Properties

Label 3900.2.bw.l.49.1
Level $3900$
Weight $2$
Character 3900.49
Analytic conductor $31.142$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(49,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,8,0,4,0,-12,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 3900.49
Dual form 3900.2.bw.l.2149.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +(0.741181 - 1.28376i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-1.85872 + 1.07313i) q^{11} +(-1.86250 - 3.08725i) q^{13} +(5.88512 + 3.39778i) q^{17} +(-2.54516 - 1.46945i) q^{19} +1.48236i q^{21} +(-7.65427 + 4.41920i) q^{23} +1.00000i q^{27} +(1.41774 + 2.45559i) q^{29} -8.32780i q^{31} +(1.07313 - 1.85872i) q^{33} +(3.64929 + 6.32076i) q^{37} +(3.15660 + 1.74238i) q^{39} +(-0.417738 + 0.241181i) q^{41} +(6.91239 + 3.99087i) q^{43} -12.1891 q^{47} +(2.40130 + 4.15918i) q^{49} -6.79555 q^{51} -0.565122i q^{53} +2.93890 q^{57} +(7.39483 + 4.26941i) q^{59} +(5.92953 - 10.2702i) q^{61} +(-0.741181 - 1.28376i) q^{63} +(5.66510 + 9.81225i) q^{67} +(4.41920 - 7.65427i) q^{69} +(3.63713 + 2.09990i) q^{71} -11.4317 q^{73} +3.18154i q^{77} +9.19615 q^{79} +(-0.500000 - 0.866025i) q^{81} -9.28132 q^{83} +(-2.45559 - 1.41774i) q^{87} +(10.8228 - 6.24857i) q^{89} +(-5.34374 + 0.102802i) q^{91} +(4.16390 + 7.21209i) q^{93} +(-8.32660 + 14.4221i) q^{97} +2.14626i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} + 4 q^{9} - 12 q^{11} - 12 q^{19} - 12 q^{23} + 8 q^{29} - 4 q^{33} + 8 q^{37} + 24 q^{43} - 40 q^{47} + 4 q^{49} - 8 q^{51} + 24 q^{57} - 24 q^{59} + 8 q^{61} - 8 q^{63} - 4 q^{69} - 12 q^{71}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.741181 1.28376i 0.280140 0.485217i −0.691279 0.722588i \(-0.742952\pi\)
0.971419 + 0.237371i \(0.0762858\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −1.85872 + 1.07313i −0.560425 + 0.323562i −0.753316 0.657659i \(-0.771547\pi\)
0.192891 + 0.981220i \(0.438214\pi\)
\(12\) 0 0
\(13\) −1.86250 3.08725i −0.516565 0.856248i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.88512 + 3.39778i 1.42735 + 0.824082i 0.996911 0.0785367i \(-0.0250248\pi\)
0.430441 + 0.902619i \(0.358358\pi\)
\(18\) 0 0
\(19\) −2.54516 1.46945i −0.583900 0.337115i 0.178782 0.983889i \(-0.442784\pi\)
−0.762682 + 0.646774i \(0.776118\pi\)
\(20\) 0 0
\(21\) 1.48236i 0.323478i
\(22\) 0 0
\(23\) −7.65427 + 4.41920i −1.59603 + 0.921466i −0.603784 + 0.797148i \(0.706341\pi\)
−0.992242 + 0.124319i \(0.960326\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.41774 + 2.45559i 0.263267 + 0.455992i 0.967108 0.254365i \(-0.0818666\pi\)
−0.703841 + 0.710358i \(0.748533\pi\)
\(30\) 0 0
\(31\) 8.32780i 1.49572i −0.663858 0.747859i \(-0.731082\pi\)
0.663858 0.747859i \(-0.268918\pi\)
\(32\) 0 0
\(33\) 1.07313 1.85872i 0.186808 0.323562i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.64929 + 6.32076i 0.599940 + 1.03913i 0.992829 + 0.119540i \(0.0381421\pi\)
−0.392890 + 0.919586i \(0.628525\pi\)
\(38\) 0 0
\(39\) 3.15660 + 1.74238i 0.505460 + 0.279005i
\(40\) 0 0
\(41\) −0.417738 + 0.241181i −0.0652397 + 0.0376661i −0.532265 0.846578i \(-0.678659\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(42\) 0 0
\(43\) 6.91239 + 3.99087i 1.05413 + 0.608602i 0.923803 0.382869i \(-0.125064\pi\)
0.130327 + 0.991471i \(0.458397\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.1891 −1.77796 −0.888982 0.457943i \(-0.848587\pi\)
−0.888982 + 0.457943i \(0.848587\pi\)
\(48\) 0 0
\(49\) 2.40130 + 4.15918i 0.343043 + 0.594168i
\(50\) 0 0
\(51\) −6.79555 −0.951568
\(52\) 0 0
\(53\) 0.565122i 0.0776255i −0.999247 0.0388127i \(-0.987642\pi\)
0.999247 0.0388127i \(-0.0123576\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.93890 0.389267
\(58\) 0 0
\(59\) 7.39483 + 4.26941i 0.962725 + 0.555830i 0.897011 0.442009i \(-0.145734\pi\)
0.0657145 + 0.997838i \(0.479067\pi\)
\(60\) 0 0
\(61\) 5.92953 10.2702i 0.759198 1.31497i −0.184061 0.982915i \(-0.558925\pi\)
0.943260 0.332056i \(-0.107742\pi\)
\(62\) 0 0
\(63\) −0.741181 1.28376i −0.0933800 0.161739i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.66510 + 9.81225i 0.692103 + 1.19876i 0.971148 + 0.238479i \(0.0766488\pi\)
−0.279045 + 0.960278i \(0.590018\pi\)
\(68\) 0 0
\(69\) 4.41920 7.65427i 0.532009 0.921466i
\(70\) 0 0
\(71\) 3.63713 + 2.09990i 0.431648 + 0.249212i 0.700049 0.714095i \(-0.253162\pi\)
−0.268400 + 0.963307i \(0.586495\pi\)
\(72\) 0 0
\(73\) −11.4317 −1.33798 −0.668992 0.743269i \(-0.733274\pi\)
−0.668992 + 0.743269i \(0.733274\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.18154i 0.362570i
\(78\) 0 0
\(79\) 9.19615 1.03465 0.517324 0.855790i \(-0.326928\pi\)
0.517324 + 0.855790i \(0.326928\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −9.28132 −1.01876 −0.509378 0.860543i \(-0.670125\pi\)
−0.509378 + 0.860543i \(0.670125\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.45559 1.41774i −0.263267 0.151997i
\(88\) 0 0
\(89\) 10.8228 6.24857i 1.14722 0.662347i 0.199011 0.979997i \(-0.436227\pi\)
0.948208 + 0.317650i \(0.102894\pi\)
\(90\) 0 0
\(91\) −5.34374 + 0.102802i −0.560176 + 0.0107766i
\(92\) 0 0
\(93\) 4.16390 + 7.21209i 0.431777 + 0.747859i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.32660 + 14.4221i −0.845438 + 1.46434i 0.0398015 + 0.999208i \(0.487327\pi\)
−0.885240 + 0.465135i \(0.846006\pi\)
\(98\) 0 0
\(99\) 2.14626i 0.215708i
\(100\) 0 0
\(101\) 5.67253 + 9.82512i 0.564438 + 0.977636i 0.997102 + 0.0760803i \(0.0242405\pi\)
−0.432663 + 0.901556i \(0.642426\pi\)
\(102\) 0 0
\(103\) 15.8089i 1.55770i −0.627211 0.778850i \(-0.715803\pi\)
0.627211 0.778850i \(-0.284197\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.9677 9.79631i 1.64033 0.947045i 0.659615 0.751604i \(-0.270719\pi\)
0.980715 0.195441i \(-0.0626139\pi\)
\(108\) 0 0
\(109\) 6.00945i 0.575601i −0.957690 0.287801i \(-0.907076\pi\)
0.957690 0.287801i \(-0.0929240\pi\)
\(110\) 0 0
\(111\) −6.32076 3.64929i −0.599940 0.346375i
\(112\) 0 0
\(113\) 17.3631 + 10.0246i 1.63338 + 0.943033i 0.983040 + 0.183391i \(0.0587074\pi\)
0.650341 + 0.759642i \(0.274626\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.60488 + 0.0693504i −0.333272 + 0.00641144i
\(118\) 0 0
\(119\) 8.72388 5.03674i 0.799717 0.461717i
\(120\) 0 0
\(121\) −3.19677 + 5.53698i −0.290616 + 0.503361i
\(122\) 0 0
\(123\) 0.241181 0.417738i 0.0217466 0.0376661i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.31892 + 2.49353i −0.383242 + 0.221265i −0.679228 0.733927i \(-0.737685\pi\)
0.295986 + 0.955192i \(0.404352\pi\)
\(128\) 0 0
\(129\) −7.98174 −0.702753
\(130\) 0 0
\(131\) 7.32076 0.639617 0.319809 0.947482i \(-0.396381\pi\)
0.319809 + 0.947482i \(0.396381\pi\)
\(132\) 0 0
\(133\) −3.77285 + 2.17826i −0.327148 + 0.188879i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.60514 + 7.97634i −0.393444 + 0.681465i −0.992901 0.118942i \(-0.962050\pi\)
0.599457 + 0.800407i \(0.295383\pi\)
\(138\) 0 0
\(139\) 3.77792 6.54354i 0.320439 0.555016i −0.660140 0.751143i \(-0.729503\pi\)
0.980579 + 0.196127i \(0.0628363\pi\)
\(140\) 0 0
\(141\) 10.5561 6.09455i 0.888982 0.513254i
\(142\) 0 0
\(143\) 6.77489 + 3.73961i 0.566545 + 0.312722i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −4.15918 2.40130i −0.343043 0.198056i
\(148\) 0 0
\(149\) −2.90496 1.67718i −0.237984 0.137400i 0.376266 0.926512i \(-0.377208\pi\)
−0.614250 + 0.789112i \(0.710541\pi\)
\(150\) 0 0
\(151\) 13.6310i 1.10928i 0.832091 + 0.554639i \(0.187144\pi\)
−0.832091 + 0.554639i \(0.812856\pi\)
\(152\) 0 0
\(153\) 5.88512 3.39778i 0.475784 0.274694i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8.00897i 0.639186i 0.947555 + 0.319593i \(0.103546\pi\)
−0.947555 + 0.319593i \(0.896454\pi\)
\(158\) 0 0
\(159\) 0.282561 + 0.489410i 0.0224086 + 0.0388127i
\(160\) 0 0
\(161\) 13.1017i 1.03256i
\(162\) 0 0
\(163\) −4.52677 + 7.84059i −0.354564 + 0.614123i −0.987043 0.160455i \(-0.948704\pi\)
0.632479 + 0.774577i \(0.282037\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.51764 + 9.55683i 0.426968 + 0.739530i 0.996602 0.0823686i \(-0.0262485\pi\)
−0.569634 + 0.821898i \(0.692915\pi\)
\(168\) 0 0
\(169\) −6.06218 + 11.5000i −0.466321 + 0.884615i
\(170\) 0 0
\(171\) −2.54516 + 1.46945i −0.194633 + 0.112372i
\(172\) 0 0
\(173\) 7.69137 + 4.44062i 0.584764 + 0.337614i 0.763025 0.646370i \(-0.223714\pi\)
−0.178260 + 0.983983i \(0.557047\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8.53882 −0.641817
\(178\) 0 0
\(179\) −0.323941 0.561083i −0.0242125 0.0419373i 0.853665 0.520822i \(-0.174374\pi\)
−0.877878 + 0.478885i \(0.841041\pi\)
\(180\) 0 0
\(181\) 4.78851 0.355927 0.177963 0.984037i \(-0.443049\pi\)
0.177963 + 0.984037i \(0.443049\pi\)
\(182\) 0 0
\(183\) 11.8591i 0.876647i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −14.5851 −1.06657
\(188\) 0 0
\(189\) 1.28376 + 0.741181i 0.0933800 + 0.0539130i
\(190\) 0 0
\(191\) −6.23289 + 10.7957i −0.450996 + 0.781148i −0.998448 0.0556890i \(-0.982264\pi\)
0.547452 + 0.836837i \(0.315598\pi\)
\(192\) 0 0
\(193\) 6.43331 + 11.1428i 0.463080 + 0.802078i 0.999113 0.0421193i \(-0.0134110\pi\)
−0.536033 + 0.844197i \(0.680078\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.21235 + 5.56395i 0.228870 + 0.396415i 0.957474 0.288521i \(-0.0931635\pi\)
−0.728603 + 0.684936i \(0.759830\pi\)
\(198\) 0 0
\(199\) −2.83850 + 4.91643i −0.201216 + 0.348516i −0.948921 0.315515i \(-0.897823\pi\)
0.747704 + 0.664032i \(0.231156\pi\)
\(200\) 0 0
\(201\) −9.81225 5.66510i −0.692103 0.399586i
\(202\) 0 0
\(203\) 4.20320 0.295007
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.83839i 0.614311i
\(208\) 0 0
\(209\) 6.30766 0.436310
\(210\) 0 0
\(211\) −6.04222 10.4654i −0.415963 0.720470i 0.579566 0.814926i \(-0.303222\pi\)
−0.995529 + 0.0944558i \(0.969889\pi\)
\(212\) 0 0
\(213\) −4.19980 −0.287766
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −10.6909 6.17241i −0.725748 0.419011i
\(218\) 0 0
\(219\) 9.90018 5.71587i 0.668992 0.386243i
\(220\) 0 0
\(221\) −0.471274 24.4972i −0.0317013 1.64786i
\(222\) 0 0
\(223\) 0.166929 + 0.289129i 0.0111784 + 0.0193615i 0.871560 0.490288i \(-0.163108\pi\)
−0.860382 + 0.509650i \(0.829775\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.33427 + 9.23923i −0.354048 + 0.613229i −0.986955 0.160999i \(-0.948528\pi\)
0.632906 + 0.774228i \(0.281862\pi\)
\(228\) 0 0
\(229\) 21.8530i 1.44409i −0.691847 0.722044i \(-0.743203\pi\)
0.691847 0.722044i \(-0.256797\pi\)
\(230\) 0 0
\(231\) −1.59077 2.75529i −0.104665 0.181285i
\(232\) 0 0
\(233\) 0.825259i 0.0540645i −0.999635 0.0270323i \(-0.991394\pi\)
0.999635 0.0270323i \(-0.00860568\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −7.96410 + 4.59808i −0.517324 + 0.298677i
\(238\) 0 0
\(239\) 8.44609i 0.546332i 0.961967 + 0.273166i \(0.0880709\pi\)
−0.961967 + 0.273166i \(0.911929\pi\)
\(240\) 0 0
\(241\) −5.15526 2.97639i −0.332080 0.191726i 0.324684 0.945822i \(-0.394742\pi\)
−0.656764 + 0.754096i \(0.728075\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.203814 + 10.5944i 0.0129684 + 0.674105i
\(248\) 0 0
\(249\) 8.03786 4.64066i 0.509378 0.294090i
\(250\) 0 0
\(251\) −8.34349 + 14.4513i −0.526636 + 0.912161i 0.472882 + 0.881126i \(0.343214\pi\)
−0.999518 + 0.0310349i \(0.990120\pi\)
\(252\) 0 0
\(253\) 9.48477 16.4281i 0.596302 1.03283i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 25.5710 14.7634i 1.59508 0.920918i 0.602660 0.797998i \(-0.294107\pi\)
0.992417 0.122920i \(-0.0392259\pi\)
\(258\) 0 0
\(259\) 10.8191 0.672269
\(260\) 0 0
\(261\) 2.83548 0.175512
\(262\) 0 0
\(263\) −13.5113 + 7.80078i −0.833145 + 0.481017i −0.854928 0.518746i \(-0.826399\pi\)
0.0217831 + 0.999763i \(0.493066\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.24857 + 10.8228i −0.382406 + 0.662347i
\(268\) 0 0
\(269\) 3.53835 6.12861i 0.215737 0.373668i −0.737763 0.675060i \(-0.764118\pi\)
0.953500 + 0.301392i \(0.0974512\pi\)
\(270\) 0 0
\(271\) −5.10989 + 2.95019i −0.310403 + 0.179212i −0.647107 0.762399i \(-0.724021\pi\)
0.336704 + 0.941611i \(0.390688\pi\)
\(272\) 0 0
\(273\) 4.57642 2.76090i 0.276977 0.167097i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.4582 + 12.3889i 1.28930 + 0.744377i 0.978529 0.206108i \(-0.0660798\pi\)
0.310770 + 0.950485i \(0.399413\pi\)
\(278\) 0 0
\(279\) −7.21209 4.16390i −0.431777 0.249286i
\(280\) 0 0
\(281\) 31.8253i 1.89854i 0.314465 + 0.949269i \(0.398175\pi\)
−0.314465 + 0.949269i \(0.601825\pi\)
\(282\) 0 0
\(283\) 1.49978 0.865901i 0.0891529 0.0514725i −0.454761 0.890614i \(-0.650275\pi\)
0.543914 + 0.839141i \(0.316942\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.715035i 0.0422072i
\(288\) 0 0
\(289\) 14.5898 + 25.2702i 0.858223 + 1.48649i
\(290\) 0 0
\(291\) 16.6532i 0.976228i
\(292\) 0 0
\(293\) −4.12742 + 7.14891i −0.241127 + 0.417644i −0.961036 0.276425i \(-0.910850\pi\)
0.719909 + 0.694069i \(0.244184\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.07313 1.85872i −0.0622694 0.107854i
\(298\) 0 0
\(299\) 27.8992 + 15.3999i 1.61346 + 0.890597i
\(300\) 0 0
\(301\) 10.2467 5.91591i 0.590608 0.340988i
\(302\) 0 0
\(303\) −9.82512 5.67253i −0.564438 0.325879i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6.30903 0.360075 0.180038 0.983660i \(-0.442378\pi\)
0.180038 + 0.983660i \(0.442378\pi\)
\(308\) 0 0
\(309\) 7.90446 + 13.6909i 0.449669 + 0.778850i
\(310\) 0 0
\(311\) −1.16417 −0.0660142 −0.0330071 0.999455i \(-0.510508\pi\)
−0.0330071 + 0.999455i \(0.510508\pi\)
\(312\) 0 0
\(313\) 19.7018i 1.11361i 0.830642 + 0.556807i \(0.187974\pi\)
−0.830642 + 0.556807i \(0.812026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.882212 0.0495500 0.0247750 0.999693i \(-0.492113\pi\)
0.0247750 + 0.999693i \(0.492113\pi\)
\(318\) 0 0
\(319\) −5.27035 3.04284i −0.295083 0.170366i
\(320\) 0 0
\(321\) −9.79631 + 16.9677i −0.546777 + 0.947045i
\(322\) 0 0
\(323\) −9.98573 17.2958i −0.555621 0.962363i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.00473 + 5.20434i 0.166162 + 0.287801i
\(328\) 0 0
\(329\) −9.03433 + 15.6479i −0.498079 + 0.862698i
\(330\) 0 0
\(331\) 17.0020 + 9.81614i 0.934517 + 0.539544i 0.888237 0.459385i \(-0.151930\pi\)
0.0462798 + 0.998929i \(0.485263\pi\)
\(332\) 0 0
\(333\) 7.29858 0.399960
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.36724i 0.128952i 0.997919 + 0.0644760i \(0.0205376\pi\)
−0.997919 + 0.0644760i \(0.979462\pi\)
\(338\) 0 0
\(339\) −20.0492 −1.08892
\(340\) 0 0
\(341\) 8.93684 + 15.4791i 0.483957 + 0.838238i
\(342\) 0 0
\(343\) 17.4957 0.944681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.6862 + 7.32441i 0.681033 + 0.393195i 0.800244 0.599674i \(-0.204703\pi\)
−0.119211 + 0.992869i \(0.538037\pi\)
\(348\) 0 0
\(349\) −26.9424 + 15.5552i −1.44219 + 0.832651i −0.997996 0.0632770i \(-0.979845\pi\)
−0.444198 + 0.895928i \(0.646512\pi\)
\(350\) 0 0
\(351\) 3.08725 1.86250i 0.164785 0.0994130i
\(352\) 0 0
\(353\) −0.295838 0.512406i −0.0157458 0.0272726i 0.858045 0.513574i \(-0.171679\pi\)
−0.873791 + 0.486302i \(0.838346\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −5.03674 + 8.72388i −0.266572 + 0.461717i
\(358\) 0 0
\(359\) 13.8253i 0.729671i 0.931072 + 0.364836i \(0.118875\pi\)
−0.931072 + 0.364836i \(0.881125\pi\)
\(360\) 0 0
\(361\) −5.18143 8.97451i −0.272707 0.472342i
\(362\) 0 0
\(363\) 6.39355i 0.335574i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −21.0335 + 12.1437i −1.09794 + 0.633896i −0.935679 0.352852i \(-0.885212\pi\)
−0.162261 + 0.986748i \(0.551879\pi\)
\(368\) 0 0
\(369\) 0.482362i 0.0251108i
\(370\) 0 0
\(371\) −0.725483 0.418858i −0.0376652 0.0217460i
\(372\) 0 0
\(373\) 9.12012 + 5.26550i 0.472222 + 0.272637i 0.717169 0.696899i \(-0.245437\pi\)
−0.244948 + 0.969536i \(0.578771\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.94048 8.95045i 0.254448 0.460972i
\(378\) 0 0
\(379\) 1.41022 0.814189i 0.0724380 0.0418221i −0.463344 0.886179i \(-0.653350\pi\)
0.535782 + 0.844357i \(0.320017\pi\)
\(380\) 0 0
\(381\) 2.49353 4.31892i 0.127747 0.221265i
\(382\) 0 0
\(383\) −4.81199 + 8.33461i −0.245881 + 0.425879i −0.962379 0.271711i \(-0.912411\pi\)
0.716498 + 0.697589i \(0.245744\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.91239 3.99087i 0.351376 0.202867i
\(388\) 0 0
\(389\) −15.4741 −0.784566 −0.392283 0.919844i \(-0.628315\pi\)
−0.392283 + 0.919844i \(0.628315\pi\)
\(390\) 0 0
\(391\) −60.0618 −3.03746
\(392\) 0 0
\(393\) −6.33996 + 3.66038i −0.319809 + 0.184642i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10.7103 18.5509i 0.537537 0.931041i −0.461499 0.887141i \(-0.652688\pi\)
0.999036 0.0439006i \(-0.0139785\pi\)
\(398\) 0 0
\(399\) 2.17826 3.77285i 0.109049 0.188879i
\(400\) 0 0
\(401\) 27.7026 15.9941i 1.38340 0.798708i 0.390842 0.920458i \(-0.372184\pi\)
0.992561 + 0.121750i \(0.0388506\pi\)
\(402\) 0 0
\(403\) −25.7100 + 15.5105i −1.28071 + 0.772635i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.5660 7.83234i −0.672442 0.388235i
\(408\) 0 0
\(409\) 23.5525 + 13.5981i 1.16460 + 0.672380i 0.952401 0.304847i \(-0.0986053\pi\)
0.212196 + 0.977227i \(0.431939\pi\)
\(410\) 0 0
\(411\) 9.21028i 0.454310i
\(412\) 0 0
\(413\) 10.9618 6.32881i 0.539396 0.311420i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.55583i 0.370011i
\(418\) 0 0
\(419\) 0.325349 + 0.563522i 0.0158944 + 0.0275298i 0.873863 0.486172i \(-0.161607\pi\)
−0.857969 + 0.513702i \(0.828274\pi\)
\(420\) 0 0
\(421\) 35.7471i 1.74221i −0.491098 0.871104i \(-0.663404\pi\)
0.491098 0.871104i \(-0.336596\pi\)
\(422\) 0 0
\(423\) −6.09455 + 10.5561i −0.296327 + 0.513254i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8.78971 15.2242i −0.425364 0.736752i
\(428\) 0 0
\(429\) −7.73703 + 0.148844i −0.373548 + 0.00718627i
\(430\) 0 0
\(431\) 18.1241 10.4639i 0.873005 0.504030i 0.00465921 0.999989i \(-0.498517\pi\)
0.868346 + 0.495960i \(0.165184\pi\)
\(432\) 0 0
\(433\) 21.3903 + 12.3497i 1.02795 + 0.593487i 0.916397 0.400271i \(-0.131084\pi\)
0.111553 + 0.993758i \(0.464417\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.9752 1.24256
\(438\) 0 0
\(439\) −13.9137 24.0992i −0.664063 1.15019i −0.979538 0.201258i \(-0.935497\pi\)
0.315475 0.948934i \(-0.397836\pi\)
\(440\) 0 0
\(441\) 4.80260 0.228695
\(442\) 0 0
\(443\) 27.8356i 1.32251i −0.750161 0.661256i \(-0.770024\pi\)
0.750161 0.661256i \(-0.229976\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.35436 0.158656
\(448\) 0 0
\(449\) 5.88828 + 3.39960i 0.277885 + 0.160437i 0.632466 0.774588i \(-0.282043\pi\)
−0.354580 + 0.935026i \(0.615376\pi\)
\(450\) 0 0
\(451\) 0.517638 0.896575i 0.0243746 0.0422181i
\(452\) 0 0
\(453\) −6.81552 11.8048i −0.320221 0.554639i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.798482 + 1.38301i 0.0373514 + 0.0646945i 0.884097 0.467304i \(-0.154775\pi\)
−0.846745 + 0.531998i \(0.821441\pi\)
\(458\) 0 0
\(459\) −3.39778 + 5.88512i −0.158595 + 0.274694i
\(460\) 0 0
\(461\) 6.32097 + 3.64941i 0.294397 + 0.169970i 0.639923 0.768439i \(-0.278966\pi\)
−0.345526 + 0.938409i \(0.612300\pi\)
\(462\) 0 0
\(463\) −12.7038 −0.590397 −0.295198 0.955436i \(-0.595386\pi\)
−0.295198 + 0.955436i \(0.595386\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.65053i 0.0763777i −0.999271 0.0381888i \(-0.987841\pi\)
0.999271 0.0381888i \(-0.0121588\pi\)
\(468\) 0 0
\(469\) 16.7955 0.775543
\(470\) 0 0
\(471\) −4.00449 6.93597i −0.184517 0.319593i
\(472\) 0 0
\(473\) −17.1309 −0.787681
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.489410 0.282561i −0.0224086 0.0129376i
\(478\) 0 0
\(479\) −23.8712 + 13.7821i −1.09070 + 0.629719i −0.933764 0.357890i \(-0.883496\pi\)
−0.156941 + 0.987608i \(0.550163\pi\)
\(480\) 0 0
\(481\) 12.7169 23.0387i 0.579842 1.05047i
\(482\) 0 0
\(483\) −6.55085 11.3464i −0.298074 0.516279i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −20.8850 + 36.1739i −0.946390 + 1.63919i −0.193445 + 0.981111i \(0.561966\pi\)
−0.752945 + 0.658084i \(0.771367\pi\)
\(488\) 0 0
\(489\) 9.05354i 0.409415i
\(490\) 0 0
\(491\) 8.51463 + 14.7478i 0.384260 + 0.665558i 0.991666 0.128834i \(-0.0411233\pi\)
−0.607406 + 0.794391i \(0.707790\pi\)
\(492\) 0 0
\(493\) 19.2686i 0.867815i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.39155 3.11281i 0.241844 0.139629i
\(498\) 0 0
\(499\) 27.7591i 1.24267i −0.783546 0.621333i \(-0.786591\pi\)
0.783546 0.621333i \(-0.213409\pi\)
\(500\) 0 0
\(501\) −9.55683 5.51764i −0.426968 0.246510i
\(502\) 0 0
\(503\) 7.23126 + 4.17497i 0.322426 + 0.186153i 0.652473 0.757812i \(-0.273731\pi\)
−0.330047 + 0.943964i \(0.607065\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.500000 12.9904i −0.0222058 0.576923i
\(508\) 0 0
\(509\) −4.29338 + 2.47879i −0.190301 + 0.109870i −0.592123 0.805847i \(-0.701710\pi\)
0.401823 + 0.915718i \(0.368377\pi\)
\(510\) 0 0
\(511\) −8.47299 + 14.6757i −0.374823 + 0.649213i
\(512\) 0 0
\(513\) 1.46945 2.54516i 0.0648778 0.112372i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 22.6561 13.0805i 0.996415 0.575281i
\(518\) 0 0
\(519\) −8.88123 −0.389843
\(520\) 0 0
\(521\) −27.0863 −1.18667 −0.593337 0.804954i \(-0.702190\pi\)
−0.593337 + 0.804954i \(0.702190\pi\)
\(522\) 0 0
\(523\) −4.39492 + 2.53741i −0.192177 + 0.110953i −0.593001 0.805202i \(-0.702057\pi\)
0.400825 + 0.916155i \(0.368724\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.2960 49.0102i 1.23259 2.13492i
\(528\) 0 0
\(529\) 27.5586 47.7329i 1.19820 2.07534i
\(530\) 0 0
\(531\) 7.39483 4.26941i 0.320908 0.185277i
\(532\) 0 0
\(533\) 1.52262 + 0.840459i 0.0659521 + 0.0364043i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.561083 + 0.323941i 0.0242125 + 0.0139791i
\(538\) 0 0
\(539\) −8.92669 5.15383i −0.384500 0.221991i
\(540\) 0 0
\(541\) 4.65826i 0.200274i −0.994974 0.100137i \(-0.968072\pi\)
0.994974 0.100137i \(-0.0319282\pi\)
\(542\) 0 0
\(543\) −4.14697 + 2.39425i −0.177963 + 0.102747i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 30.0649i 1.28548i −0.766083 0.642742i \(-0.777797\pi\)
0.766083 0.642742i \(-0.222203\pi\)
\(548\) 0 0
\(549\) −5.92953 10.2702i −0.253066 0.438323i
\(550\) 0 0
\(551\) 8.33318i 0.355005i
\(552\) 0 0
\(553\) 6.81601 11.8057i 0.289846 0.502029i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.89640 10.2129i −0.249838 0.432733i 0.713642 0.700510i \(-0.247044\pi\)
−0.963481 + 0.267777i \(0.913711\pi\)
\(558\) 0 0
\(559\) −0.553536 28.7732i −0.0234121 1.21698i
\(560\) 0 0
\(561\) 12.6310 7.29253i 0.533283 0.307891i
\(562\) 0 0
\(563\) −31.5200 18.1981i −1.32841 0.766957i −0.343356 0.939205i \(-0.611564\pi\)
−0.985054 + 0.172248i \(0.944897\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.48236 −0.0622533
\(568\) 0 0
\(569\) 2.14532 + 3.71580i 0.0899365 + 0.155775i 0.907484 0.420086i \(-0.138000\pi\)
−0.817548 + 0.575861i \(0.804667\pi\)
\(570\) 0 0
\(571\) 25.7016 1.07558 0.537789 0.843080i \(-0.319260\pi\)
0.537789 + 0.843080i \(0.319260\pi\)
\(572\) 0 0
\(573\) 12.4658i 0.520765i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −33.8695 −1.41001 −0.705004 0.709204i \(-0.749055\pi\)
−0.705004 + 0.709204i \(0.749055\pi\)
\(578\) 0 0
\(579\) −11.1428 6.43331i −0.463080 0.267359i
\(580\) 0 0
\(581\) −6.87914 + 11.9150i −0.285395 + 0.494318i
\(582\) 0 0
\(583\) 0.606451 + 1.05040i 0.0251166 + 0.0435033i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.33943 + 4.05202i 0.0965587 + 0.167245i 0.910258 0.414041i \(-0.135883\pi\)
−0.813699 + 0.581286i \(0.802550\pi\)
\(588\) 0 0
\(589\) −12.2373 + 21.1956i −0.504229 + 0.873350i
\(590\) 0 0
\(591\) −5.56395 3.21235i −0.228870 0.132138i
\(592\) 0 0
\(593\) 18.6055 0.764036 0.382018 0.924155i \(-0.375229\pi\)
0.382018 + 0.924155i \(0.375229\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.67700i 0.232344i
\(598\) 0 0
\(599\) −4.77008 −0.194900 −0.0974501 0.995240i \(-0.531069\pi\)
−0.0974501 + 0.995240i \(0.531069\pi\)
\(600\) 0 0
\(601\) −1.84890 3.20239i −0.0754183 0.130628i 0.825850 0.563890i \(-0.190696\pi\)
−0.901268 + 0.433262i \(0.857363\pi\)
\(602\) 0 0
\(603\) 11.3302 0.461402
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −35.2571 20.3557i −1.43104 0.826211i −0.433839 0.900990i \(-0.642842\pi\)
−0.997200 + 0.0747791i \(0.976175\pi\)
\(608\) 0 0
\(609\) −3.64008 + 2.10160i −0.147503 + 0.0851611i
\(610\) 0 0
\(611\) 22.7022 + 37.6308i 0.918434 + 1.52238i
\(612\) 0 0
\(613\) −17.3962 30.1310i −0.702624 1.21698i −0.967542 0.252710i \(-0.918678\pi\)
0.264918 0.964271i \(-0.414655\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.20454 + 15.9427i −0.370561 + 0.641830i −0.989652 0.143489i \(-0.954168\pi\)
0.619091 + 0.785319i \(0.287501\pi\)
\(618\) 0 0
\(619\) 25.3957i 1.02074i 0.859955 + 0.510370i \(0.170491\pi\)
−0.859955 + 0.510370i \(0.829509\pi\)
\(620\) 0 0
\(621\) −4.41920 7.65427i −0.177336 0.307155i
\(622\) 0 0
\(623\) 18.5253i 0.742200i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5.46259 + 3.15383i −0.218155 + 0.125952i
\(628\) 0 0
\(629\) 49.5979i 1.97760i
\(630\) 0 0
\(631\) 0.747989 + 0.431852i 0.0297770 + 0.0171917i 0.514815 0.857302i \(-0.327861\pi\)
−0.485038 + 0.874493i \(0.661194\pi\)
\(632\) 0 0
\(633\) 10.4654 + 6.04222i 0.415963 + 0.240157i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.36797 15.1599i 0.331551 0.600656i
\(638\) 0 0
\(639\) 3.63713 2.09990i 0.143883 0.0830708i
\(640\) 0 0
\(641\) 1.27633 2.21067i 0.0504121 0.0873163i −0.839718 0.543022i \(-0.817280\pi\)
0.890130 + 0.455706i \(0.150613\pi\)
\(642\) 0 0
\(643\) 7.83515 13.5709i 0.308988 0.535183i −0.669153 0.743125i \(-0.733343\pi\)
0.978141 + 0.207941i \(0.0666763\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.6010 11.8940i 0.809909 0.467601i −0.0370152 0.999315i \(-0.511785\pi\)
0.846924 + 0.531713i \(0.178452\pi\)
\(648\) 0 0
\(649\) −18.3266 −0.719380
\(650\) 0 0
\(651\) 12.3448 0.483832
\(652\) 0 0
\(653\) −21.6447 + 12.4966i −0.847022 + 0.489028i −0.859645 0.510892i \(-0.829315\pi\)
0.0126233 + 0.999920i \(0.495982\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5.71587 + 9.90018i −0.222997 + 0.386243i
\(658\) 0 0
\(659\) 11.3259 19.6171i 0.441195 0.764172i −0.556583 0.830792i \(-0.687888\pi\)
0.997778 + 0.0666195i \(0.0212214\pi\)
\(660\) 0 0
\(661\) −25.0675 + 14.4727i −0.975014 + 0.562924i −0.900761 0.434315i \(-0.856990\pi\)
−0.0742527 + 0.997239i \(0.523657\pi\)
\(662\) 0 0
\(663\) 12.6567 + 20.9796i 0.491547 + 0.814778i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −21.7035 12.5305i −0.840363 0.485184i
\(668\) 0 0
\(669\) −0.289129 0.166929i −0.0111784 0.00645384i
\(670\) 0 0
\(671\) 25.4527i 0.982590i
\(672\) 0 0
\(673\) 5.52072 3.18739i 0.212808 0.122865i −0.389808 0.920896i \(-0.627459\pi\)
0.602616 + 0.798032i \(0.294125\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.18855i 0.0841129i 0.999115 + 0.0420565i \(0.0133909\pi\)
−0.999115 + 0.0420565i \(0.986609\pi\)
\(678\) 0 0
\(679\) 12.3430 + 21.3788i 0.473682 + 0.820442i
\(680\) 0 0
\(681\) 10.6685i 0.408820i
\(682\) 0 0
\(683\) 7.93261 13.7397i 0.303533 0.525734i −0.673401 0.739278i \(-0.735167\pi\)
0.976934 + 0.213543i \(0.0685005\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.9265 + 18.9253i 0.416872 + 0.722044i
\(688\) 0 0
\(689\) −1.74467 + 1.05254i −0.0664667 + 0.0400986i
\(690\) 0 0
\(691\) −30.6956 + 17.7221i −1.16772 + 0.674182i −0.953141 0.302525i \(-0.902170\pi\)
−0.214576 + 0.976707i \(0.568837\pi\)
\(692\) 0 0
\(693\) 2.75529 + 1.59077i 0.104665 + 0.0604284i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −3.27792 −0.124160
\(698\) 0 0
\(699\) 0.412630 + 0.714695i 0.0156071 + 0.0270323i
\(700\) 0 0
\(701\) 48.8074 1.84343 0.921714 0.387869i \(-0.126789\pi\)
0.921714 + 0.387869i \(0.126789\pi\)
\(702\) 0 0
\(703\) 21.4498i 0.808994i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.8175 0.632487
\(708\) 0 0
\(709\) −29.3654 16.9541i −1.10284 0.636725i −0.165874 0.986147i \(-0.553045\pi\)
−0.936965 + 0.349422i \(0.886378\pi\)
\(710\) 0 0
\(711\) 4.59808 7.96410i 0.172441 0.298677i
\(712\) 0 0
\(713\) 36.8022 + 63.7433i 1.37825 + 2.38721i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4.22304 7.31453i −0.157713 0.273166i
\(718\) 0 0
\(719\) 15.8458 27.4458i 0.590950 1.02356i −0.403155 0.915132i \(-0.632086\pi\)
0.994105 0.108423i \(-0.0345802\pi\)
\(720\) 0 0
\(721\) −20.2949 11.7173i −0.755822 0.436374i
\(722\) 0 0
\(723\) 5.95278 0.221386
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 41.4882i 1.53871i −0.638820 0.769356i \(-0.720577\pi\)
0.638820 0.769356i \(-0.279423\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 27.1202 + 46.9735i 1.00308 + 1.73738i
\(732\) 0 0
\(733\) 24.7661 0.914757 0.457379 0.889272i \(-0.348788\pi\)
0.457379 + 0.889272i \(0.348788\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.0597 12.1588i −0.775743 0.447876i
\(738\) 0 0
\(739\) 16.8459 9.72600i 0.619687 0.357777i −0.157060 0.987589i \(-0.550202\pi\)
0.776747 + 0.629812i \(0.216868\pi\)
\(740\) 0 0
\(741\) −5.47370 9.07311i −0.201082 0.333309i
\(742\) 0 0
\(743\) −24.7123 42.8030i −0.906607 1.57029i −0.818746 0.574156i \(-0.805330\pi\)
−0.0878606 0.996133i \(-0.528003\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.64066 + 8.03786i −0.169793 + 0.294090i
\(748\) 0 0
\(749\) 29.0434i 1.06122i
\(750\) 0 0
\(751\) 22.6941 + 39.3073i 0.828119 + 1.43434i 0.899512 + 0.436897i \(0.143922\pi\)
−0.0713924 + 0.997448i \(0.522744\pi\)
\(752\) 0 0
\(753\) 16.6870i 0.608107i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 32.6723 18.8633i 1.18749 0.685600i 0.229757 0.973248i \(-0.426207\pi\)
0.957736 + 0.287648i \(0.0928734\pi\)
\(758\) 0 0
\(759\) 18.9695i 0.688550i
\(760\) 0 0
\(761\) 15.9074 + 9.18412i 0.576641 + 0.332924i 0.759798 0.650160i \(-0.225298\pi\)
−0.183156 + 0.983084i \(0.558631\pi\)
\(762\) 0 0
\(763\) −7.71471 4.45409i −0.279291 0.161249i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.592170 30.7815i −0.0213820 1.11145i
\(768\) 0 0
\(769\) −2.16546 + 1.25023i −0.0780885 + 0.0450844i −0.538536 0.842603i \(-0.681022\pi\)
0.460447 + 0.887687i \(0.347689\pi\)
\(770\) 0 0
\(771\) −14.7634 + 25.5710i −0.531692 + 0.920918i
\(772\) 0 0
\(773\) 0.326221 0.565031i 0.0117333 0.0203228i −0.860099 0.510127i \(-0.829598\pi\)
0.871832 + 0.489804i \(0.162932\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −9.36965 + 5.40957i −0.336134 + 0.194067i
\(778\) 0 0
\(779\) 1.41761 0.0507913
\(780\) 0 0
\(781\) −9.01388 −0.322542
\(782\) 0 0
\(783\) −2.45559 + 1.41774i −0.0877558 + 0.0506658i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −14.2101 + 24.6126i −0.506535 + 0.877344i 0.493436 + 0.869782i \(0.335741\pi\)
−0.999971 + 0.00756251i \(0.997593\pi\)
\(788\) 0 0
\(789\) 7.80078 13.5113i 0.277715 0.481017i
\(790\) 0 0
\(791\) 25.7384 14.8601i 0.915151 0.528363i
\(792\) 0 0
\(793\) −42.7505 + 0.822430i −1.51812 + 0.0292053i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.4774 + 16.4414i 1.00872 + 0.582386i 0.910817 0.412810i \(-0.135453\pi\)
0.0979044 + 0.995196i \(0.468786\pi\)
\(798\) 0 0
\(799\) −71.7344 41.4159i −2.53778 1.46519i
\(800\) 0 0
\(801\) 12.4971i 0.441565i
\(802\) 0 0
\(803\) 21.2484 12.2678i 0.749840 0.432920i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.07671i 0.249112i
\(808\) 0 0
\(809\) −9.83715 17.0384i −0.345856 0.599040i 0.639653 0.768664i \(-0.279078\pi\)
−0.985509 + 0.169624i \(0.945745\pi\)
\(810\) 0 0
\(811\) 1.86785i 0.0655891i −0.999462 0.0327945i \(-0.989559\pi\)
0.999462 0.0327945i \(-0.0104407\pi\)
\(812\) 0 0
\(813\) 2.95019 5.10989i 0.103468 0.179212i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −11.7288 20.3148i −0.410338 0.710726i
\(818\) 0 0
\(819\) −2.58284 + 4.67922i −0.0902518 + 0.163505i
\(820\) 0 0
\(821\) −2.22390 + 1.28397i −0.0776146 + 0.0448108i −0.538305 0.842750i \(-0.680935\pi\)
0.460690 + 0.887561i \(0.347602\pi\)
\(822\) 0 0
\(823\) −25.0698 14.4741i −0.873879 0.504534i −0.00524374 0.999986i \(-0.501669\pi\)
−0.868635 + 0.495452i \(0.835002\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.30704 −0.0454502 −0.0227251 0.999742i \(-0.507234\pi\)
−0.0227251 + 0.999742i \(0.507234\pi\)
\(828\) 0 0
\(829\) −16.5976 28.7479i −0.576458 0.998455i −0.995882 0.0906643i \(-0.971101\pi\)
0.419423 0.907791i \(-0.362232\pi\)
\(830\) 0 0
\(831\) −24.7778 −0.859533
\(832\) 0 0
\(833\) 32.6364i 1.13078i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.32780 0.287851
\(838\) 0 0
\(839\) −17.7161 10.2284i −0.611626 0.353122i 0.161975 0.986795i \(-0.448213\pi\)
−0.773602 + 0.633672i \(0.781547\pi\)
\(840\) 0 0
\(841\) 10.4800 18.1520i 0.361381 0.625930i
\(842\) 0 0
\(843\) −15.9126 27.5615i −0.548061 0.949269i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.73878 + 8.20780i 0.162826 + 0.282023i
\(848\) 0 0
\(849\) −0.865901 + 1.49978i −0.0297176 + 0.0514725i
\(850\) 0 0
\(851\) −55.8653 32.2539i −1.91504 1.10565i
\(852\) 0 0
\(853\) 35.4366 1.21332 0.606662 0.794960i \(-0.292508\pi\)
0.606662 + 0.794960i \(0.292508\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.6965i 1.18521i −0.805494 0.592604i \(-0.798100\pi\)
0.805494 0.592604i \(-0.201900\pi\)
\(858\) 0 0
\(859\) −3.72422 −0.127069 −0.0635344 0.997980i \(-0.520237\pi\)
−0.0635344 + 0.997980i \(0.520237\pi\)
\(860\) 0 0
\(861\) −0.357517 0.619238i −0.0121842 0.0211036i
\(862\) 0 0
\(863\) −29.9610 −1.01988 −0.509942 0.860209i \(-0.670333\pi\)
−0.509942 + 0.860209i \(0.670333\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −25.2702 14.5898i −0.858223 0.495495i
\(868\) 0 0
\(869\) −17.0931 + 9.86869i −0.579843 + 0.334772i
\(870\) 0 0
\(871\) 19.7416 35.7649i 0.668917 1.21185i
\(872\) 0 0
\(873\) 8.32660 + 14.4221i 0.281813 + 0.488114i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −19.8199 + 34.3290i −0.669270 + 1.15921i 0.308839 + 0.951114i \(0.400060\pi\)
−0.978109 + 0.208095i \(0.933274\pi\)
\(878\) 0 0
\(879\) 8.25485i 0.278429i
\(880\) 0 0
\(881\) −15.5498 26.9330i −0.523885 0.907396i −0.999613 0.0278037i \(-0.991149\pi\)
0.475728 0.879592i \(-0.342185\pi\)
\(882\) 0 0
\(883\) 8.19692i 0.275848i −0.990443 0.137924i \(-0.955957\pi\)
0.990443 0.137924i \(-0.0440430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.11703 + 3.53167i −0.205390 + 0.118582i −0.599167 0.800624i \(-0.704501\pi\)
0.393777 + 0.919206i \(0.371168\pi\)
\(888\) 0 0
\(889\) 7.39263i 0.247941i
\(890\) 0 0
\(891\) 1.85872 + 1.07313i 0.0622694 + 0.0359513i
\(892\) 0 0
\(893\) 31.0232 + 17.9113i 1.03815 + 0.599378i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −31.8614 + 0.612946i −1.06382 + 0.0204657i
\(898\) 0 0
\(899\) 20.4497 11.8066i 0.682036 0.393774i
\(900\) 0 0
\(901\) 1.92016 3.32581i 0.0639698 0.110799i
\(902\) 0 0
\(903\) −5.91591 + 10.2467i −0.196869 + 0.340988i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −25.5097 + 14.7280i −0.847036 + 0.489036i −0.859650 0.510884i \(-0.829318\pi\)
0.0126137 + 0.999920i \(0.495985\pi\)
\(908\) 0 0
\(909\) 11.3451 0.376292
\(910\) 0 0
\(911\) −3.27384 −0.108467 −0.0542335 0.998528i \(-0.517272\pi\)
−0.0542335 + 0.998528i \(0.517272\pi\)
\(912\) 0 0
\(913\) 17.2514 9.96008i 0.570937 0.329631i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.42601 9.39812i 0.179182 0.310353i
\(918\) 0 0
\(919\) −20.5422 + 35.5801i −0.677624 + 1.17368i 0.298070 + 0.954544i \(0.403657\pi\)
−0.975694 + 0.219136i \(0.929676\pi\)
\(920\) 0 0
\(921\) −5.46378 + 3.15451i −0.180038 + 0.103945i
\(922\) 0 0
\(923\) −0.291258 15.1398i −0.00958686 0.498332i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −13.6909 7.90446i −0.449669 0.259617i
\(928\) 0 0
\(929\) −26.1187 15.0796i −0.856926 0.494747i 0.00605561 0.999982i \(-0.498072\pi\)
−0.862982 + 0.505235i \(0.831406\pi\)
\(930\) 0 0
\(931\) 14.1144i 0.462580i
\(932\) 0 0
\(933\) 1.00820 0.582087i 0.0330071 0.0190567i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 48.4005i 1.58117i −0.612350 0.790587i \(-0.709775\pi\)
0.612350 0.790587i \(-0.290225\pi\)
\(938\) 0 0
\(939\) −9.85092 17.0623i −0.321473 0.556807i
\(940\) 0 0
\(941\) 12.6829i 0.413452i 0.978399 + 0.206726i \(0.0662809\pi\)
−0.978399 + 0.206726i \(0.933719\pi\)
\(942\) 0 0
\(943\) 2.13165 3.69213i 0.0694162 0.120232i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.2105 + 24.6133i 0.461780 + 0.799826i 0.999050 0.0435841i \(-0.0138776\pi\)
−0.537270 + 0.843410i \(0.680544\pi\)
\(948\) 0 0
\(949\) 21.2916 + 35.2926i 0.691156 + 1.14565i
\(950\) 0 0
\(951\) −0.764018 + 0.441106i −0.0247750 + 0.0143038i
\(952\) 0 0
\(953\) −15.0381 8.68225i −0.487132 0.281246i 0.236252 0.971692i \(-0.424081\pi\)
−0.723384 + 0.690446i \(0.757414\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.08568 0.196722
\(958\) 0 0
\(959\) 6.82649 + 11.8238i 0.220439 + 0.381811i
\(960\) 0 0
\(961\) −38.3523 −1.23717
\(962\) 0 0
\(963\) 19.5926i 0.631363i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 26.3359 0.846906 0.423453 0.905918i \(-0.360818\pi\)
0.423453 + 0.905918i \(0.360818\pi\)
\(968\) 0 0
\(969\) 17.2958 + 9.98573i 0.555621 + 0.320788i
\(970\) 0 0
\(971\) −12.4170 + 21.5068i −0.398479 + 0.690186i −0.993538 0.113496i \(-0.963795\pi\)
0.595059 + 0.803682i \(0.297129\pi\)
\(972\) 0 0
\(973\) −5.60024 9.69990i −0.179535 0.310965i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.4281 31.9184i −0.589567 1.02116i −0.994289 0.106720i \(-0.965965\pi\)
0.404722 0.914440i \(-0.367368\pi\)
\(978\) 0 0
\(979\) −13.4111 + 23.2287i −0.428620 + 0.742392i
\(980\) 0 0
\(981\) −5.20434 3.00473i −0.166162 0.0959335i
\(982\) 0 0
\(983\) −5.00673 −0.159690 −0.0798450 0.996807i \(-0.525443\pi\)
−0.0798450 + 0.996807i \(0.525443\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 18.0687i 0.575132i
\(988\) 0 0
\(989\) −70.5458 −2.24322
\(990\) 0 0
\(991\) 9.01343 + 15.6117i 0.286321 + 0.495922i 0.972929 0.231106i \(-0.0742343\pi\)
−0.686608 + 0.727028i \(0.740901\pi\)
\(992\) 0 0
\(993\) −19.6323 −0.623011
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 49.9853 + 28.8590i 1.58305 + 0.913974i 0.994411 + 0.105578i \(0.0336693\pi\)
0.588639 + 0.808396i \(0.299664\pi\)
\(998\) 0 0
\(999\) −6.32076 + 3.64929i −0.199980 + 0.115458i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.bw.l.49.1 8
5.2 odd 4 3900.2.cd.l.2701.3 8
5.3 odd 4 780.2.cc.b.361.4 yes 8
5.4 even 2 3900.2.bw.g.49.4 8
13.4 even 6 3900.2.bw.g.2149.4 8
15.8 even 4 2340.2.dj.c.361.2 8
65.4 even 6 inner 3900.2.bw.l.2149.1 8
65.17 odd 12 3900.2.cd.l.901.3 8
65.43 odd 12 780.2.cc.b.121.2 8
195.173 even 12 2340.2.dj.c.901.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.2 8 65.43 odd 12
780.2.cc.b.361.4 yes 8 5.3 odd 4
2340.2.dj.c.361.2 8 15.8 even 4
2340.2.dj.c.901.4 8 195.173 even 12
3900.2.bw.g.49.4 8 5.4 even 2
3900.2.bw.g.2149.4 8 13.4 even 6
3900.2.bw.l.49.1 8 1.1 even 1 trivial
3900.2.bw.l.2149.1 8 65.4 even 6 inner
3900.2.cd.l.901.3 8 65.17 odd 12
3900.2.cd.l.2701.3 8 5.2 odd 4