Properties

Label 3960.1.cm.d.1429.2
Level $3960$
Weight $1$
Character 3960.1429
Analytic conductor $1.976$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -440
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3960,1,Mod(1429,3960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3960.1429"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3960, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4, 3, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3960.cm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,-3,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.97629745003\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.19918918863360000.2

Embedding invariants

Embedding label 1429.2
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 3960.1429
Dual form 3960.1.cm.d.2749.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.173648 + 0.984808i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +(0.766044 + 0.642788i) q^{6} +(0.173648 - 0.300767i) q^{7} -1.00000 q^{8} +(-0.939693 - 0.342020i) q^{9} +1.00000 q^{10} +(-0.500000 + 0.866025i) q^{11} +(0.939693 - 0.342020i) q^{12} +(-0.173648 - 0.300767i) q^{14} +(-0.939693 + 0.342020i) q^{15} +(-0.500000 + 0.866025i) q^{16} -1.53209 q^{17} +(-0.766044 + 0.642788i) q^{18} -1.87939 q^{19} +(0.500000 - 0.866025i) q^{20} +(0.266044 + 0.223238i) q^{21} +(0.500000 + 0.866025i) q^{22} +(0.173648 - 0.984808i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(0.500000 - 0.866025i) q^{27} -0.347296 q^{28} +(-0.766044 + 1.32683i) q^{29} +(-0.173648 + 0.984808i) q^{30} +(-0.173648 - 0.300767i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.766044 - 0.642788i) q^{33} +(-0.766044 + 1.32683i) q^{34} +0.347296 q^{35} +(0.173648 + 0.984808i) q^{36} +1.87939 q^{37} +(-0.939693 + 1.62760i) q^{38} +(-0.500000 - 0.866025i) q^{40} +(0.326352 - 0.118782i) q^{42} +1.00000 q^{44} +(-0.173648 - 0.984808i) q^{45} +(-0.766044 - 0.642788i) q^{48} +(0.439693 + 0.761570i) q^{49} +(0.500000 + 0.866025i) q^{50} +(0.266044 - 1.50881i) q^{51} -1.53209 q^{53} +(-0.500000 - 0.866025i) q^{54} -1.00000 q^{55} +(-0.173648 + 0.300767i) q^{56} +(0.326352 - 1.85083i) q^{57} +(0.766044 + 1.32683i) q^{58} +(0.766044 + 0.642788i) q^{60} +(-0.173648 + 0.300767i) q^{61} -0.347296 q^{62} +(-0.266044 + 0.223238i) q^{63} +1.00000 q^{64} +(-0.939693 + 0.342020i) q^{66} +(-0.500000 - 0.866025i) q^{67} +(0.766044 + 1.32683i) q^{68} +(0.173648 - 0.300767i) q^{70} -1.87939 q^{71} +(0.939693 + 0.342020i) q^{72} +1.00000 q^{73} +(0.939693 - 1.62760i) q^{74} +(-0.766044 - 0.642788i) q^{75} +(0.939693 + 1.62760i) q^{76} +(0.173648 + 0.300767i) q^{77} -1.00000 q^{80} +(0.766044 + 0.642788i) q^{81} +(0.0603074 - 0.342020i) q^{84} +(-0.766044 - 1.32683i) q^{85} +(-1.17365 - 0.984808i) q^{87} +(0.500000 - 0.866025i) q^{88} +1.53209 q^{89} +(-0.939693 - 0.342020i) q^{90} +(0.326352 - 0.118782i) q^{93} +(-0.939693 - 1.62760i) q^{95} +(-0.939693 + 0.342020i) q^{96} +0.879385 q^{98} +(0.766044 - 0.642788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} + 3 q^{5} - 6 q^{8} + 6 q^{10} - 3 q^{11} - 3 q^{16} + 3 q^{20} - 3 q^{21} + 3 q^{22} - 3 q^{25} + 3 q^{27} + 3 q^{32} - 3 q^{40} + 3 q^{42} + 6 q^{44} - 3 q^{49} + 3 q^{50} - 3 q^{51}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.500000 0.866025i
\(3\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(6\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(7\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(8\) −1.00000 −1.00000
\(9\) −0.939693 0.342020i −0.939693 0.342020i
\(10\) 1.00000 1.00000
\(11\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(12\) 0.939693 0.342020i 0.939693 0.342020i
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) −0.173648 0.300767i −0.173648 0.300767i
\(15\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(18\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(19\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(20\) 0.500000 0.866025i 0.500000 0.866025i
\(21\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(22\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0.173648 0.984808i 0.173648 0.984808i
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 0.500000 0.866025i 0.500000 0.866025i
\(28\) −0.347296 −0.347296
\(29\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(30\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(31\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(32\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(33\) −0.766044 0.642788i −0.766044 0.642788i
\(34\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(35\) 0.347296 0.347296
\(36\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(37\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(38\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(39\) 0 0
\(40\) −0.500000 0.866025i −0.500000 0.866025i
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0.326352 0.118782i 0.326352 0.118782i
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 1.00000 1.00000
\(45\) −0.173648 0.984808i −0.173648 0.984808i
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −0.766044 0.642788i −0.766044 0.642788i
\(49\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(50\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(51\) 0.266044 1.50881i 0.266044 1.50881i
\(52\) 0 0
\(53\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(54\) −0.500000 0.866025i −0.500000 0.866025i
\(55\) −1.00000 −1.00000
\(56\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(57\) 0.326352 1.85083i 0.326352 1.85083i
\(58\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(61\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(62\) −0.347296 −0.347296
\(63\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(67\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(68\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(69\) 0 0
\(70\) 0.173648 0.300767i 0.173648 0.300767i
\(71\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(72\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(73\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) 0.939693 1.62760i 0.939693 1.62760i
\(75\) −0.766044 0.642788i −0.766044 0.642788i
\(76\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(77\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(82\) 0 0
\(83\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0.0603074 0.342020i 0.0603074 0.342020i
\(85\) −0.766044 1.32683i −0.766044 1.32683i
\(86\) 0 0
\(87\) −1.17365 0.984808i −1.17365 0.984808i
\(88\) 0.500000 0.866025i 0.500000 0.866025i
\(89\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(90\) −0.939693 0.342020i −0.939693 0.342020i
\(91\) 0 0
\(92\) 0 0
\(93\) 0.326352 0.118782i 0.326352 0.118782i
\(94\) 0 0
\(95\) −0.939693 1.62760i −0.939693 1.62760i
\(96\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0.879385 0.879385
\(99\) 0.766044 0.642788i 0.766044 0.642788i
\(100\) 1.00000 1.00000
\(101\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(102\) −1.17365 0.984808i −1.17365 0.984808i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0 0
\(105\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(106\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −1.00000 −1.00000
\(109\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(111\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(112\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(113\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(114\) −1.43969 1.20805i −1.43969 1.20805i
\(115\) 0 0
\(116\) 1.53209 1.53209
\(117\) 0 0
\(118\) 0 0
\(119\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(120\) 0.939693 0.342020i 0.939693 0.342020i
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(123\) 0 0
\(124\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(125\) −1.00000 −1.00000
\(126\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(127\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) 0.500000 0.866025i 0.500000 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(132\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(133\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(134\) −1.00000 −1.00000
\(135\) 1.00000 1.00000
\(136\) 1.53209 1.53209
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) −0.173648 0.300767i −0.173648 0.300767i
\(141\) 0 0
\(142\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(143\) 0 0
\(144\) 0.766044 0.642788i 0.766044 0.642788i
\(145\) −1.53209 −1.53209
\(146\) 0.500000 0.866025i 0.500000 0.866025i
\(147\) −0.826352 + 0.300767i −0.826352 + 0.300767i
\(148\) −0.939693 1.62760i −0.939693 1.62760i
\(149\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(150\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 1.87939 1.87939
\(153\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(154\) 0.347296 0.347296
\(155\) 0.173648 0.300767i 0.173648 0.300767i
\(156\) 0 0
\(157\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(158\) 0 0
\(159\) 0.266044 1.50881i 0.266044 1.50881i
\(160\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(161\) 0 0
\(162\) 0.939693 0.342020i 0.939693 0.342020i
\(163\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(164\) 0 0
\(165\) 0.173648 0.984808i 0.173648 0.984808i
\(166\) 0 0
\(167\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(168\) −0.266044 0.223238i −0.266044 0.223238i
\(169\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(170\) −1.53209 −1.53209
\(171\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(175\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(176\) −0.500000 0.866025i −0.500000 0.866025i
\(177\) 0 0
\(178\) 0.766044 1.32683i 0.766044 1.32683i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −0.266044 0.223238i −0.266044 0.223238i
\(184\) 0 0
\(185\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(186\) 0.0603074 0.342020i 0.0603074 0.342020i
\(187\) 0.766044 1.32683i 0.766044 1.32683i
\(188\) 0 0
\(189\) −0.173648 0.300767i −0.173648 0.300767i
\(190\) −1.87939 −1.87939
\(191\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(193\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.439693 0.761570i 0.439693 0.761570i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −0.173648 0.984808i −0.173648 0.984808i
\(199\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(200\) 0.500000 0.866025i 0.500000 0.866025i
\(201\) 0.939693 0.342020i 0.939693 0.342020i
\(202\) −0.500000 0.866025i −0.500000 0.866025i
\(203\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(204\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.939693 1.62760i 0.939693 1.62760i
\(210\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(211\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(212\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(213\) 0.326352 1.85083i 0.326352 1.85083i
\(214\) 0 0
\(215\) 0 0
\(216\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(217\) −0.120615 −0.120615
\(218\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(219\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(220\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(221\) 0 0
\(222\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0.347296 0.347296
\(225\) 0.766044 0.642788i 0.766044 0.642788i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(232\) 0.766044 1.32683i 0.766044 1.32683i
\(233\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(239\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0.173648 0.984808i 0.173648 0.984808i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) −1.00000 −1.00000
\(243\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(244\) 0.347296 0.347296
\(245\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(249\) 0 0
\(250\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(253\) 0 0
\(254\) 0.500000 0.866025i 0.500000 0.866025i
\(255\) 1.43969 0.524005i 1.43969 0.524005i
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0.326352 0.565258i 0.326352 0.565258i
\(260\) 0 0
\(261\) 1.17365 0.984808i 1.17365 0.984808i
\(262\) 1.87939 1.87939
\(263\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(264\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(265\) −0.766044 1.32683i −0.766044 1.32683i
\(266\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(267\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(268\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0.500000 0.866025i 0.500000 0.866025i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0.766044 1.32683i 0.766044 1.32683i
\(273\) 0 0
\(274\) 0 0
\(275\) −0.500000 0.866025i −0.500000 0.866025i
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 1.00000 1.00000
\(279\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(280\) −0.347296 −0.347296
\(281\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(285\) 1.76604 0.642788i 1.76604 0.642788i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.173648 0.984808i −0.173648 0.984808i
\(289\) 1.34730 1.34730
\(290\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(291\) 0 0
\(292\) −0.500000 0.866025i −0.500000 0.866025i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) −0.152704 + 0.866025i −0.152704 + 0.866025i
\(295\) 0 0
\(296\) −1.87939 −1.87939
\(297\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(298\) 1.87939 1.87939
\(299\) 0 0
\(300\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(304\) 0.939693 1.62760i 0.939693 1.62760i
\(305\) −0.347296 −0.347296
\(306\) 1.17365 0.984808i 1.17365 0.984808i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0.173648 0.300767i 0.173648 0.300767i
\(309\) 0 0
\(310\) −0.173648 0.300767i −0.173648 0.300767i
\(311\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 1.53209 1.53209
\(315\) −0.326352 0.118782i −0.326352 0.118782i
\(316\) 0 0
\(317\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(318\) −1.17365 0.984808i −1.17365 0.984808i
\(319\) −0.766044 1.32683i −0.766044 1.32683i
\(320\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(321\) 0 0
\(322\) 0 0
\(323\) 2.87939 2.87939
\(324\) 0.173648 0.984808i 0.173648 0.984808i
\(325\) 0 0
\(326\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(327\) 0.173648 0.984808i 0.173648 0.984808i
\(328\) 0 0
\(329\) 0 0
\(330\) −0.766044 0.642788i −0.766044 0.642788i
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) −1.76604 0.642788i −1.76604 0.642788i
\(334\) 0.347296 0.347296
\(335\) 0.500000 0.866025i 0.500000 0.866025i
\(336\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(337\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(338\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(339\) 0 0
\(340\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(341\) 0.347296 0.347296
\(342\) 1.43969 1.20805i 1.43969 1.20805i
\(343\) 0.652704 0.652704
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(349\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(350\) 0.347296 0.347296
\(351\) 0 0
\(352\) −1.00000 −1.00000
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) −0.939693 1.62760i −0.939693 1.62760i
\(356\) −0.766044 1.32683i −0.766044 1.32683i
\(357\) −0.407604 0.342020i −0.407604 0.342020i
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(361\) 2.53209 2.53209
\(362\) 0 0
\(363\) 0.939693 0.342020i 0.939693 0.342020i
\(364\) 0 0
\(365\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(366\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 1.87939 1.87939
\(371\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(372\) −0.266044 0.223238i −0.266044 0.223238i
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) −0.766044 1.32683i −0.766044 1.32683i
\(375\) 0.173648 0.984808i 0.173648 0.984808i
\(376\) 0 0
\(377\) 0 0
\(378\) −0.347296 −0.347296
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(381\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(382\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(385\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(386\) −1.87939 −1.87939
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.439693 0.761570i −0.439693 0.761570i
\(393\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(394\) 0 0
\(395\) 0 0
\(396\) −0.939693 0.342020i −0.939693 0.342020i
\(397\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(398\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(399\) −0.500000 0.419550i −0.500000 0.419550i
\(400\) −0.500000 0.866025i −0.500000 0.866025i
\(401\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(402\) 0.173648 0.984808i 0.173648 0.984808i
\(403\) 0 0
\(404\) −1.00000 −1.00000
\(405\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(406\) 0.532089 0.532089
\(407\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(408\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(418\) −0.939693 1.62760i −0.939693 1.62760i
\(419\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) 0.326352 0.118782i 0.326352 0.118782i
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) −1.53209 −1.53209
\(423\) 0 0
\(424\) 1.53209 1.53209
\(425\) 0.766044 1.32683i 0.766044 1.32683i
\(426\) −1.43969 1.20805i −1.43969 1.20805i
\(427\) 0.0603074 + 0.104455i 0.0603074 + 0.104455i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) −0.0603074 + 0.104455i −0.0603074 + 0.104455i
\(435\) 0.266044 1.50881i 0.266044 1.50881i
\(436\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(437\) 0 0
\(438\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 1.00000 1.00000
\(441\) −0.152704 0.866025i −0.152704 0.866025i
\(442\) 0 0
\(443\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(444\) 1.76604 0.642788i 1.76604 0.642788i
\(445\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(446\) 0 0
\(447\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(448\) 0.173648 0.300767i 0.173648 0.300767i
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) −0.173648 0.984808i −0.173648 0.984808i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(457\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(458\) 0 0
\(459\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(460\) 0 0
\(461\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(462\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(463\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) −0.766044 1.32683i −0.766044 1.32683i
\(465\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(466\) 0.939693 1.62760i 0.939693 1.62760i
\(467\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(468\) 0 0
\(469\) −0.347296 −0.347296
\(470\) 0 0
\(471\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.939693 1.62760i 0.939693 1.62760i
\(476\) 0.532089 0.532089
\(477\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) −0.766044 0.642788i −0.766044 0.642788i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0.173648 0.300767i 0.173648 0.300767i
\(489\) 0.0603074 0.342020i 0.0603074 0.342020i
\(490\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(491\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(492\) 0 0
\(493\) 1.17365 2.03282i 1.17365 2.03282i
\(494\) 0 0
\(495\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(496\) 0.347296 0.347296
\(497\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(498\) 0 0
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(501\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(502\) 0 0
\(503\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0.266044 0.223238i 0.266044 0.223238i
\(505\) 1.00000 1.00000
\(506\) 0 0
\(507\) −0.766044 0.642788i −0.766044 0.642788i
\(508\) −0.500000 0.866025i −0.500000 0.866025i
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0.266044 1.50881i 0.266044 1.50881i
\(511\) 0.173648 0.300767i 0.173648 0.300767i
\(512\) −1.00000 −1.00000
\(513\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −0.326352 0.565258i −0.326352 0.565258i
\(519\) 0 0
\(520\) 0 0
\(521\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(522\) −0.266044 1.50881i −0.266044 1.50881i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0.939693 1.62760i 0.939693 1.62760i
\(525\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(526\) −0.173648 0.300767i −0.173648 0.300767i
\(527\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(528\) 0.939693 0.342020i 0.939693 0.342020i
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) −1.53209 −1.53209
\(531\) 0 0
\(532\) 0.652704 0.652704
\(533\) 0 0
\(534\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(535\) 0 0
\(536\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(537\) 0 0
\(538\) 0 0
\(539\) −0.879385 −0.879385
\(540\) −0.500000 0.866025i −0.500000 0.866025i
\(541\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.766044 1.32683i −0.766044 1.32683i
\(545\) −0.500000 0.866025i −0.500000 0.866025i
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0.266044 0.223238i 0.266044 0.223238i
\(550\) −1.00000 −1.00000
\(551\) 1.43969 2.49362i 1.43969 2.49362i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(556\) 0.500000 0.866025i 0.500000 0.866025i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(559\) 0 0
\(560\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(561\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.326352 0.118782i 0.326352 0.118782i
\(568\) 1.87939 1.87939
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0.326352 1.85083i 0.326352 1.85083i
\(571\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(572\) 0 0
\(573\) −1.53209 1.28558i −1.53209 1.28558i
\(574\) 0 0
\(575\) 0 0
\(576\) −0.939693 0.342020i −0.939693 0.342020i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.673648 1.16679i 0.673648 1.16679i
\(579\) 1.76604 0.642788i 1.76604 0.642788i
\(580\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(581\) 0 0
\(582\) 0 0
\(583\) 0.766044 1.32683i 0.766044 1.32683i
\(584\) −1.00000 −1.00000
\(585\) 0 0
\(586\) 0 0
\(587\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(588\) 0.673648 + 0.565258i 0.673648 + 0.565258i
\(589\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(593\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 1.00000 1.00000
\(595\) −0.532089 −0.532089
\(596\) 0.939693 1.62760i 0.939693 1.62760i
\(597\) 0.326352 1.85083i 0.326352 1.85083i
\(598\) 0 0
\(599\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(600\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(604\) 0 0
\(605\) 0.500000 0.866025i 0.500000 0.866025i
\(606\) 0.939693 0.342020i 0.939693 0.342020i
\(607\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(608\) −0.939693 1.62760i −0.939693 1.62760i
\(609\) −0.500000 + 0.181985i −0.500000 + 0.181985i
\(610\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(611\) 0 0
\(612\) −0.266044 1.50881i −0.266044 1.50881i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.173648 0.300767i −0.173648 0.300767i
\(617\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0 0
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) −0.347296 −0.347296
\(621\) 0 0
\(622\) −1.53209 −1.53209
\(623\) 0.266044 0.460802i 0.266044 0.460802i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0 0
\(627\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(628\) 0.766044 1.32683i 0.766044 1.32683i
\(629\) −2.87939 −2.87939
\(630\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(631\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(632\) 0 0
\(633\) 1.43969 0.524005i 1.43969 0.524005i
\(634\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(635\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(636\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(637\) 0 0
\(638\) −1.53209 −1.53209
\(639\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(640\) 1.00000 1.00000
\(641\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(642\) 0 0
\(643\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.43969 2.49362i 1.43969 2.49362i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.766044 0.642788i −0.766044 0.642788i
\(649\) 0 0
\(650\) 0 0
\(651\) 0.0209445 0.118782i 0.0209445 0.118782i
\(652\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(653\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(654\) −0.766044 0.642788i −0.766044 0.642788i
\(655\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(656\) 0 0
\(657\) −0.939693 0.342020i −0.939693 0.342020i
\(658\) 0 0
\(659\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.652704 −0.652704
\(666\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(667\) 0 0
\(668\) 0.173648 0.300767i 0.173648 0.300767i
\(669\) 0 0
\(670\) −0.500000 0.866025i −0.500000 0.866025i
\(671\) −0.173648 0.300767i −0.173648 0.300767i
\(672\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(673\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(674\) 1.53209 1.53209
\(675\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(676\) 1.00000 1.00000
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(681\) 0 0
\(682\) 0.173648 0.300767i 0.173648 0.300767i
\(683\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(684\) −0.326352 1.85083i −0.326352 1.85083i
\(685\) 0 0
\(686\) 0.326352 0.565258i 0.326352 0.565258i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) −0.0603074 0.342020i −0.0603074 0.342020i
\(694\) 0 0
\(695\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(696\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(697\) 0 0
\(698\) −0.500000 0.866025i −0.500000 0.866025i
\(699\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(700\) 0.173648 0.300767i 0.173648 0.300767i
\(701\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(702\) 0 0
\(703\) −3.53209 −3.53209
\(704\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(705\) 0 0
\(706\) 0 0
\(707\) −0.173648 0.300767i −0.173648 0.300767i
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) −1.87939 −1.87939
\(711\) 0 0
\(712\) −1.53209 −1.53209
\(713\) 0 0
\(714\) −0.500000 + 0.181985i −0.500000 + 0.181985i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(720\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(721\) 0 0
\(722\) 1.26604 2.19285i 1.26604 2.19285i
\(723\) 0 0
\(724\) 0 0
\(725\) −0.766044 1.32683i −0.766044 1.32683i
\(726\) 0.173648 0.984808i 0.173648 0.984808i
\(727\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 0 0
\(729\) −0.500000 0.866025i −0.500000 0.866025i
\(730\) 1.00000 1.00000
\(731\) 0 0
\(732\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) −0.673648 0.565258i −0.673648 0.565258i
\(736\) 0 0
\(737\) 1.00000 1.00000
\(738\) 0 0
\(739\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0.939693 1.62760i 0.939693 1.62760i
\(741\) 0 0
\(742\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(743\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(744\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(745\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(746\) 0 0
\(747\) 0 0
\(748\) −1.53209 −1.53209
\(749\) 0 0
\(750\) −0.766044 0.642788i −0.766044 0.642788i
\(751\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(757\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(761\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(763\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(764\) 2.00000 2.00000
\(765\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(766\) 0 0
\(767\) 0 0
\(768\) 0.939693 0.342020i 0.939693 0.342020i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(771\) 0 0
\(772\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(773\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(774\) 0 0
\(775\) 0.347296 0.347296
\(776\) 0 0
\(777\) 0.500000 + 0.419550i 0.500000 + 0.419550i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0.939693 1.62760i 0.939693 1.62760i
\(782\) 0 0
\(783\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(784\) −0.879385 −0.879385
\(785\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(786\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0 0
\(789\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(790\) 0 0
\(791\) 0 0
\(792\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(793\) 0 0
\(794\) 0.500000 0.866025i 0.500000 0.866025i
\(795\) 1.43969 0.524005i 1.43969 0.524005i
\(796\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(797\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(798\) −0.613341 + 0.223238i −0.613341 + 0.223238i
\(799\) 0 0
\(800\) −1.00000 −1.00000
\(801\) −1.43969 0.524005i −1.43969 0.524005i
\(802\) −1.53209 −1.53209
\(803\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(804\) −0.766044 0.642788i −0.766044 0.642788i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(811\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(812\) 0.266044 0.460802i 0.266044 0.460802i
\(813\) 0 0
\(814\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(815\) −0.173648 0.300767i −0.173648 0.300767i
\(816\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0.939693 0.342020i 0.939693 0.342020i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.673648 1.16679i −0.673648 1.16679i
\(834\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(835\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(836\) −1.87939 −1.87939
\(837\) −0.347296 −0.347296
\(838\) 0 0
\(839\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0.0603074 0.342020i 0.0603074 0.342020i
\(841\) −0.673648 1.16679i −0.673648 1.16679i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(845\) −1.00000 −1.00000
\(846\) 0 0
\(847\) −0.347296 −0.347296
\(848\) 0.766044 1.32683i 0.766044 1.32683i
\(849\) 0 0
\(850\) −0.766044 1.32683i −0.766044 1.32683i
\(851\) 0 0
\(852\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(853\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0.120615 0.120615
\(855\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(856\) 0 0
\(857\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 1.00000 1.00000
\(865\) 0 0
\(866\) 0 0
\(867\) −0.233956 + 1.32683i −0.233956 + 1.32683i
\(868\) 0.0603074 + 0.104455i 0.0603074 + 0.104455i
\(869\) 0 0
\(870\) −1.17365 0.984808i −1.17365 0.984808i
\(871\) 0 0
\(872\) 1.00000 1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(876\) 0.939693 0.342020i 0.939693 0.342020i
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.500000 0.866025i 0.500000 0.866025i
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) −0.826352 0.300767i −0.826352 0.300767i
\(883\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(887\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(888\) 0.326352 1.85083i 0.326352 1.85083i
\(889\) 0.173648 0.300767i 0.173648 0.300767i
\(890\) 1.53209 1.53209
\(891\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(892\) 0 0
\(893\) 0 0
\(894\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(895\) 0 0
\(896\) −0.173648 0.300767i −0.173648 0.300767i
\(897\) 0 0
\(898\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(899\) 0.532089 0.532089
\(900\) −0.939693 0.342020i −0.939693 0.342020i
\(901\) 2.34730 2.34730
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(908\) 0 0
\(909\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(910\) 0 0
\(911\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(912\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(913\) 0 0
\(914\) −0.766044 1.32683i −0.766044 1.32683i
\(915\) 0.0603074 0.342020i 0.0603074 0.342020i
\(916\) 0 0
\(917\) 0.652704 0.652704
\(918\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(923\) 0 0
\(924\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(925\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(926\) 0 0
\(927\) 0 0
\(928\) −1.53209 −1.53209
\(929\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(930\) 0.326352 0.118782i 0.326352 0.118782i
\(931\) −0.826352 1.43128i −0.826352 1.43128i
\(932\) −0.939693 1.62760i −0.939693 1.62760i
\(933\) 1.43969 0.524005i 1.43969 0.524005i
\(934\) 0.939693 1.62760i 0.939693 1.62760i
\(935\) 1.53209 1.53209
\(936\) 0 0
\(937\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(938\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(939\) 0 0
\(940\) 0 0
\(941\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(942\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(943\) 0 0
\(944\) 0 0
\(945\) 0.173648 0.300767i 0.173648 0.300767i
\(946\) 0 0
\(947\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.939693 1.62760i −0.939693 1.62760i
\(951\) −1.43969 1.20805i −1.43969 1.20805i
\(952\) 0.266044 0.460802i 0.266044 0.460802i
\(953\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(954\) 1.17365 0.984808i 1.17365 0.984808i
\(955\) −2.00000 −2.00000
\(956\) 0 0
\(957\) 1.43969 0.524005i 1.43969 0.524005i
\(958\) 0 0
\(959\) 0 0
\(960\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(961\) 0.439693 0.761570i 0.439693 0.761570i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.939693 1.62760i 0.939693 1.62760i
\(966\) 0 0
\(967\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(968\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(969\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(973\) 0.347296 0.347296
\(974\) 0 0
\(975\) 0 0
\(976\) −0.173648 0.300767i −0.173648 0.300767i
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) −0.266044 0.223238i −0.266044 0.223238i
\(979\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(980\) 0.879385 0.879385
\(981\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(982\) −1.53209 −1.53209
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.17365 2.03282i −1.17365 2.03282i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0.766044 0.642788i 0.766044 0.642788i
\(991\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0.173648 0.300767i 0.173648 0.300767i
\(993\) 0 0
\(994\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(995\) −0.939693 1.62760i −0.939693 1.62760i
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) 0.939693 1.62760i 0.939693 1.62760i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.1.cm.d.1429.2 yes 6
5.4 even 2 3960.1.cm.a.1429.2 6
8.5 even 2 3960.1.cm.c.1429.2 yes 6
9.4 even 3 inner 3960.1.cm.d.2749.2 yes 6
11.10 odd 2 3960.1.cm.b.1429.2 yes 6
40.29 even 2 3960.1.cm.b.1429.2 yes 6
45.4 even 6 3960.1.cm.a.2749.2 yes 6
55.54 odd 2 3960.1.cm.c.1429.2 yes 6
72.13 even 6 3960.1.cm.c.2749.2 yes 6
88.21 odd 2 3960.1.cm.a.1429.2 6
99.76 odd 6 3960.1.cm.b.2749.2 yes 6
360.229 even 6 3960.1.cm.b.2749.2 yes 6
440.109 odd 2 CM 3960.1.cm.d.1429.2 yes 6
495.274 odd 6 3960.1.cm.c.2749.2 yes 6
792.373 odd 6 3960.1.cm.a.2749.2 yes 6
3960.2749 odd 6 inner 3960.1.cm.d.2749.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.1.cm.a.1429.2 6 5.4 even 2
3960.1.cm.a.1429.2 6 88.21 odd 2
3960.1.cm.a.2749.2 yes 6 45.4 even 6
3960.1.cm.a.2749.2 yes 6 792.373 odd 6
3960.1.cm.b.1429.2 yes 6 11.10 odd 2
3960.1.cm.b.1429.2 yes 6 40.29 even 2
3960.1.cm.b.2749.2 yes 6 99.76 odd 6
3960.1.cm.b.2749.2 yes 6 360.229 even 6
3960.1.cm.c.1429.2 yes 6 8.5 even 2
3960.1.cm.c.1429.2 yes 6 55.54 odd 2
3960.1.cm.c.2749.2 yes 6 72.13 even 6
3960.1.cm.c.2749.2 yes 6 495.274 odd 6
3960.1.cm.d.1429.2 yes 6 1.1 even 1 trivial
3960.1.cm.d.1429.2 yes 6 440.109 odd 2 CM
3960.1.cm.d.2749.2 yes 6 9.4 even 3 inner
3960.1.cm.d.2749.2 yes 6 3960.2749 odd 6 inner