Properties

Label 400.2.bi.a.287.1
Level $400$
Weight $2$
Character 400.287
Analytic conductor $3.194$
Analytic rank $0$
Dimension $8$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(47,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 0, 17])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 287.1
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 400.287
Dual form 400.2.bi.a.223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.56909 - 1.59310i) q^{5} +(1.76336 + 2.42705i) q^{9} +(0.552226 - 3.48662i) q^{13} +(2.87515 - 1.46496i) q^{17} +(-0.0759100 - 4.99942i) q^{25} +(2.51249 - 0.816356i) q^{29} +(11.3973 + 1.80516i) q^{37} +(-9.69421 + 7.04325i) q^{41} +(6.63339 + 0.999068i) q^{45} +7.00000i q^{49} +(-8.83869 - 4.50354i) q^{53} +(-4.69421 - 3.41054i) q^{61} +(-4.68802 - 6.35056i) q^{65} +(-16.7710 + 2.65626i) q^{73} +(-2.78115 + 8.55951i) q^{81} +(2.17754 - 6.87904i) q^{85} +(-11.0634 + 15.2274i) q^{89} +(-2.30885 + 4.53138i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5} + 10 q^{13} + 10 q^{17} - 6 q^{25} + 50 q^{37} - 16 q^{41} - 6 q^{45} - 30 q^{53} + 24 q^{61} - 50 q^{65} - 10 q^{73} + 18 q^{81} - 60 q^{85} - 50 q^{89} - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(4\) 0 0
\(5\) 1.56909 1.59310i 0.701719 0.712454i
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 0 0
\(9\) 1.76336 + 2.42705i 0.587785 + 0.809017i
\(10\) 0 0
\(11\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(12\) 0 0
\(13\) 0.552226 3.48662i 0.153160 0.967013i −0.784669 0.619915i \(-0.787167\pi\)
0.937829 0.347098i \(-0.112833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.87515 1.46496i 0.697325 0.355305i −0.0691254 0.997608i \(-0.522021\pi\)
0.766451 + 0.642303i \(0.222021\pi\)
\(18\) 0 0
\(19\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(24\) 0 0
\(25\) −0.0759100 4.99942i −0.0151820 0.999885i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.51249 0.816356i 0.466557 0.151594i −0.0662984 0.997800i \(-0.521119\pi\)
0.532855 + 0.846206i \(0.321119\pi\)
\(30\) 0 0
\(31\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.3973 + 1.80516i 1.87371 + 0.296766i 0.986394 0.164399i \(-0.0525685\pi\)
0.887314 + 0.461165i \(0.152568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.69421 + 7.04325i −1.51398 + 1.09997i −0.549609 + 0.835422i \(0.685223\pi\)
−0.964372 + 0.264550i \(0.914777\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 6.63339 + 0.999068i 0.988847 + 0.148932i
\(46\) 0 0
\(47\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.83869 4.50354i −1.21409 0.618608i −0.274721 0.961524i \(-0.588586\pi\)
−0.939366 + 0.342916i \(0.888586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(60\) 0 0
\(61\) −4.69421 3.41054i −0.601032 0.436675i 0.245213 0.969469i \(-0.421142\pi\)
−0.846245 + 0.532794i \(0.821142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.68802 6.35056i −0.581478 0.787691i
\(66\) 0 0
\(67\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) 0 0
\(73\) −16.7710 + 2.65626i −1.96290 + 0.310892i −0.963891 + 0.266296i \(0.914200\pi\)
−0.999005 + 0.0445966i \(0.985800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(80\) 0 0
\(81\) −2.78115 + 8.55951i −0.309017 + 0.951057i
\(82\) 0 0
\(83\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(84\) 0 0
\(85\) 2.17754 6.87904i 0.236188 0.746137i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.0634 + 15.2274i −1.17271 + 1.61410i −0.529999 + 0.847998i \(0.677808\pi\)
−0.642716 + 0.766105i \(0.722192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.30885 + 4.53138i −0.234429 + 0.460092i −0.978011 0.208552i \(-0.933125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.3737 −1.33074 −0.665368 0.746515i \(-0.731726\pi\)
−0.665368 + 0.746515i \(0.731726\pi\)
\(102\) 0 0
\(103\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) 0 0
\(109\) 12.2702 + 16.8884i 1.17527 + 1.61762i 0.605999 + 0.795465i \(0.292774\pi\)
0.569269 + 0.822152i \(0.307226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.81474 17.7716i 0.264788 1.67181i −0.393716 0.919232i \(-0.628811\pi\)
0.658505 0.752577i \(-0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.43597 4.80786i 0.872355 0.444487i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.39919 + 10.4616i 0.309017 + 0.951057i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.08367 7.72362i −0.723026 0.690821i
\(126\) 0 0
\(127\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.82453 0.447362i −0.241316 0.0382207i 0.0346048 0.999401i \(-0.488983\pi\)
−0.275921 + 0.961180i \(0.588983\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.64178 5.28357i 0.219388 0.438777i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.6949i 1.20385i −0.798552 0.601926i \(-0.794400\pi\)
0.798552 0.601926i \(-0.205600\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 8.62544 + 4.39488i 0.697325 + 0.355305i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0374 + 14.0374i 1.12031 + 1.12031i 0.991695 + 0.128615i \(0.0410530\pi\)
0.128615 + 0.991695i \(0.458947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(168\) 0 0
\(169\) 0.512197 + 0.166423i 0.0393997 + 0.0128018i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −25.9818 + 4.11511i −1.97536 + 0.312866i −0.986986 + 0.160809i \(0.948590\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(180\) 0 0
\(181\) 0.867287 2.66924i 0.0644650 0.198403i −0.913636 0.406533i \(-0.866738\pi\)
0.978101 + 0.208130i \(0.0667377\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.7592 15.3246i 1.52625 1.12668i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(192\) 0 0
\(193\) 16.5250 16.5250i 1.18949 1.18949i 0.212287 0.977207i \(-0.431909\pi\)
0.977207 0.212287i \(-0.0680913\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.9140 21.4200i 0.777592 1.52611i −0.0712470 0.997459i \(-0.522698\pi\)
0.848839 0.528651i \(-0.177302\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.99051 + 26.4953i −0.278709 + 1.85051i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.52002 10.8335i −0.236782 0.728741i
\(222\) 0 0
\(223\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(224\) 0 0
\(225\) 12.0000 9.00000i 0.800000 0.600000i
\(226\) 0 0
\(227\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(228\) 0 0
\(229\) 28.3108 9.19874i 1.87083 0.607870i 0.879604 0.475706i \(-0.157808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.8149 + 27.1133i 0.905047 + 1.77625i 0.524097 + 0.851658i \(0.324403\pi\)
0.380949 + 0.924596i \(0.375597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(240\) 0 0
\(241\) 19.5019 14.1690i 1.25623 0.912704i 0.257663 0.966235i \(-0.417048\pi\)
0.998566 + 0.0535313i \(0.0170477\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.1517 + 10.9836i 0.712454 + 0.701719i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.5327 11.5327i −0.719390 0.719390i 0.249090 0.968480i \(-0.419869\pi\)
−0.968480 + 0.249090i \(0.919869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.41175 + 4.65841i 0.396877 + 0.288348i
\(262\) 0 0
\(263\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(264\) 0 0
\(265\) −21.0433 + 7.01442i −1.29268 + 0.430893i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −25.7314 8.36063i −1.56887 0.509757i −0.609711 0.792624i \(-0.708714\pi\)
−0.959159 + 0.282867i \(0.908714\pi\)
\(270\) 0 0
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.09594 + 13.2333i 0.125933 + 0.795110i 0.967112 + 0.254353i \(0.0818624\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.116802 + 0.359479i −0.00696781 + 0.0214447i −0.954480 0.298275i \(-0.903589\pi\)
0.947512 + 0.319720i \(0.103589\pi\)
\(282\) 0 0
\(283\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.87199 + 5.32934i −0.227764 + 0.313490i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.967335 + 0.967335i −0.0565123 + 0.0565123i −0.734798 0.678286i \(-0.762723\pi\)
0.678286 + 0.734798i \(0.262723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.7990 + 2.12688i −0.732866 + 0.121785i
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(312\) 0 0
\(313\) 5.53079 34.9201i 0.312619 1.97380i 0.116834 0.993152i \(-0.462726\pi\)
0.195785 0.980647i \(-0.437274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.5018 + 16.0510i −1.76932 + 0.901513i −0.830569 + 0.556916i \(0.811985\pi\)
−0.938751 + 0.344597i \(0.888015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −17.4730 2.49614i −0.969227 0.138461i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(332\) 0 0
\(333\) 15.7163 + 30.8450i 0.861249 + 1.69030i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −34.9201 5.53079i −1.90222 0.301282i −0.908929 0.416951i \(-0.863099\pi\)
−0.993288 + 0.115670i \(0.963099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(348\) 0 0
\(349\) 35.0025i 1.87364i −0.349813 0.936819i \(-0.613755\pi\)
0.349813 0.936819i \(-0.386245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.5018 + 16.0510i 1.67667 + 0.854308i 0.992112 + 0.125353i \(0.0400062\pi\)
0.684561 + 0.728955i \(0.259994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(360\) 0 0
\(361\) 15.3713 + 11.1679i 0.809017 + 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −22.0835 + 30.8857i −1.15590 + 1.61663i
\(366\) 0 0
\(367\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(368\) 0 0
\(369\) −34.1887 11.1086i −1.77979 0.578289i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −34.9201 + 5.53079i −1.80809 + 0.286374i −0.967048 0.254593i \(-0.918058\pi\)
−0.841044 + 0.540967i \(0.818058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.45886 9.21089i −0.0751352 0.474385i
\(378\) 0 0
\(379\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.00473 + 6.88842i −0.253750 + 0.349257i −0.916820 0.399300i \(-0.869253\pi\)
0.663070 + 0.748557i \(0.269253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −16.0510 + 31.5018i −0.805576 + 1.58103i 0.00828030 + 0.999966i \(0.497364\pi\)
−0.813856 + 0.581066i \(0.802636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 38.6603 1.93060 0.965301 0.261138i \(-0.0840977\pi\)
0.965301 + 0.261138i \(0.0840977\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 9.27224 + 17.8613i 0.460741 + 0.887535i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 10.9665 + 15.0941i 0.542258 + 0.746354i 0.988936 0.148340i \(-0.0473931\pi\)
−0.446678 + 0.894695i \(0.647393\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(420\) 0 0
\(421\) −12.4491 38.3143i −0.606730 1.86732i −0.484427 0.874832i \(-0.660972\pi\)
−0.122304 0.992493i \(-0.539028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.54221 14.2629i −0.365851 0.691851i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(432\) 0 0
\(433\) 16.7159 + 32.8067i 0.803313 + 1.57659i 0.816968 + 0.576683i \(0.195653\pi\)
−0.0136552 + 0.999907i \(0.504347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(440\) 0 0
\(441\) −16.9894 + 12.3435i −0.809017 + 0.587785i
\(442\) 0 0
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 6.89932 + 41.5182i 0.327059 + 1.96815i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.8376i 1.64409i −0.569422 0.822045i \(-0.692833\pi\)
0.569422 0.822045i \(-0.307167\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.0000 25.0000i −1.16945 1.16945i −0.982339 0.187112i \(-0.940087\pi\)
−0.187112 0.982339i \(-0.559913\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.3608 11.1602i −0.715422 0.519784i 0.169496 0.985531i \(-0.445786\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 0 0
\(463\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.65544 29.3933i −0.213158 1.34583i
\(478\) 0 0
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 12.5878 38.7412i 0.573954 1.76645i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.59612 + 10.7884i 0.163292 + 0.489875i
\(486\) 0 0
\(487\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) 0 0
\(493\) 6.02784 6.02784i 0.271480 0.271480i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(504\) 0 0
\(505\) −20.9846 + 21.3057i −0.933803 + 0.948089i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.4683 24.0431i −0.774270 1.06569i −0.995891 0.0905584i \(-0.971135\pi\)
0.221621 0.975133i \(-0.428865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.8565 + 42.6460i 0.607065 + 1.86835i 0.481919 + 0.876216i \(0.339940\pi\)
0.125146 + 0.992138i \(0.460060\pi\)
\(522\) 0 0
\(523\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 21.8743 7.10739i 0.951057 0.309017i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.2037 + 37.6895i 0.831806 + 1.63251i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 36.9999 26.8820i 1.59075 1.15575i 0.687890 0.725815i \(-0.258537\pi\)
0.902861 0.429934i \(-0.141463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 46.1579 + 6.95192i 1.97719 + 0.297788i
\(546\) 0 0
\(547\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(548\) 0 0
\(549\) 17.4071i 0.742916i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.3518 + 15.3518i 0.650478 + 0.650478i 0.953108 0.302630i \(-0.0978647\pi\)
−0.302630 + 0.953108i \(0.597865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(564\) 0 0
\(565\) −23.8952 32.3694i −1.00528 1.36179i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.35574 0.765425i −0.0987576 0.0320883i 0.259221 0.965818i \(-0.416534\pi\)
−0.357979 + 0.933730i \(0.616534\pi\)
\(570\) 0 0
\(571\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 5.53079 + 34.9201i 0.230250 + 1.45374i 0.783846 + 0.620956i \(0.213255\pi\)
−0.553596 + 0.832785i \(0.686745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 7.14649 22.5764i 0.295471 0.933418i
\(586\) 0 0
\(587\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.3566 30.3566i 1.24660 1.24660i 0.289383 0.957214i \(-0.406550\pi\)
0.957214 0.289383i \(-0.0934500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 24.3434 0.992987 0.496494 0.868040i \(-0.334621\pi\)
0.496494 + 0.868040i \(0.334621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.0000 + 11.0000i 0.894427 + 0.447214i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 6.13427 38.7303i 0.247761 1.56430i −0.479252 0.877677i \(-0.659092\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.0332 5.11219i 0.403923 0.205809i −0.240213 0.970720i \(-0.577217\pi\)
0.644136 + 0.764911i \(0.277217\pi\)
\(618\) 0 0
\(619\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −24.9885 + 0.759012i −0.999539 + 0.0303605i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 35.4135 11.5065i 1.41203 0.458795i
\(630\) 0 0
\(631\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 24.4063 + 3.86558i 0.967013 + 0.153160i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.47214 + 4.70228i −0.255634 + 0.185729i −0.708220 0.705992i \(-0.750502\pi\)
0.452586 + 0.891721i \(0.350502\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 42.3456 + 21.5762i 1.65711 + 0.844341i 0.995528 + 0.0944693i \(0.0301154\pi\)
0.661584 + 0.749871i \(0.269885\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −36.0201 36.0201i −1.40528 1.40528i
\(658\) 0 0
\(659\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(660\) 0 0
\(661\) 9.70820 + 7.05342i 0.377605 + 0.274346i 0.760358 0.649505i \(-0.225024\pi\)
−0.382752 + 0.923851i \(0.625024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −30.5201 + 4.83390i −1.17646 + 0.186333i −0.713896 0.700252i \(-0.753071\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.53079 34.9201i −0.212566 1.34209i −0.831010 0.556258i \(-0.812237\pi\)
0.618444 0.785829i \(-0.287763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(684\) 0 0
\(685\) −5.14463 + 3.79780i −0.196566 + 0.145106i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −20.5831 + 28.3301i −0.784152 + 1.07929i
\(690\) 0 0
\(691\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −17.5542 + 34.4520i −0.664912 + 1.30496i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.55832 −0.247704 −0.123852 0.992301i \(-0.539525\pi\)
−0.123852 + 0.992301i \(0.539525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 24.7625 + 34.0826i 0.929974 + 1.28000i 0.959870 + 0.280447i \(0.0904826\pi\)
−0.0298952 + 0.999553i \(0.509517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.27203 12.4990i −0.158659 0.464202i
\(726\) 0 0
\(727\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(728\) 0 0
\(729\) −25.6785 + 8.34346i −0.951057 + 0.309017i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −16.0510 31.5018i −0.592857 1.16355i −0.971286 0.237917i \(-0.923536\pi\)
0.378429 0.925630i \(-0.376464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) −23.4104 23.0576i −0.857690 0.844766i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 26.9836 + 26.9836i 0.980734 + 0.980734i 0.999818 0.0190839i \(-0.00607496\pi\)
−0.0190839 + 0.999818i \(0.506075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.2768 15.4585i −0.771285 0.560371i 0.131066 0.991374i \(-0.458160\pi\)
−0.902351 + 0.431003i \(0.858160\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 20.5356 6.84519i 0.742465 0.247488i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −22.8254 7.41641i −0.823103 0.267443i −0.132966 0.991121i \(-0.542450\pi\)
−0.690138 + 0.723678i \(0.742450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −49.6509 + 7.86393i −1.78582 + 0.282846i −0.959777 0.280763i \(-0.909412\pi\)
−0.826042 + 0.563609i \(0.809412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.3890 0.336976i 1.58431 0.0120272i
\(786\) 0 0
\(787\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −14.4835 + 14.4835i −0.514325 + 0.514325i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.6168 38.5001i 0.694862 1.36374i −0.226106 0.974103i \(-0.572599\pi\)
0.920967 0.389640i \(-0.127401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −56.4664 −1.99514
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.0845 + 41.4078i 1.05771 + 1.45582i 0.881924 + 0.471392i \(0.156248\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.65248 + 26.6296i 0.301973 + 0.929379i 0.980789 + 0.195070i \(0.0624935\pi\)
−0.678816 + 0.734309i \(0.737507\pi\)
\(822\) 0 0
\(823\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(828\) 0 0
\(829\) 2.21997 0.721311i 0.0771027 0.0250522i −0.270212 0.962801i \(-0.587094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.2547 + 20.1260i 0.355305 + 0.697325i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(840\) 0 0
\(841\) −17.8153 + 12.9436i −0.614322 + 0.446331i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.06881 0.554846i 0.0367682 0.0190873i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −51.0814 26.0273i −1.74899 0.891156i −0.961488 0.274848i \(-0.911372\pi\)
−0.787505 0.616308i \(-0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.0000 + 25.0000i 0.853984 + 0.853984i 0.990621 0.136637i \(-0.0436295\pi\)
−0.136637 + 0.990621i \(0.543630\pi\)
\(858\) 0 0
\(859\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(864\) 0 0
\(865\) −34.2120 + 47.8484i −1.16324 + 1.62690i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −15.0692 + 2.38673i −0.510016 + 0.0807786i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.44654 + 15.4468i 0.0826137 + 0.521602i 0.993941 + 0.109919i \(0.0350591\pi\)
−0.911327 + 0.411683i \(0.864941\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.88854 + 30.4338i −0.333154 + 1.02534i 0.634471 + 0.772947i \(0.281218\pi\)
−0.967624 + 0.252394i \(0.918782\pi\)
\(882\) 0 0
\(883\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −32.0100 −1.06641
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.89150 5.56994i −0.0961166 0.185151i
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) −23.5827 32.4587i −0.782187 1.07659i
\(910\) 0 0
\(911\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.15958 57.1171i 0.268285 1.87800i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.0327 + 4.23457i −0.427588 + 0.138932i −0.514902 0.857249i \(-0.672172\pi\)
0.0873137 + 0.996181i \(0.472172\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 29.6537 + 4.69668i 0.968743 + 0.153434i 0.620703 0.784046i \(-0.286847\pi\)
0.348040 + 0.937480i \(0.386847\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28.4509 + 20.6708i −0.927474 + 0.673849i −0.945373 0.325991i \(-0.894302\pi\)
0.0178992 + 0.999840i \(0.494302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(948\) 0 0
\(949\) 59.9409i 1.94576i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −45.6581 23.2639i −1.47901 0.753593i −0.486263 0.873813i \(-0.661640\pi\)
−0.992747 + 0.120219i \(0.961640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.0795 18.2213i −0.809017 0.587785i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.396691 52.2551i −0.0127699 1.68215i
\(966\) 0 0
\(967\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.07366 + 50.9751i 0.258299 + 1.63084i 0.686483 + 0.727145i \(0.259153\pi\)
−0.428184 + 0.903691i \(0.640847\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −19.3524 + 59.5606i −0.617875 + 1.90162i
\(982\) 0 0
\(983\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(984\) 0 0
\(985\) −16.9990 50.9970i −0.541633 1.62490i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 16.0510 31.5018i 0.508340 0.997673i −0.484108 0.875008i \(-0.660856\pi\)
0.992448 0.122665i \(-0.0391441\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.a.287.1 yes 8
4.3 odd 2 CM 400.2.bi.a.287.1 yes 8
25.23 odd 20 inner 400.2.bi.a.223.1 8
100.23 even 20 inner 400.2.bi.a.223.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.a.223.1 8 25.23 odd 20 inner
400.2.bi.a.223.1 8 100.23 even 20 inner
400.2.bi.a.287.1 yes 8 1.1 even 1 trivial
400.2.bi.a.287.1 yes 8 4.3 odd 2 CM