0.858010\pi\)
0.902147 0.431429i \(-0.141990\pi\)
\(752\) 0 0
\(753\) −1.42663 + 2.79992i −0.0519893 + 0.102035i
\(754\) 0 0
\(755\) −21.7462 39.6228i −0.791427 1.44202i
\(756\) 0 0
\(757\) −23.1204 + 23.1204i −0.840323 + 0.840323i −0.988901 0.148577i \(-0.952531\pi\)
0.148577 + 0.988901i \(0.452531\pi\)
\(758\) 0 0
\(759\) 1.71151 1.24349i 0.0621239 0.0451356i
\(760\) 0 0
\(761\) 34.1126 + 24.7842i 1.23658 + 0.898428i 0.997366 0.0725391i \(-0.0231102\pi\)
0.239214 + 0.970967i \(0.423110\pi\)
\(762\) 0 0
\(763\) 3.59470 22.6961i 0.130137 0.821653i
\(764\) 0 0
\(765\) −0.761971 24.8069i −0.0275491 0.896896i
\(766\) 0 0
\(767\) 35.7375 18.2092i 1.29041 0.657495i
\(768\) 0 0
\(769\) −10.6684 3.46638i −0.384713 0.125001i 0.110274 0.993901i \(-0.464827\pi\)
−0.494987 + 0.868900i \(0.664827\pi\)
\(770\) 0 0
\(771\) 1.52432 0.495283i 0.0548972 0.0178372i
\(772\) 0 0
\(773\) −8.18899 51.7033i −0.294538 1.85964i −0.480384 0.877059i \(-0.659503\pi\)
0.185846 0.982579i \(-0.440497\pi\)
\(774\) 0 0
\(775\) −19.8521 + 16.3757i −0.713107 + 0.588231i
\(776\) 0 0
\(777\) 9.31294 1.47503i 0.334100 0.0529162i
\(778\) 0 0
\(779\) −5.80785 17.8747i −0.208088 0.640429i
\(780\) 0 0
\(781\) −8.28614 + 25.5021i −0.296502 + 0.912538i
\(782\) 0 0
\(783\) −4.17218 8.18836i −0.149101 0.292628i
\(784\) 0 0
\(785\) 1.49243 5.12340i 0.0532670 0.182862i
\(786\) 0 0
\(787\) 16.3452 + 2.58883i 0.582644 + 0.0922818i 0.440797 0.897607i \(-0.354696\pi\)
0.141847 + 0.989889i \(0.454696\pi\)
\(788\) 0 0
\(789\) 2.28687 3.14760i 0.0814146 0.112058i
\(790\) 0 0
\(791\) −21.5397 29.6468i −0.765863 1.05412i
\(792\) 0 0
\(793\) 19.8074 + 19.8074i 0.703380 + 0.703380i
\(794\) 0 0
\(795\) 0.664291 1.40909i 0.0235600 0.0499754i
\(796\) 0 0
\(797\) 48.7783 + 24.8538i 1.72782 + 0.880366i 0.975022 + 0.222109i \(0.0712941\pi\)
0.752793 + 0.658257i \(0.228706\pi\)
\(798\) 0 0
\(799\) −30.8936 −1.09294
\(800\) 0 0
\(801\) 0.749237 0.0264730
\(802\) 0 0
\(803\) 2.40496 + 1.22539i 0.0848693 + 0.0432431i
\(804\) 0 0
\(805\) 46.6978 + 5.93297i 1.64588 + 0.209110i
\(806\) 0 0
\(807\) 3.32991 + 3.32991i 0.117218 + 0.117218i
\(808\) 0 0
\(809\) −10.5113 14.4675i −0.369556 0.508650i 0.583224 0.812311i \(-0.301791\pi\)
−0.952780 + 0.303661i \(0.901791\pi\)
\(810\) 0 0
\(811\) −10.7812 + 14.8390i −0.378579 + 0.521069i −0.955207 0.295938i \(-0.904368\pi\)
0.576629 + 0.817006i \(0.304368\pi\)
\(812\) 0 0
\(813\) −1.19978 0.190026i −0.0420780 0.00666451i
\(814\) 0 0
\(815\) −4.15003 11.5529i −0.145369 0.404679i
\(816\) 0 0
\(817\) 0.658012 + 1.29142i 0.0230209 + 0.0451811i
\(818\) 0 0
\(819\) −18.4340 + 56.7342i −0.644138 + 1.98245i
\(820\) 0 0
\(821\) 2.49993 + 7.69400i 0.0872483 + 0.268523i 0.985156 0.171661i \(-0.0549134\pi\)
−0.897908 + 0.440184i \(0.854913\pi\)
\(822\) 0 0
\(823\) −39.0685 + 6.18784i −1.36184 + 0.215695i −0.794238 0.607607i \(-0.792130\pi\)
−0.567604 + 0.823302i \(0.692130\pi\)
\(824\) 0 0
\(825\) 0.247084 2.57487i 0.00860237 0.0896456i
\(826\) 0 0
\(827\) 5.64845 + 35.6629i 0.196416 + 1.24012i 0.867008 + 0.498294i \(0.166040\pi\)
−0.670592 + 0.741826i \(0.733960\pi\)
\(828\) 0 0
\(829\) 13.9893 4.54542i 0.485870 0.157869i −0.0558305 0.998440i \(-0.517781\pi\)
0.541701 + 0.840571i \(0.317781\pi\)
\(830\) 0 0
\(831\) −2.40707 0.782104i −0.0835003 0.0271309i
\(832\) 0 0
\(833\) −65.3043 + 33.2742i −2.26266 + 1.15288i
\(834\) 0 0
\(835\) 7.72874 11.3552i 0.267464 0.392961i
\(836\) 0 0
\(837\) −1.03477 + 6.53328i −0.0357669 + 0.225823i
\(838\) 0 0
\(839\) −42.8035 31.0986i −1.47774 1.07364i −0.978275 0.207309i \(-0.933529\pi\)
−0.499467 0.866333i \(-0.666471\pi\)
\(840\) 0 0
\(841\) 17.9060 13.0095i 0.617449 0.448603i
\(842\) 0 0
\(843\) 1.63599 1.63599i 0.0563465 0.0563465i
\(844\) 0 0
\(845\) 5.25857 0.999260i 0.180900 0.0343756i
\(846\) 0 0
\(847\) −12.2861 + 24.1128i −0.422154 + 0.828525i
\(848\) 0 0
\(849\) 2.03632i 0.0698865i
\(850\) 0 0
\(851\) 34.6952i 1.18934i
\(852\) 0 0
\(853\) 3.15524 6.19251i 0.108033 0.212028i −0.830660 0.556779i \(-0.812037\pi\)
0.938694 + 0.344752i \(0.112037\pi\)
\(854\) 0 0
\(855\) 19.5660 20.8060i 0.669142 0.711552i
\(856\) 0 0
\(857\) −27.0210 + 27.0210i −0.923020 + 0.923020i −0.997242 0.0742219i \(-0.976353\pi\)
0.0742219 + 0.997242i \(0.476353\pi\)
\(858\) 0 0
\(859\) −18.5730 + 13.4941i −0.633703 + 0.460413i −0.857681 0.514182i \(-0.828096\pi\)
0.223978 + 0.974594i \(0.428096\pi\)
\(860\) 0 0
\(861\) −3.90725 2.83878i −0.133159 0.0967455i
\(862\) 0 0
\(863\) 2.01921 12.7488i 0.0687345 0.433973i −0.929191 0.369599i \(-0.879495\pi\)
0.997926 0.0643737i \(-0.0205050\pi\)
\(864\) 0 0
\(865\) −6.35068 8.19925i −0.215930 0.278783i
\(866\) 0 0
\(867\) 0.553289 0.281915i 0.0187907 0.00957433i
\(868\) 0 0
\(869\) −26.0764 8.47274i −0.884582 0.287418i
\(870\) 0 0
\(871\) 14.2454 4.62862i 0.482688 0.156835i
\(872\) 0 0
\(873\) 3.42190 + 21.6050i 0.115814 + 0.731219i
\(874\) 0 0
\(875\) 43.2551 37.9712i 1.46229 1.28366i
\(876\) 0 0
\(877\) −24.8095 + 3.92943i −0.837756 + 0.132688i −0.560547 0.828122i \(-0.689409\pi\)
−0.277208 + 0.960810i \(0.589409\pi\)
\(878\) 0 0
\(879\) 2.08661 + 6.42192i 0.0703795 + 0.216606i
\(880\) 0 0
\(881\) −0.733423 + 2.25725i −0.0247097 + 0.0760485i −0.962651 0.270746i \(-0.912730\pi\)
0.937941 + 0.346794i \(0.112730\pi\)
\(882\) 0 0
\(883\) 14.8124 + 29.0710i 0.498478 + 0.978318i 0.993964 + 0.109703i \(0.0349899\pi\)
−0.495486 + 0.868616i \(0.665010\pi\)
\(884\) 0 0
\(885\) −3.90128 + 3.02171i −0.131140 + 0.101574i
\(886\) 0 0
\(887\) −43.0953 6.82562i −1.44700 0.229182i −0.617006 0.786958i \(-0.711655\pi\)
−0.829991 + 0.557776i \(0.811655\pi\)
\(888\) 0 0
\(889\) −23.0119 + 31.6732i −0.771795 + 1.06228i
\(890\) 0 0
\(891\) 12.0899 + 16.6403i 0.405026 + 0.557471i
\(892\) 0 0
\(893\) −25.1389 25.1389i −0.841240 0.841240i
\(894\) 0 0
\(895\) −9.75907 9.17742i −0.326210 0.306767i
\(896\) 0 0
\(897\) −3.08602 1.57241i −0.103039 0.0525012i
\(898\) 0 0
\(899\) −36.8042 −1.22749
\(900\) 0 0
\(901\) 12.1285 0.404057
\(902\) 0 0
\(903\) 0.331855 + 0.169089i 0.0110434 + 0.00562691i
\(904\) 0 0
\(905\) −0.902096 4.74725i −0.0299867 0.157804i
\(906\) 0 0
\(907\) 24.8335 + 24.8335i 0.824583 + 0.824583i 0.986761 0.162178i \(-0.0518520\pi\)
−0.162178 + 0.986761i \(0.551852\pi\)
\(908\) 0 0
\(909\) 7.06487 + 9.72396i 0.234327 + 0.322523i
\(910\) 0 0
\(911\) 12.3458 16.9926i 0.409035 0.562989i −0.553947 0.832552i \(-0.686879\pi\)
0.962983 + 0.269563i \(0.0868791\pi\)
\(912\) 0 0
\(913\) −34.7688 5.50684i −1.15068 0.182250i
\(914\) 0 0
\(915\) −2.84900 1.93913i −0.0941849 0.0641057i
\(916\) 0 0
\(917\) 1.31729 + 2.58532i 0.0435007 + 0.0853748i
\(918\) 0 0
\(919\) −6.73458 + 20.7269i −0.222153 + 0.683718i 0.776415 + 0.630222i \(0.217036\pi\)
−0.998568 + 0.0534956i \(0.982964\pi\)
\(920\) 0 0
\(921\) −1.16574 3.58778i −0.0384124 0.118221i
\(922\) 0 0
\(923\) 43.3597 6.86750i 1.42720 0.226047i
\(924\) 0 0
\(925\) −31.7815 28.0995i −1.04497 0.923904i
\(926\) 0 0
\(927\) −3.18915 20.1355i −0.104745 0.661337i
\(928\) 0 0
\(929\) 31.8479 10.3480i 1.04489 0.339507i 0.264232 0.964459i \(-0.414882\pi\)
0.780663 + 0.624952i \(0.214882\pi\)
\(930\) 0 0
\(931\) −80.2158 26.0637i −2.62897 0.854203i
\(932\) 0 0
\(933\) 4.97162 2.53316i 0.162763 0.0829321i
\(934\) 0 0
\(935\) 18.9530 6.80830i 0.619828 0.222655i
\(936\) 0 0
\(937\) −4.94578 + 31.2265i −0.161572 + 1.02012i 0.765007 + 0.644022i \(0.222736\pi\)
−0.926578 + 0.376102i \(0.877264\pi\)
\(938\) 0 0
\(939\) 3.40418 + 2.47329i 0.111091 + 0.0807126i
\(940\) 0 0
\(941\) −23.2656 + 16.9034i −0.758437 + 0.551037i −0.898431 0.439116i \(-0.855292\pi\)
0.139994 + 0.990152i \(0.455292\pi\)
\(942\) 0 0
\(943\) −12.5661 + 12.5661i −0.409209 + 0.409209i
\(944\) 0 0
\(945\) 1.86463 14.6763i 0.0606563 0.477420i
\(946\) 0 0
\(947\) 10.1653 19.9506i 0.330328 0.648306i −0.664786 0.747034i \(-0.731477\pi\)
0.995114 + 0.0987277i \(0.0314773\pi\)
\(948\) 0 0
\(949\) 4.41900i 0.143447i
\(950\) 0 0
\(951\) 2.78887i 0.0904355i
\(952\) 0 0
\(953\) −4.65277 + 9.13158i −0.150718 + 0.295801i −0.954005 0.299792i \(-0.903083\pi\)
0.803287 + 0.595593i \(0.203083\pi\)
\(954\) 0 0
\(955\) 46.1736 + 21.7677i 1.49414 + 0.704385i
\(956\) 0 0
\(957\) 2.61585 2.61585i 0.0845583 0.0845583i
\(958\) 0 0
\(959\) −27.8173 + 20.2104i −0.898266 + 0.652628i
\(960\) 0 0
\(961\) −3.64813 2.65053i −0.117682 0.0855008i
\(962\) 0 0
\(963\) 4.76489 30.0844i 0.153547 0.969455i
\(964\) 0 0
\(965\) 11.1881 + 3.25906i 0.360159 + 0.104913i
\(966\) 0 0
\(967\) −10.3311 + 5.26397i −0.332226 + 0.169278i −0.612144 0.790746i \(-0.709693\pi\)
0.279918 + 0.960024i \(0.409693\pi\)
\(968\) 0 0
\(969\) −3.33687 1.08422i −0.107196 0.0348300i
\(970\) 0 0
\(971\) −42.5120 + 13.8130i −1.36427 + 0.443279i −0.897468 0.441080i \(-0.854595\pi\)
−0.466806 + 0.884360i \(0.654595\pi\)
\(972\) 0 0
\(973\) 5.26825 + 33.2624i 0.168892 + 1.06634i
\(974\) 0 0
\(975\) −3.93971 + 1.55338i −0.126172 + 0.0497480i
\(976\) 0 0
\(977\) 55.6044 8.80687i 1.77894 0.281757i 0.821464 0.570261i \(-0.193158\pi\)
0.957479 + 0.288504i \(0.0931579\pi\)
\(978\) 0 0
\(979\) 0.187869 + 0.578202i 0.00600433 + 0.0184794i
\(980\) 0 0
\(981\) −4.07372 + 12.5376i −0.130064 + 0.400296i
\(982\) 0 0
\(983\) −22.1249 43.4225i −0.705674 1.38496i −0.913517 0.406801i \(-0.866644\pi\)
0.207843 0.978162i \(-0.433356\pi\)
\(984\) 0 0
\(985\) 39.0846 1.20052i 1.24534 0.0382519i
\(986\) 0 0
\(987\) −9.02320 1.42913i −0.287212 0.0454899i
\(988\) 0 0
\(989\) 0.805542 1.10873i 0.0256148 0.0352557i
\(990\) 0 0
\(991\) −36.6522 50.4474i −1.16429 1.60251i −0.693931 0.720041i \(-0.744123\pi\)
−0.470363 0.882473i \(-0.655877\pi\)
\(992\) 0 0
\(993\) −0.267413 0.267413i −0.00848610 0.00848610i
\(994\) 0 0
\(995\) −33.0943 + 18.1632i −1.04916 + 0.575811i
\(996\) 0 0
\(997\) −28.8502 14.6999i −0.913696 0.465551i −0.0670752 0.997748i \(-0.521367\pi\)
−0.846621 + 0.532197i \(0.821367\pi\)
\(998\) 0 0
\(999\) −10.9041 −0.344989
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.d.63.6 yes 80
4.3 odd 2 inner 400.2.bi.d.63.5 80
25.2 odd 20 inner 400.2.bi.d.127.5 yes 80
100.27 even 20 inner 400.2.bi.d.127.6 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.d.63.5 80 4.3 odd 2 inner
400.2.bi.d.63.6 yes 80 1.1 even 1 trivial
400.2.bi.d.127.5 yes 80 25.2 odd 20 inner
400.2.bi.d.127.6 yes 80 100.27 even 20 inner