Properties

Label 396.1.d.a
Level 396396
Weight 11
Character orbit 396.d
Analytic conductor 0.1980.198
Analytic rank 00
Dimension 44
Projective image D4D_{4}
RM discriminant 44
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,1,Mod(395,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.395"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 396=223211 396 = 2^{2} \cdot 3^{2} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 396.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1976297450030.197629745003
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.4752.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ82q2q4+(ζ83ζ8)q5+(ζ83+ζ8)q7ζ82q8+(ζ83+ζ8)q10+ζ82q11+(ζ83+ζ8)q14++ζ82q98+O(q100) q + \zeta_{8}^{2} q^{2} - q^{4} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{5} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{7} - \zeta_{8}^{2} q^{8} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{10} + \zeta_{8}^{2} q^{11} + (\zeta_{8}^{3} + \zeta_{8}) q^{14} + \cdots + \zeta_{8}^{2} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+4q164q224q25+4q494q64+8q70+4q888q97+O(q100) 4 q - 4 q^{4} + 4 q^{16} - 4 q^{22} - 4 q^{25} + 4 q^{49} - 4 q^{64} + 8 q^{70} + 4 q^{88} - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/396Z)×\left(\mathbb{Z}/396\mathbb{Z}\right)^\times.

nn 145145 199199 353353
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
395.1
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
1.00000i 0 −1.00000 1.41421i 0 −1.41421 1.00000i 0 −1.41421
395.2 1.00000i 0 −1.00000 1.41421i 0 1.41421 1.00000i 0 1.41421
395.3 1.00000i 0 −1.00000 1.41421i 0 1.41421 1.00000i 0 1.41421
395.4 1.00000i 0 −1.00000 1.41421i 0 −1.41421 1.00000i 0 −1.41421
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
44.c even 2 1 RM by Q(11)\Q(\sqrt{11})
3.b odd 2 1 inner
4.b odd 2 1 inner
11.b odd 2 1 inner
12.b even 2 1 inner
33.d even 2 1 inner
132.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 396.1.d.a 4
3.b odd 2 1 inner 396.1.d.a 4
4.b odd 2 1 inner 396.1.d.a 4
9.c even 3 2 3564.1.o.e 8
9.d odd 6 2 3564.1.o.e 8
11.b odd 2 1 inner 396.1.d.a 4
12.b even 2 1 inner 396.1.d.a 4
33.d even 2 1 inner 396.1.d.a 4
36.f odd 6 2 3564.1.o.e 8
36.h even 6 2 3564.1.o.e 8
44.c even 2 1 RM 396.1.d.a 4
99.g even 6 2 3564.1.o.e 8
99.h odd 6 2 3564.1.o.e 8
132.d odd 2 1 inner 396.1.d.a 4
396.k even 6 2 3564.1.o.e 8
396.o odd 6 2 3564.1.o.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
396.1.d.a 4 1.a even 1 1 trivial
396.1.d.a 4 3.b odd 2 1 inner
396.1.d.a 4 4.b odd 2 1 inner
396.1.d.a 4 11.b odd 2 1 inner
396.1.d.a 4 12.b even 2 1 inner
396.1.d.a 4 33.d even 2 1 inner
396.1.d.a 4 44.c even 2 1 RM
396.1.d.a 4 132.d odd 2 1 inner
3564.1.o.e 8 9.c even 3 2
3564.1.o.e 8 9.d odd 6 2
3564.1.o.e 8 36.f odd 6 2
3564.1.o.e 8 36.h even 6 2
3564.1.o.e 8 99.g even 6 2
3564.1.o.e 8 99.h odd 6 2
3564.1.o.e 8 396.k even 6 2
3564.1.o.e 8 396.o odd 6 2

Hecke kernels

This newform subspace is the entire newspace S1new(396,[χ])S_{1}^{\mathrm{new}}(396, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
77 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
1111 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
9797 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
show more
show less