Properties

Label 40.8.a.d
Level $40$
Weight $8$
Character orbit 40.a
Self dual yes
Analytic conductor $12.495$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [40,8,Mod(1,40)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("40.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 40.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.4954010194\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{601}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 150 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{601}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 38) q^{3} + 125 q^{5} + ( - 7 \beta + 398) q^{7} + ( - 76 \beta + 1661) q^{9} + (118 \beta - 280) q^{11} + (132 \beta + 2238) q^{13} + ( - 125 \beta + 4750) q^{15} + ( - 76 \beta + 14762) q^{17}+ \cdots + (217278 \beta - 22024152) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 76 q^{3} + 250 q^{5} + 796 q^{7} + 3322 q^{9} - 560 q^{11} + 4476 q^{13} + 9500 q^{15} + 29524 q^{17} + 19560 q^{19} + 63904 q^{21} + 129796 q^{23} + 31250 q^{25} + 325432 q^{27} - 211060 q^{29} + 165352 q^{31}+ \cdots - 44048304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
12.7577
−11.7577
0 −11.0306 0 125.000 0 54.7858 0 −2065.33 0
1.2 0 87.0306 0 125.000 0 741.214 0 5387.33 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 40.8.a.d 2
3.b odd 2 1 360.8.a.f 2
4.b odd 2 1 80.8.a.e 2
5.b even 2 1 200.8.a.j 2
5.c odd 4 2 200.8.c.g 4
8.b even 2 1 320.8.a.i 2
8.d odd 2 1 320.8.a.w 2
20.d odd 2 1 400.8.a.bg 2
20.e even 4 2 400.8.c.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.8.a.d 2 1.a even 1 1 trivial
80.8.a.e 2 4.b odd 2 1
200.8.a.j 2 5.b even 2 1
200.8.c.g 4 5.c odd 4 2
320.8.a.i 2 8.b even 2 1
320.8.a.w 2 8.d odd 2 1
360.8.a.f 2 3.b odd 2 1
400.8.a.bg 2 20.d odd 2 1
400.8.c.p 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 76T_{3} - 960 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(40))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 76T - 960 \) Copy content Toggle raw display
$5$ \( (T - 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 796T + 40608 \) Copy content Toggle raw display
$11$ \( T^{2} + 560 T - 33394896 \) Copy content Toggle raw display
$13$ \( T^{2} - 4476 T - 36878652 \) Copy content Toggle raw display
$17$ \( T^{2} - 29524 T + 204031140 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 1337097136 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 2607106848 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 1288412196 \) Copy content Toggle raw display
$31$ \( T^{2} - 165352 T + 818772480 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 89047076604 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 144020798148 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 43299367968 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 5081205376 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 146124685596 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 3116336362992 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 1481676069660 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1993275644768 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 24088912922880 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 20652866457852 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12567463439360 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 10686074681088 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 8019315835684 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 64901904650404 \) Copy content Toggle raw display
show more
show less