gp: [N,k,chi] = [396,1,Mod(395,396)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(396, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("396.395");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 396 Z ) × \left(\mathbb{Z}/396\mathbb{Z}\right)^\times ( Z / 3 9 6 Z ) × .
n n n
145 145 1 4 5
199 199 1 9 9
353 353 3 5 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 396 , [ χ ] ) S_{1}^{\mathrm{new}}(396, [\chi]) S 1 n e w ( 3 9 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
7 7 7
( T 2 − 2 ) 2 (T^{2} - 2)^{2} ( T 2 − 2 ) 2
(T^2 - 2)^2
11 11 1 1
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
( T 2 − 2 ) 2 (T^{2} - 2)^{2} ( T 2 − 2 ) 2
(T^2 - 2)^2
23 23 2 3
T 4 T^{4} T 4
T^4
29 29 2 9
T 4 T^{4} T 4
T^4
31 31 3 1
T 4 T^{4} T 4
T^4
37 37 3 7
T 4 T^{4} T 4
T^4
41 41 4 1
T 4 T^{4} T 4
T^4
43 43 4 3
( T 2 − 2 ) 2 (T^{2} - 2)^{2} ( T 2 − 2 ) 2
(T^2 - 2)^2
47 47 4 7
T 4 T^{4} T 4
T^4
53 53 5 3
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
59 59 5 9
T 4 T^{4} T 4
T^4
61 61 6 1
T 4 T^{4} T 4
T^4
67 67 6 7
T 4 T^{4} T 4
T^4
71 71 7 1
T 4 T^{4} T 4
T^4
73 73 7 3
T 4 T^{4} T 4
T^4
79 79 7 9
( T 2 − 2 ) 2 (T^{2} - 2)^{2} ( T 2 − 2 ) 2
(T^2 - 2)^2
83 83 8 3
T 4 T^{4} T 4
T^4
89 89 8 9
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
97 97 9 7
( T + 2 ) 4 (T + 2)^{4} ( T + 2 ) 4
(T + 2)^4
show more
show less