Properties

Label 4-40e2-1.1-c7e2-0-2
Degree $4$
Conductor $1600$
Sign $1$
Analytic cond. $156.135$
Root an. cond. $3.53488$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 76·3-s + 250·5-s + 796·7-s + 2.36e3·9-s − 560·11-s + 4.47e3·13-s + 1.90e4·15-s + 2.95e4·17-s + 1.95e4·19-s + 6.04e4·21-s + 1.29e5·23-s + 4.68e4·25-s + 8.62e4·27-s − 2.11e5·29-s + 1.65e5·31-s − 4.25e4·33-s + 1.99e5·35-s − 2.92e5·37-s + 3.40e5·39-s − 8.51e5·41-s − 1.97e5·43-s + 5.90e5·45-s − 3.41e4·47-s − 1.05e6·49-s + 2.24e6·51-s − 8.76e5·53-s − 1.40e5·55-s + ⋯
L(s)  = 1  + 1.62·3-s + 0.894·5-s + 0.877·7-s + 1.08·9-s − 0.126·11-s + 0.565·13-s + 1.45·15-s + 1.45·17-s + 0.654·19-s + 1.42·21-s + 2.22·23-s + 3/5·25-s + 0.843·27-s − 1.60·29-s + 0.996·31-s − 0.206·33-s + 0.784·35-s − 0.948·37-s + 0.918·39-s − 1.92·41-s − 0.379·43-s + 0.965·45-s − 0.0479·47-s − 1.27·49-s + 2.36·51-s − 0.808·53-s − 0.113·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(156.135\)
Root analytic conductor: \(3.53488\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1600,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(6.710347683\)
\(L(\frac12)\) \(\approx\) \(6.710347683\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p^{3} T )^{2} \)
good3$D_{4}$ \( 1 - 76 T + 1138 p T^{2} - 76 p^{7} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 - 796 T + 1687694 T^{2} - 796 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 + 560 T + 5579446 T^{2} + 560 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 - 4476 T + 88618382 T^{2} - 4476 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 - 29524 T + 1024708486 T^{2} - 29524 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 - 19560 T + 450646342 T^{2} - 19560 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 - 129796 T + 9416757742 T^{2} - 129796 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 211060 T + 35788164814 T^{2} + 211060 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 - 165352 T + 55844000702 T^{2} - 165352 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 292100 T + 100816677662 T^{2} + 292100 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 + 20764 p T + 533529345910 T^{2} + 20764 p^{8} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 + 197812 T + 500337854246 T^{2} + 197812 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 34164 T + 1008165035550 T^{2} + 34164 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 876404 T + 2203297594078 T^{2} + 876404 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 + 2088504 T + 1860966606646 T^{2} + 2088504 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 - 1409708 T + 4803809602382 T^{2} - 1409708 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 2882076 T + 14114698855414 T^{2} + 2882076 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 - 9819448 T + 42279153239662 T^{2} - 9819448 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 + 189404 T + 1441930580342 T^{2} + 189404 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 2028496 T + 25840354532958 T^{2} + 2028496 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 1393332 T + 43586027298166 T^{2} + 1393332 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 - 5688820 T + 96481985626742 T^{2} - 5688820 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 + 20045996 T + 226498473606630 T^{2} + 20045996 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76430445870802188522027398100, −14.40387693224766381839028461536, −13.69098230988053021748254504218, −13.56042599780776629641516306583, −12.78265179266623581806616031879, −12.05853421660645943182577611861, −11.15686854043810376489146648946, −10.64709360972463975018199306595, −9.624574814641456023898643307164, −9.458095915650258549112104793374, −8.445827874440600787099190818486, −8.285004557704822512179849431553, −7.39815046861630954670907124922, −6.61713521529450674469764129877, −5.39496936619507760428325771391, −4.92101178388324745186976307624, −3.36714152657010877278064898334, −3.06153547827333475651716533639, −1.83513512494041941225325762419, −1.18830893952473561742088446353, 1.18830893952473561742088446353, 1.83513512494041941225325762419, 3.06153547827333475651716533639, 3.36714152657010877278064898334, 4.92101178388324745186976307624, 5.39496936619507760428325771391, 6.61713521529450674469764129877, 7.39815046861630954670907124922, 8.285004557704822512179849431553, 8.445827874440600787099190818486, 9.458095915650258549112104793374, 9.624574814641456023898643307164, 10.64709360972463975018199306595, 11.15686854043810376489146648946, 12.05853421660645943182577611861, 12.78265179266623581806616031879, 13.56042599780776629641516306583, 13.69098230988053021748254504218, 14.40387693224766381839028461536, 14.76430445870802188522027398100

Graph of the $Z$-function along the critical line