L(s) = 1 | + i·2-s − 4-s + 1.41i·5-s − 1.41·7-s − i·8-s − 1.41·10-s + i·11-s − 1.41i·14-s + 16-s + 1.41·19-s − 1.41i·20-s − 22-s − 1.00·25-s + 1.41·28-s + i·32-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s + 1.41i·5-s − 1.41·7-s − i·8-s − 1.41·10-s + i·11-s − 1.41i·14-s + 16-s + 1.41·19-s − 1.41i·20-s − 22-s − 1.00·25-s + 1.41·28-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6391055318\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6391055318\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 11 | \( 1 - iT \) |
good | 5 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 + 1.41T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - 1.41T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.41T + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 1.41iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - 1.41T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 + 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03336699095368667055852277436, −10.68134558946704579250995513263, −9.798766338136627439153410419324, −9.371498974573445726741266058374, −7.80556641984197528991770798090, −6.99592048379240584354034303385, −6.51822592798111987279895152199, −5.42277557530162217274634805283, −3.88636283930840579618451744476, −2.89721157293716921583638491800,
0.958307253214870246224113901070, 2.92329749882228784989150636523, 3.92914017525167207824548707956, 5.17653252046240449549977894351, 6.03456863959881782757908095565, 7.71703948220158806025498503962, 8.867223816082533822704324779708, 9.293812940388566929042688247174, 10.13959068817305069443380025314, 11.25658255722732749399499505687