Properties

Label 40.2.c.a
Level $40$
Weight $2$
Character orbit 40.c
Analytic conductor $0.319$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 40.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.319401608085\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{3} + ( -1 - 2 i ) q^{5} -2 i q^{7} - q^{9} +O(q^{10})\) \( q + 2 i q^{3} + ( -1 - 2 i ) q^{5} -2 i q^{7} - q^{9} -4 q^{11} + 4 i q^{13} + ( 4 - 2 i ) q^{15} + 4 q^{19} + 4 q^{21} -2 i q^{23} + ( -3 + 4 i ) q^{25} + 4 i q^{27} -2 q^{29} -8 i q^{33} + ( -4 + 2 i ) q^{35} -4 i q^{37} -8 q^{39} + 2 q^{41} -6 i q^{43} + ( 1 + 2 i ) q^{45} + 6 i q^{47} + 3 q^{49} -4 i q^{53} + ( 4 + 8 i ) q^{55} + 8 i q^{57} + 12 q^{59} -10 q^{61} + 2 i q^{63} + ( 8 - 4 i ) q^{65} -14 i q^{67} + 4 q^{69} + 8 q^{71} + 8 i q^{73} + ( -8 - 6 i ) q^{75} + 8 i q^{77} -16 q^{79} -11 q^{81} + 2 i q^{83} -4 i q^{87} -6 q^{89} + 8 q^{91} + ( -4 - 8 i ) q^{95} -16 i q^{97} + 4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{5} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{5} - 2q^{9} - 8q^{11} + 8q^{15} + 8q^{19} + 8q^{21} - 6q^{25} - 4q^{29} - 8q^{35} - 16q^{39} + 4q^{41} + 2q^{45} + 6q^{49} + 8q^{55} + 24q^{59} - 20q^{61} + 16q^{65} + 8q^{69} + 16q^{71} - 16q^{75} - 32q^{79} - 22q^{81} - 12q^{89} + 16q^{91} - 8q^{95} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
9.1
1.00000i
1.00000i
0 2.00000i 0 −1.00000 + 2.00000i 0 2.00000i 0 −1.00000 0
9.2 0 2.00000i 0 −1.00000 2.00000i 0 2.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 40.2.c.a 2
3.b odd 2 1 360.2.f.c 2
4.b odd 2 1 80.2.c.a 2
5.b even 2 1 inner 40.2.c.a 2
5.c odd 4 1 200.2.a.b 1
5.c odd 4 1 200.2.a.d 1
7.b odd 2 1 1960.2.g.b 2
8.b even 2 1 320.2.c.c 2
8.d odd 2 1 320.2.c.b 2
12.b even 2 1 720.2.f.e 2
15.d odd 2 1 360.2.f.c 2
15.e even 4 1 1800.2.a.j 1
15.e even 4 1 1800.2.a.s 1
16.e even 4 1 1280.2.f.a 2
16.e even 4 1 1280.2.f.f 2
16.f odd 4 1 1280.2.f.b 2
16.f odd 4 1 1280.2.f.e 2
20.d odd 2 1 80.2.c.a 2
20.e even 4 1 400.2.a.b 1
20.e even 4 1 400.2.a.g 1
24.f even 2 1 2880.2.f.i 2
24.h odd 2 1 2880.2.f.h 2
35.c odd 2 1 1960.2.g.b 2
35.f even 4 1 9800.2.a.d 1
35.f even 4 1 9800.2.a.bf 1
40.e odd 2 1 320.2.c.b 2
40.f even 2 1 320.2.c.c 2
40.i odd 4 1 1600.2.a.f 1
40.i odd 4 1 1600.2.a.v 1
40.k even 4 1 1600.2.a.d 1
40.k even 4 1 1600.2.a.u 1
60.h even 2 1 720.2.f.e 2
60.l odd 4 1 3600.2.a.k 1
60.l odd 4 1 3600.2.a.bb 1
80.k odd 4 1 1280.2.f.b 2
80.k odd 4 1 1280.2.f.e 2
80.q even 4 1 1280.2.f.a 2
80.q even 4 1 1280.2.f.f 2
120.i odd 2 1 2880.2.f.h 2
120.m even 2 1 2880.2.f.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.c.a 2 1.a even 1 1 trivial
40.2.c.a 2 5.b even 2 1 inner
80.2.c.a 2 4.b odd 2 1
80.2.c.a 2 20.d odd 2 1
200.2.a.b 1 5.c odd 4 1
200.2.a.d 1 5.c odd 4 1
320.2.c.b 2 8.d odd 2 1
320.2.c.b 2 40.e odd 2 1
320.2.c.c 2 8.b even 2 1
320.2.c.c 2 40.f even 2 1
360.2.f.c 2 3.b odd 2 1
360.2.f.c 2 15.d odd 2 1
400.2.a.b 1 20.e even 4 1
400.2.a.g 1 20.e even 4 1
720.2.f.e 2 12.b even 2 1
720.2.f.e 2 60.h even 2 1
1280.2.f.a 2 16.e even 4 1
1280.2.f.a 2 80.q even 4 1
1280.2.f.b 2 16.f odd 4 1
1280.2.f.b 2 80.k odd 4 1
1280.2.f.e 2 16.f odd 4 1
1280.2.f.e 2 80.k odd 4 1
1280.2.f.f 2 16.e even 4 1
1280.2.f.f 2 80.q even 4 1
1600.2.a.d 1 40.k even 4 1
1600.2.a.f 1 40.i odd 4 1
1600.2.a.u 1 40.k even 4 1
1600.2.a.v 1 40.i odd 4 1
1800.2.a.j 1 15.e even 4 1
1800.2.a.s 1 15.e even 4 1
1960.2.g.b 2 7.b odd 2 1
1960.2.g.b 2 35.c odd 2 1
2880.2.f.h 2 24.h odd 2 1
2880.2.f.h 2 120.i odd 2 1
2880.2.f.i 2 24.f even 2 1
2880.2.f.i 2 120.m even 2 1
3600.2.a.k 1 60.l odd 4 1
3600.2.a.bb 1 60.l odd 4 1
9800.2.a.d 1 35.f even 4 1
9800.2.a.bf 1 35.f even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(40, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 4 + T^{2} \)
$5$ \( 5 + 2 T + T^{2} \)
$7$ \( 4 + T^{2} \)
$11$ \( ( 4 + T )^{2} \)
$13$ \( 16 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( ( -4 + T )^{2} \)
$23$ \( 4 + T^{2} \)
$29$ \( ( 2 + T )^{2} \)
$31$ \( T^{2} \)
$37$ \( 16 + T^{2} \)
$41$ \( ( -2 + T )^{2} \)
$43$ \( 36 + T^{2} \)
$47$ \( 36 + T^{2} \)
$53$ \( 16 + T^{2} \)
$59$ \( ( -12 + T )^{2} \)
$61$ \( ( 10 + T )^{2} \)
$67$ \( 196 + T^{2} \)
$71$ \( ( -8 + T )^{2} \)
$73$ \( 64 + T^{2} \)
$79$ \( ( 16 + T )^{2} \)
$83$ \( 4 + T^{2} \)
$89$ \( ( 6 + T )^{2} \)
$97$ \( 256 + T^{2} \)
show more
show less