Properties

Label 3960.1.cm.d
Level $3960$
Weight $1$
Character orbit 3960.cm
Analytic conductor $1.976$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -440
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3960,1,Mod(1429,3960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3960.1429"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3960, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4, 3, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3960.cm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,-3,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.97629745003\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.19918918863360000.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{18}^{6} q^{2} - \zeta_{18}^{2} q^{3} - \zeta_{18}^{3} q^{4} + \zeta_{18}^{3} q^{5} + \zeta_{18}^{8} q^{6} + ( - \zeta_{18}^{8} - \zeta_{18}^{4}) q^{7} - q^{8} + \zeta_{18}^{4} q^{9} + q^{10} + \cdots - \zeta_{18} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} + 3 q^{5} - 6 q^{8} + 6 q^{10} - 3 q^{11} - 3 q^{16} + 3 q^{20} - 3 q^{21} + 3 q^{22} - 3 q^{25} + 3 q^{27} + 3 q^{32} - 3 q^{40} + 3 q^{42} + 6 q^{44} - 3 q^{49} + 3 q^{50} - 3 q^{51}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\) \(-\zeta_{18}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1429.1
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.173648 0.984808i
0.939693 0.342020i
−0.766044 0.642788i
−0.173648 + 0.984808i
0.500000 0.866025i −0.766044 0.642788i −0.500000 0.866025i 0.500000 + 0.866025i −0.939693 + 0.342020i 0.766044 1.32683i −1.00000 0.173648 + 0.984808i 1.00000
1429.2 0.500000 0.866025i −0.173648 + 0.984808i −0.500000 0.866025i 0.500000 + 0.866025i 0.766044 + 0.642788i 0.173648 0.300767i −1.00000 −0.939693 0.342020i 1.00000
1429.3 0.500000 0.866025i 0.939693 0.342020i −0.500000 0.866025i 0.500000 + 0.866025i 0.173648 0.984808i −0.939693 + 1.62760i −1.00000 0.766044 0.642788i 1.00000
2749.1 0.500000 + 0.866025i −0.766044 + 0.642788i −0.500000 + 0.866025i 0.500000 0.866025i −0.939693 0.342020i 0.766044 + 1.32683i −1.00000 0.173648 0.984808i 1.00000
2749.2 0.500000 + 0.866025i −0.173648 0.984808i −0.500000 + 0.866025i 0.500000 0.866025i 0.766044 0.642788i 0.173648 + 0.300767i −1.00000 −0.939693 + 0.342020i 1.00000
2749.3 0.500000 + 0.866025i 0.939693 + 0.342020i −0.500000 + 0.866025i 0.500000 0.866025i 0.173648 + 0.984808i −0.939693 1.62760i −1.00000 0.766044 + 0.642788i 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1429.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
440.o odd 2 1 CM by \(\Q(\sqrt{-110}) \)
9.c even 3 1 inner
3960.cm odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3960.1.cm.d yes 6
5.b even 2 1 3960.1.cm.a 6
8.b even 2 1 3960.1.cm.c yes 6
9.c even 3 1 inner 3960.1.cm.d yes 6
11.b odd 2 1 3960.1.cm.b yes 6
40.f even 2 1 3960.1.cm.b yes 6
45.j even 6 1 3960.1.cm.a 6
55.d odd 2 1 3960.1.cm.c yes 6
72.n even 6 1 3960.1.cm.c yes 6
88.b odd 2 1 3960.1.cm.a 6
99.h odd 6 1 3960.1.cm.b yes 6
360.bk even 6 1 3960.1.cm.b yes 6
440.o odd 2 1 CM 3960.1.cm.d yes 6
495.o odd 6 1 3960.1.cm.c yes 6
792.be odd 6 1 3960.1.cm.a 6
3960.cm odd 6 1 inner 3960.1.cm.d yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3960.1.cm.a 6 5.b even 2 1
3960.1.cm.a 6 45.j even 6 1
3960.1.cm.a 6 88.b odd 2 1
3960.1.cm.a 6 792.be odd 6 1
3960.1.cm.b yes 6 11.b odd 2 1
3960.1.cm.b yes 6 40.f even 2 1
3960.1.cm.b yes 6 99.h odd 6 1
3960.1.cm.b yes 6 360.bk even 6 1
3960.1.cm.c yes 6 8.b even 2 1
3960.1.cm.c yes 6 55.d odd 2 1
3960.1.cm.c yes 6 72.n even 6 1
3960.1.cm.c yes 6 495.o odd 6 1
3960.1.cm.d yes 6 1.a even 1 1 trivial
3960.1.cm.d yes 6 9.c even 3 1 inner
3960.1.cm.d yes 6 440.o odd 2 1 CM
3960.1.cm.d yes 6 3960.cm odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3960, [\chi])\):

\( T_{7}^{6} + 3T_{7}^{4} - 2T_{7}^{3} + 9T_{7}^{2} - 3T_{7} + 1 \) Copy content Toggle raw display
\( T_{19}^{3} - 3T_{19} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T^{3} - 3 T - 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( (T^{3} - 3 T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( T^{6} \) Copy content Toggle raw display
$53$ \( (T^{3} - 3 T - 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$71$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$73$ \( (T - 1)^{6} \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less