Properties

Label 3900.2.bw.g.2149.4
Level $3900$
Weight $2$
Character 3900.2149
Analytic conductor $31.142$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(49,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8,0,4,0,-12,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2149.4
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 3900.2149
Dual form 3900.2.bw.g.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{3} +(-0.741181 - 1.28376i) q^{7} +(0.500000 + 0.866025i) q^{9} +(-1.85872 - 1.07313i) q^{11} +(1.86250 - 3.08725i) q^{13} +(-5.88512 + 3.39778i) q^{17} +(-2.54516 + 1.46945i) q^{19} -1.48236i q^{21} +(7.65427 + 4.41920i) q^{23} +1.00000i q^{27} +(1.41774 - 2.45559i) q^{29} +8.32780i q^{31} +(-1.07313 - 1.85872i) q^{33} +(-3.64929 + 6.32076i) q^{37} +(3.15660 - 1.74238i) q^{39} +(-0.417738 - 0.241181i) q^{41} +(-6.91239 + 3.99087i) q^{43} +12.1891 q^{47} +(2.40130 - 4.15918i) q^{49} -6.79555 q^{51} -0.565122i q^{53} -2.93890 q^{57} +(7.39483 - 4.26941i) q^{59} +(5.92953 + 10.2702i) q^{61} +(0.741181 - 1.28376i) q^{63} +(-5.66510 + 9.81225i) q^{67} +(4.41920 + 7.65427i) q^{69} +(3.63713 - 2.09990i) q^{71} +11.4317 q^{73} +3.18154i q^{77} +9.19615 q^{79} +(-0.500000 + 0.866025i) q^{81} +9.28132 q^{83} +(2.45559 - 1.41774i) q^{87} +(10.8228 + 6.24857i) q^{89} +(-5.34374 - 0.102802i) q^{91} +(-4.16390 + 7.21209i) q^{93} +(8.32660 + 14.4221i) q^{97} -2.14626i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} + 4 q^{9} - 12 q^{11} - 12 q^{19} + 12 q^{23} + 8 q^{29} + 4 q^{33} - 8 q^{37} - 24 q^{43} + 40 q^{47} + 4 q^{49} - 8 q^{51} - 24 q^{57} - 24 q^{59} + 8 q^{61} + 8 q^{63} - 4 q^{69} - 12 q^{71}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.741181 1.28376i −0.280140 0.485217i 0.691279 0.722588i \(-0.257048\pi\)
−0.971419 + 0.237371i \(0.923714\pi\)
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.85872 1.07313i −0.560425 0.323562i 0.192891 0.981220i \(-0.438214\pi\)
−0.753316 + 0.657659i \(0.771547\pi\)
\(12\) 0 0
\(13\) 1.86250 3.08725i 0.516565 0.856248i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.88512 + 3.39778i −1.42735 + 0.824082i −0.996911 0.0785367i \(-0.974975\pi\)
−0.430441 + 0.902619i \(0.641642\pi\)
\(18\) 0 0
\(19\) −2.54516 + 1.46945i −0.583900 + 0.337115i −0.762682 0.646774i \(-0.776118\pi\)
0.178782 + 0.983889i \(0.442784\pi\)
\(20\) 0 0
\(21\) 1.48236i 0.323478i
\(22\) 0 0
\(23\) 7.65427 + 4.41920i 1.59603 + 0.921466i 0.992242 + 0.124319i \(0.0396745\pi\)
0.603784 + 0.797148i \(0.293659\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.41774 2.45559i 0.263267 0.455992i −0.703841 0.710358i \(-0.748533\pi\)
0.967108 + 0.254365i \(0.0818666\pi\)
\(30\) 0 0
\(31\) 8.32780i 1.49572i 0.663858 + 0.747859i \(0.268918\pi\)
−0.663858 + 0.747859i \(0.731082\pi\)
\(32\) 0 0
\(33\) −1.07313 1.85872i −0.186808 0.323562i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.64929 + 6.32076i −0.599940 + 1.03913i 0.392890 + 0.919586i \(0.371475\pi\)
−0.992829 + 0.119540i \(0.961858\pi\)
\(38\) 0 0
\(39\) 3.15660 1.74238i 0.505460 0.279005i
\(40\) 0 0
\(41\) −0.417738 0.241181i −0.0652397 0.0376661i 0.467025 0.884244i \(-0.345326\pi\)
−0.532265 + 0.846578i \(0.678659\pi\)
\(42\) 0 0
\(43\) −6.91239 + 3.99087i −1.05413 + 0.608602i −0.923803 0.382869i \(-0.874936\pi\)
−0.130327 + 0.991471i \(0.541603\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.1891 1.77796 0.888982 0.457943i \(-0.151413\pi\)
0.888982 + 0.457943i \(0.151413\pi\)
\(48\) 0 0
\(49\) 2.40130 4.15918i 0.343043 0.594168i
\(50\) 0 0
\(51\) −6.79555 −0.951568
\(52\) 0 0
\(53\) 0.565122i 0.0776255i −0.999247 0.0388127i \(-0.987642\pi\)
0.999247 0.0388127i \(-0.0123576\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.93890 −0.389267
\(58\) 0 0
\(59\) 7.39483 4.26941i 0.962725 0.555830i 0.0657145 0.997838i \(-0.479067\pi\)
0.897011 + 0.442009i \(0.145734\pi\)
\(60\) 0 0
\(61\) 5.92953 + 10.2702i 0.759198 + 1.31497i 0.943260 + 0.332056i \(0.107742\pi\)
−0.184061 + 0.982915i \(0.558925\pi\)
\(62\) 0 0
\(63\) 0.741181 1.28376i 0.0933800 0.161739i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.66510 + 9.81225i −0.692103 + 1.19876i 0.279045 + 0.960278i \(0.409982\pi\)
−0.971148 + 0.238479i \(0.923351\pi\)
\(68\) 0 0
\(69\) 4.41920 + 7.65427i 0.532009 + 0.921466i
\(70\) 0 0
\(71\) 3.63713 2.09990i 0.431648 0.249212i −0.268400 0.963307i \(-0.586495\pi\)
0.700049 + 0.714095i \(0.253162\pi\)
\(72\) 0 0
\(73\) 11.4317 1.33798 0.668992 0.743269i \(-0.266726\pi\)
0.668992 + 0.743269i \(0.266726\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.18154i 0.362570i
\(78\) 0 0
\(79\) 9.19615 1.03465 0.517324 0.855790i \(-0.326928\pi\)
0.517324 + 0.855790i \(0.326928\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 9.28132 1.01876 0.509378 0.860543i \(-0.329875\pi\)
0.509378 + 0.860543i \(0.329875\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.45559 1.41774i 0.263267 0.151997i
\(88\) 0 0
\(89\) 10.8228 + 6.24857i 1.14722 + 0.662347i 0.948208 0.317650i \(-0.102894\pi\)
0.199011 + 0.979997i \(0.436227\pi\)
\(90\) 0 0
\(91\) −5.34374 0.102802i −0.560176 0.0107766i
\(92\) 0 0
\(93\) −4.16390 + 7.21209i −0.431777 + 0.747859i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.32660 + 14.4221i 0.845438 + 1.46434i 0.885240 + 0.465135i \(0.153994\pi\)
−0.0398015 + 0.999208i \(0.512673\pi\)
\(98\) 0 0
\(99\) 2.14626i 0.215708i
\(100\) 0 0
\(101\) 5.67253 9.82512i 0.564438 0.977636i −0.432663 0.901556i \(-0.642426\pi\)
0.997102 0.0760803i \(-0.0242405\pi\)
\(102\) 0 0
\(103\) 15.8089i 1.55770i −0.627211 0.778850i \(-0.715803\pi\)
0.627211 0.778850i \(-0.284197\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.9677 9.79631i −1.64033 0.947045i −0.980715 0.195441i \(-0.937386\pi\)
−0.659615 0.751604i \(-0.729281\pi\)
\(108\) 0 0
\(109\) 6.00945i 0.575601i 0.957690 + 0.287801i \(0.0929240\pi\)
−0.957690 + 0.287801i \(0.907076\pi\)
\(110\) 0 0
\(111\) −6.32076 + 3.64929i −0.599940 + 0.346375i
\(112\) 0 0
\(113\) −17.3631 + 10.0246i −1.63338 + 0.943033i −0.650341 + 0.759642i \(0.725374\pi\)
−0.983040 + 0.183391i \(0.941293\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.60488 + 0.0693504i 0.333272 + 0.00641144i
\(118\) 0 0
\(119\) 8.72388 + 5.03674i 0.799717 + 0.461717i
\(120\) 0 0
\(121\) −3.19677 5.53698i −0.290616 0.503361i
\(122\) 0 0
\(123\) −0.241181 0.417738i −0.0217466 0.0376661i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.31892 + 2.49353i 0.383242 + 0.221265i 0.679228 0.733927i \(-0.262315\pi\)
−0.295986 + 0.955192i \(0.595648\pi\)
\(128\) 0 0
\(129\) −7.98174 −0.702753
\(130\) 0 0
\(131\) 7.32076 0.639617 0.319809 0.947482i \(-0.396381\pi\)
0.319809 + 0.947482i \(0.396381\pi\)
\(132\) 0 0
\(133\) 3.77285 + 2.17826i 0.327148 + 0.188879i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.60514 + 7.97634i 0.393444 + 0.681465i 0.992901 0.118942i \(-0.0379502\pi\)
−0.599457 + 0.800407i \(0.704617\pi\)
\(138\) 0 0
\(139\) 3.77792 + 6.54354i 0.320439 + 0.555016i 0.980579 0.196127i \(-0.0628363\pi\)
−0.660140 + 0.751143i \(0.729503\pi\)
\(140\) 0 0
\(141\) 10.5561 + 6.09455i 0.888982 + 0.513254i
\(142\) 0 0
\(143\) −6.77489 + 3.73961i −0.566545 + 0.312722i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.15918 2.40130i 0.343043 0.198056i
\(148\) 0 0
\(149\) −2.90496 + 1.67718i −0.237984 + 0.137400i −0.614250 0.789112i \(-0.710541\pi\)
0.376266 + 0.926512i \(0.377208\pi\)
\(150\) 0 0
\(151\) 13.6310i 1.10928i −0.832091 0.554639i \(-0.812856\pi\)
0.832091 0.554639i \(-0.187144\pi\)
\(152\) 0 0
\(153\) −5.88512 3.39778i −0.475784 0.274694i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8.00897i 0.639186i 0.947555 + 0.319593i \(0.103546\pi\)
−0.947555 + 0.319593i \(0.896454\pi\)
\(158\) 0 0
\(159\) 0.282561 0.489410i 0.0224086 0.0388127i
\(160\) 0 0
\(161\) 13.1017i 1.03256i
\(162\) 0 0
\(163\) 4.52677 + 7.84059i 0.354564 + 0.614123i 0.987043 0.160455i \(-0.0512960\pi\)
−0.632479 + 0.774577i \(0.717963\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.51764 + 9.55683i −0.426968 + 0.739530i −0.996602 0.0823686i \(-0.973752\pi\)
0.569634 + 0.821898i \(0.307085\pi\)
\(168\) 0 0
\(169\) −6.06218 11.5000i −0.466321 0.884615i
\(170\) 0 0
\(171\) −2.54516 1.46945i −0.194633 0.112372i
\(172\) 0 0
\(173\) −7.69137 + 4.44062i −0.584764 + 0.337614i −0.763025 0.646370i \(-0.776286\pi\)
0.178260 + 0.983983i \(0.442953\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.53882 0.641817
\(178\) 0 0
\(179\) −0.323941 + 0.561083i −0.0242125 + 0.0419373i −0.877878 0.478885i \(-0.841041\pi\)
0.853665 + 0.520822i \(0.174374\pi\)
\(180\) 0 0
\(181\) 4.78851 0.355927 0.177963 0.984037i \(-0.443049\pi\)
0.177963 + 0.984037i \(0.443049\pi\)
\(182\) 0 0
\(183\) 11.8591i 0.876647i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 14.5851 1.06657
\(188\) 0 0
\(189\) 1.28376 0.741181i 0.0933800 0.0539130i
\(190\) 0 0
\(191\) −6.23289 10.7957i −0.450996 0.781148i 0.547452 0.836837i \(-0.315598\pi\)
−0.998448 + 0.0556890i \(0.982264\pi\)
\(192\) 0 0
\(193\) −6.43331 + 11.1428i −0.463080 + 0.802078i −0.999113 0.0421193i \(-0.986589\pi\)
0.536033 + 0.844197i \(0.319922\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.21235 + 5.56395i −0.228870 + 0.396415i −0.957474 0.288521i \(-0.906837\pi\)
0.728603 + 0.684936i \(0.240170\pi\)
\(198\) 0 0
\(199\) −2.83850 4.91643i −0.201216 0.348516i 0.747704 0.664032i \(-0.231156\pi\)
−0.948921 + 0.315515i \(0.897823\pi\)
\(200\) 0 0
\(201\) −9.81225 + 5.66510i −0.692103 + 0.399586i
\(202\) 0 0
\(203\) −4.20320 −0.295007
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.83839i 0.614311i
\(208\) 0 0
\(209\) 6.30766 0.436310
\(210\) 0 0
\(211\) −6.04222 + 10.4654i −0.415963 + 0.720470i −0.995529 0.0944558i \(-0.969889\pi\)
0.579566 + 0.814926i \(0.303222\pi\)
\(212\) 0 0
\(213\) 4.19980 0.287766
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.6909 6.17241i 0.725748 0.419011i
\(218\) 0 0
\(219\) 9.90018 + 5.71587i 0.668992 + 0.386243i
\(220\) 0 0
\(221\) −0.471274 + 24.4972i −0.0317013 + 1.64786i
\(222\) 0 0
\(223\) −0.166929 + 0.289129i −0.0111784 + 0.0193615i −0.871560 0.490288i \(-0.836892\pi\)
0.860382 + 0.509650i \(0.170225\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.33427 + 9.23923i 0.354048 + 0.613229i 0.986955 0.160999i \(-0.0514716\pi\)
−0.632906 + 0.774228i \(0.718138\pi\)
\(228\) 0 0
\(229\) 21.8530i 1.44409i 0.691847 + 0.722044i \(0.256797\pi\)
−0.691847 + 0.722044i \(0.743203\pi\)
\(230\) 0 0
\(231\) −1.59077 + 2.75529i −0.104665 + 0.181285i
\(232\) 0 0
\(233\) 0.825259i 0.0540645i −0.999635 0.0270323i \(-0.991394\pi\)
0.999635 0.0270323i \(-0.00860568\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 7.96410 + 4.59808i 0.517324 + 0.298677i
\(238\) 0 0
\(239\) 8.44609i 0.546332i −0.961967 0.273166i \(-0.911929\pi\)
0.961967 0.273166i \(-0.0880709\pi\)
\(240\) 0 0
\(241\) −5.15526 + 2.97639i −0.332080 + 0.191726i −0.656764 0.754096i \(-0.728075\pi\)
0.324684 + 0.945822i \(0.394742\pi\)
\(242\) 0 0
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.203814 + 10.5944i −0.0129684 + 0.674105i
\(248\) 0 0
\(249\) 8.03786 + 4.64066i 0.509378 + 0.294090i
\(250\) 0 0
\(251\) −8.34349 14.4513i −0.526636 0.912161i −0.999518 0.0310349i \(-0.990120\pi\)
0.472882 0.881126i \(-0.343214\pi\)
\(252\) 0 0
\(253\) −9.48477 16.4281i −0.596302 1.03283i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −25.5710 14.7634i −1.59508 0.920918i −0.992417 0.122920i \(-0.960774\pi\)
−0.602660 0.797998i \(-0.705893\pi\)
\(258\) 0 0
\(259\) 10.8191 0.672269
\(260\) 0 0
\(261\) 2.83548 0.175512
\(262\) 0 0
\(263\) 13.5113 + 7.80078i 0.833145 + 0.481017i 0.854928 0.518746i \(-0.173601\pi\)
−0.0217831 + 0.999763i \(0.506934\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6.24857 + 10.8228i 0.382406 + 0.662347i
\(268\) 0 0
\(269\) 3.53835 + 6.12861i 0.215737 + 0.373668i 0.953500 0.301392i \(-0.0974512\pi\)
−0.737763 + 0.675060i \(0.764118\pi\)
\(270\) 0 0
\(271\) −5.10989 2.95019i −0.310403 0.179212i 0.336704 0.941611i \(-0.390688\pi\)
−0.647107 + 0.762399i \(0.724021\pi\)
\(272\) 0 0
\(273\) −4.57642 2.76090i −0.276977 0.167097i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −21.4582 + 12.3889i −1.28930 + 0.744377i −0.978529 0.206108i \(-0.933920\pi\)
−0.310770 + 0.950485i \(0.600587\pi\)
\(278\) 0 0
\(279\) −7.21209 + 4.16390i −0.431777 + 0.249286i
\(280\) 0 0
\(281\) 31.8253i 1.89854i −0.314465 0.949269i \(-0.601825\pi\)
0.314465 0.949269i \(-0.398175\pi\)
\(282\) 0 0
\(283\) −1.49978 0.865901i −0.0891529 0.0514725i 0.454761 0.890614i \(-0.349725\pi\)
−0.543914 + 0.839141i \(0.683058\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.715035i 0.0422072i
\(288\) 0 0
\(289\) 14.5898 25.2702i 0.858223 1.48649i
\(290\) 0 0
\(291\) 16.6532i 0.976228i
\(292\) 0 0
\(293\) 4.12742 + 7.14891i 0.241127 + 0.417644i 0.961036 0.276425i \(-0.0891497\pi\)
−0.719909 + 0.694069i \(0.755816\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.07313 1.85872i 0.0622694 0.107854i
\(298\) 0 0
\(299\) 27.8992 15.3999i 1.61346 0.890597i
\(300\) 0 0
\(301\) 10.2467 + 5.91591i 0.590608 + 0.340988i
\(302\) 0 0
\(303\) 9.82512 5.67253i 0.564438 0.325879i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6.30903 −0.360075 −0.180038 0.983660i \(-0.557622\pi\)
−0.180038 + 0.983660i \(0.557622\pi\)
\(308\) 0 0
\(309\) 7.90446 13.6909i 0.449669 0.778850i
\(310\) 0 0
\(311\) −1.16417 −0.0660142 −0.0330071 0.999455i \(-0.510508\pi\)
−0.0330071 + 0.999455i \(0.510508\pi\)
\(312\) 0 0
\(313\) 19.7018i 1.11361i 0.830642 + 0.556807i \(0.187974\pi\)
−0.830642 + 0.556807i \(0.812026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.882212 −0.0495500 −0.0247750 0.999693i \(-0.507887\pi\)
−0.0247750 + 0.999693i \(0.507887\pi\)
\(318\) 0 0
\(319\) −5.27035 + 3.04284i −0.295083 + 0.170366i
\(320\) 0 0
\(321\) −9.79631 16.9677i −0.546777 0.947045i
\(322\) 0 0
\(323\) 9.98573 17.2958i 0.555621 0.962363i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.00473 + 5.20434i −0.166162 + 0.287801i
\(328\) 0 0
\(329\) −9.03433 15.6479i −0.498079 0.862698i
\(330\) 0 0
\(331\) 17.0020 9.81614i 0.934517 0.539544i 0.0462798 0.998929i \(-0.485263\pi\)
0.888237 + 0.459385i \(0.151930\pi\)
\(332\) 0 0
\(333\) −7.29858 −0.399960
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.36724i 0.128952i 0.997919 + 0.0644760i \(0.0205376\pi\)
−0.997919 + 0.0644760i \(0.979462\pi\)
\(338\) 0 0
\(339\) −20.0492 −1.08892
\(340\) 0 0
\(341\) 8.93684 15.4791i 0.483957 0.838238i
\(342\) 0 0
\(343\) −17.4957 −0.944681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.6862 + 7.32441i −0.681033 + 0.393195i −0.800244 0.599674i \(-0.795297\pi\)
0.119211 + 0.992869i \(0.461963\pi\)
\(348\) 0 0
\(349\) −26.9424 15.5552i −1.44219 0.832651i −0.444198 0.895928i \(-0.646512\pi\)
−0.997996 + 0.0632770i \(0.979845\pi\)
\(350\) 0 0
\(351\) 3.08725 + 1.86250i 0.164785 + 0.0994130i
\(352\) 0 0
\(353\) 0.295838 0.512406i 0.0157458 0.0272726i −0.858045 0.513574i \(-0.828321\pi\)
0.873791 + 0.486302i \(0.161654\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 5.03674 + 8.72388i 0.266572 + 0.461717i
\(358\) 0 0
\(359\) 13.8253i 0.729671i −0.931072 0.364836i \(-0.881125\pi\)
0.931072 0.364836i \(-0.118875\pi\)
\(360\) 0 0
\(361\) −5.18143 + 8.97451i −0.272707 + 0.472342i
\(362\) 0 0
\(363\) 6.39355i 0.335574i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 21.0335 + 12.1437i 1.09794 + 0.633896i 0.935679 0.352852i \(-0.114788\pi\)
0.162261 + 0.986748i \(0.448121\pi\)
\(368\) 0 0
\(369\) 0.482362i 0.0251108i
\(370\) 0 0
\(371\) −0.725483 + 0.418858i −0.0376652 + 0.0217460i
\(372\) 0 0
\(373\) −9.12012 + 5.26550i −0.472222 + 0.272637i −0.717169 0.696899i \(-0.754563\pi\)
0.244948 + 0.969536i \(0.421229\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.94048 8.95045i −0.254448 0.460972i
\(378\) 0 0
\(379\) 1.41022 + 0.814189i 0.0724380 + 0.0418221i 0.535782 0.844357i \(-0.320017\pi\)
−0.463344 + 0.886179i \(0.653350\pi\)
\(380\) 0 0
\(381\) 2.49353 + 4.31892i 0.127747 + 0.221265i
\(382\) 0 0
\(383\) 4.81199 + 8.33461i 0.245881 + 0.425879i 0.962379 0.271711i \(-0.0875893\pi\)
−0.716498 + 0.697589i \(0.754256\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.91239 3.99087i −0.351376 0.202867i
\(388\) 0 0
\(389\) −15.4741 −0.784566 −0.392283 0.919844i \(-0.628315\pi\)
−0.392283 + 0.919844i \(0.628315\pi\)
\(390\) 0 0
\(391\) −60.0618 −3.03746
\(392\) 0 0
\(393\) 6.33996 + 3.66038i 0.319809 + 0.184642i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10.7103 18.5509i −0.537537 0.931041i −0.999036 0.0439006i \(-0.986022\pi\)
0.461499 0.887141i \(-0.347312\pi\)
\(398\) 0 0
\(399\) 2.17826 + 3.77285i 0.109049 + 0.188879i
\(400\) 0 0
\(401\) 27.7026 + 15.9941i 1.38340 + 0.798708i 0.992561 0.121750i \(-0.0388506\pi\)
0.390842 + 0.920458i \(0.372184\pi\)
\(402\) 0 0
\(403\) 25.7100 + 15.5105i 1.28071 + 0.772635i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.5660 7.83234i 0.672442 0.388235i
\(408\) 0 0
\(409\) 23.5525 13.5981i 1.16460 0.672380i 0.212196 0.977227i \(-0.431939\pi\)
0.952401 + 0.304847i \(0.0986053\pi\)
\(410\) 0 0
\(411\) 9.21028i 0.454310i
\(412\) 0 0
\(413\) −10.9618 6.32881i −0.539396 0.311420i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.55583i 0.370011i
\(418\) 0 0
\(419\) 0.325349 0.563522i 0.0158944 0.0275298i −0.857969 0.513702i \(-0.828274\pi\)
0.873863 + 0.486172i \(0.161607\pi\)
\(420\) 0 0
\(421\) 35.7471i 1.74221i 0.491098 + 0.871104i \(0.336596\pi\)
−0.491098 + 0.871104i \(0.663404\pi\)
\(422\) 0 0
\(423\) 6.09455 + 10.5561i 0.296327 + 0.513254i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.78971 15.2242i 0.425364 0.736752i
\(428\) 0 0
\(429\) −7.73703 0.148844i −0.373548 0.00718627i
\(430\) 0 0
\(431\) 18.1241 + 10.4639i 0.873005 + 0.504030i 0.868346 0.495960i \(-0.165184\pi\)
0.00465921 + 0.999989i \(0.498517\pi\)
\(432\) 0 0
\(433\) −21.3903 + 12.3497i −1.02795 + 0.593487i −0.916397 0.400271i \(-0.868916\pi\)
−0.111553 + 0.993758i \(0.535583\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −25.9752 −1.24256
\(438\) 0 0
\(439\) −13.9137 + 24.0992i −0.664063 + 1.15019i 0.315475 + 0.948934i \(0.397836\pi\)
−0.979538 + 0.201258i \(0.935497\pi\)
\(440\) 0 0
\(441\) 4.80260 0.228695
\(442\) 0 0
\(443\) 27.8356i 1.32251i −0.750161 0.661256i \(-0.770024\pi\)
0.750161 0.661256i \(-0.229976\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3.35436 −0.158656
\(448\) 0 0
\(449\) 5.88828 3.39960i 0.277885 0.160437i −0.354580 0.935026i \(-0.615376\pi\)
0.632466 + 0.774588i \(0.282043\pi\)
\(450\) 0 0
\(451\) 0.517638 + 0.896575i 0.0243746 + 0.0422181i
\(452\) 0 0
\(453\) 6.81552 11.8048i 0.320221 0.554639i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.798482 + 1.38301i −0.0373514 + 0.0646945i −0.884097 0.467304i \(-0.845225\pi\)
0.846745 + 0.531998i \(0.178559\pi\)
\(458\) 0 0
\(459\) −3.39778 5.88512i −0.158595 0.274694i
\(460\) 0 0
\(461\) 6.32097 3.64941i 0.294397 0.169970i −0.345526 0.938409i \(-0.612300\pi\)
0.639923 + 0.768439i \(0.278966\pi\)
\(462\) 0 0
\(463\) 12.7038 0.590397 0.295198 0.955436i \(-0.404614\pi\)
0.295198 + 0.955436i \(0.404614\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.65053i 0.0763777i −0.999271 0.0381888i \(-0.987841\pi\)
0.999271 0.0381888i \(-0.0121588\pi\)
\(468\) 0 0
\(469\) 16.7955 0.775543
\(470\) 0 0
\(471\) −4.00449 + 6.93597i −0.184517 + 0.319593i
\(472\) 0 0
\(473\) 17.1309 0.787681
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.489410 0.282561i 0.0224086 0.0129376i
\(478\) 0 0
\(479\) −23.8712 13.7821i −1.09070 0.629719i −0.156941 0.987608i \(-0.550163\pi\)
−0.933764 + 0.357890i \(0.883496\pi\)
\(480\) 0 0
\(481\) 12.7169 + 23.0387i 0.579842 + 1.05047i
\(482\) 0 0
\(483\) 6.55085 11.3464i 0.298074 0.516279i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 20.8850 + 36.1739i 0.946390 + 1.63919i 0.752945 + 0.658084i \(0.228633\pi\)
0.193445 + 0.981111i \(0.438034\pi\)
\(488\) 0 0
\(489\) 9.05354i 0.409415i
\(490\) 0 0
\(491\) 8.51463 14.7478i 0.384260 0.665558i −0.607406 0.794391i \(-0.707790\pi\)
0.991666 + 0.128834i \(0.0411233\pi\)
\(492\) 0 0
\(493\) 19.2686i 0.867815i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.39155 3.11281i −0.241844 0.139629i
\(498\) 0 0
\(499\) 27.7591i 1.24267i 0.783546 + 0.621333i \(0.213409\pi\)
−0.783546 + 0.621333i \(0.786591\pi\)
\(500\) 0 0
\(501\) −9.55683 + 5.51764i −0.426968 + 0.246510i
\(502\) 0 0
\(503\) −7.23126 + 4.17497i −0.322426 + 0.186153i −0.652473 0.757812i \(-0.726269\pi\)
0.330047 + 0.943964i \(0.392935\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.500000 12.9904i 0.0222058 0.576923i
\(508\) 0 0
\(509\) −4.29338 2.47879i −0.190301 0.109870i 0.401823 0.915718i \(-0.368377\pi\)
−0.592123 + 0.805847i \(0.701710\pi\)
\(510\) 0 0
\(511\) −8.47299 14.6757i −0.374823 0.649213i
\(512\) 0 0
\(513\) −1.46945 2.54516i −0.0648778 0.112372i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −22.6561 13.0805i −0.996415 0.575281i
\(518\) 0 0
\(519\) −8.88123 −0.389843
\(520\) 0 0
\(521\) −27.0863 −1.18667 −0.593337 0.804954i \(-0.702190\pi\)
−0.593337 + 0.804954i \(0.702190\pi\)
\(522\) 0 0
\(523\) 4.39492 + 2.53741i 0.192177 + 0.110953i 0.593001 0.805202i \(-0.297943\pi\)
−0.400825 + 0.916155i \(0.631276\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −28.2960 49.0102i −1.23259 2.13492i
\(528\) 0 0
\(529\) 27.5586 + 47.7329i 1.19820 + 2.07534i
\(530\) 0 0
\(531\) 7.39483 + 4.26941i 0.320908 + 0.185277i
\(532\) 0 0
\(533\) −1.52262 + 0.840459i −0.0659521 + 0.0364043i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.561083 + 0.323941i −0.0242125 + 0.0139791i
\(538\) 0 0
\(539\) −8.92669 + 5.15383i −0.384500 + 0.221991i
\(540\) 0 0
\(541\) 4.65826i 0.200274i 0.994974 + 0.100137i \(0.0319282\pi\)
−0.994974 + 0.100137i \(0.968072\pi\)
\(542\) 0 0
\(543\) 4.14697 + 2.39425i 0.177963 + 0.102747i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 30.0649i 1.28548i −0.766083 0.642742i \(-0.777797\pi\)
0.766083 0.642742i \(-0.222203\pi\)
\(548\) 0 0
\(549\) −5.92953 + 10.2702i −0.253066 + 0.438323i
\(550\) 0 0
\(551\) 8.33318i 0.355005i
\(552\) 0 0
\(553\) −6.81601 11.8057i −0.289846 0.502029i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.89640 10.2129i 0.249838 0.432733i −0.713642 0.700510i \(-0.752956\pi\)
0.963481 + 0.267777i \(0.0862891\pi\)
\(558\) 0 0
\(559\) −0.553536 + 28.7732i −0.0234121 + 1.21698i
\(560\) 0 0
\(561\) 12.6310 + 7.29253i 0.533283 + 0.307891i
\(562\) 0 0
\(563\) 31.5200 18.1981i 1.32841 0.766957i 0.343356 0.939205i \(-0.388436\pi\)
0.985054 + 0.172248i \(0.0551030\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.48236 0.0622533
\(568\) 0 0
\(569\) 2.14532 3.71580i 0.0899365 0.155775i −0.817548 0.575861i \(-0.804667\pi\)
0.907484 + 0.420086i \(0.138000\pi\)
\(570\) 0 0
\(571\) 25.7016 1.07558 0.537789 0.843080i \(-0.319260\pi\)
0.537789 + 0.843080i \(0.319260\pi\)
\(572\) 0 0
\(573\) 12.4658i 0.520765i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 33.8695 1.41001 0.705004 0.709204i \(-0.250945\pi\)
0.705004 + 0.709204i \(0.250945\pi\)
\(578\) 0 0
\(579\) −11.1428 + 6.43331i −0.463080 + 0.267359i
\(580\) 0 0
\(581\) −6.87914 11.9150i −0.285395 0.494318i
\(582\) 0 0
\(583\) −0.606451 + 1.05040i −0.0251166 + 0.0435033i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.33943 + 4.05202i −0.0965587 + 0.167245i −0.910258 0.414041i \(-0.864117\pi\)
0.813699 + 0.581286i \(0.197450\pi\)
\(588\) 0 0
\(589\) −12.2373 21.1956i −0.504229 0.873350i
\(590\) 0 0
\(591\) −5.56395 + 3.21235i −0.228870 + 0.132138i
\(592\) 0 0
\(593\) −18.6055 −0.764036 −0.382018 0.924155i \(-0.624771\pi\)
−0.382018 + 0.924155i \(0.624771\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.67700i 0.232344i
\(598\) 0 0
\(599\) −4.77008 −0.194900 −0.0974501 0.995240i \(-0.531069\pi\)
−0.0974501 + 0.995240i \(0.531069\pi\)
\(600\) 0 0
\(601\) −1.84890 + 3.20239i −0.0754183 + 0.130628i −0.901268 0.433262i \(-0.857363\pi\)
0.825850 + 0.563890i \(0.190696\pi\)
\(602\) 0 0
\(603\) −11.3302 −0.461402
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 35.2571 20.3557i 1.43104 0.826211i 0.433839 0.900990i \(-0.357158\pi\)
0.997200 + 0.0747791i \(0.0238252\pi\)
\(608\) 0 0
\(609\) −3.64008 2.10160i −0.147503 0.0851611i
\(610\) 0 0
\(611\) 22.7022 37.6308i 0.918434 1.52238i
\(612\) 0 0
\(613\) 17.3962 30.1310i 0.702624 1.21698i −0.264918 0.964271i \(-0.585345\pi\)
0.967542 0.252710i \(-0.0813218\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.20454 + 15.9427i 0.370561 + 0.641830i 0.989652 0.143489i \(-0.0458322\pi\)
−0.619091 + 0.785319i \(0.712499\pi\)
\(618\) 0 0
\(619\) 25.3957i 1.02074i −0.859955 0.510370i \(-0.829509\pi\)
0.859955 0.510370i \(-0.170491\pi\)
\(620\) 0 0
\(621\) −4.41920 + 7.65427i −0.177336 + 0.307155i
\(622\) 0 0
\(623\) 18.5253i 0.742200i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5.46259 + 3.15383i 0.218155 + 0.125952i
\(628\) 0 0
\(629\) 49.5979i 1.97760i
\(630\) 0 0
\(631\) 0.747989 0.431852i 0.0297770 0.0171917i −0.485038 0.874493i \(-0.661194\pi\)
0.514815 + 0.857302i \(0.327861\pi\)
\(632\) 0 0
\(633\) −10.4654 + 6.04222i −0.415963 + 0.240157i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8.36797 15.1599i −0.331551 0.600656i
\(638\) 0 0
\(639\) 3.63713 + 2.09990i 0.143883 + 0.0830708i
\(640\) 0 0
\(641\) 1.27633 + 2.21067i 0.0504121 + 0.0873163i 0.890130 0.455706i \(-0.150613\pi\)
−0.839718 + 0.543022i \(0.817280\pi\)
\(642\) 0 0
\(643\) −7.83515 13.5709i −0.308988 0.535183i 0.669153 0.743125i \(-0.266657\pi\)
−0.978141 + 0.207941i \(0.933324\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.6010 11.8940i −0.809909 0.467601i 0.0370152 0.999315i \(-0.488215\pi\)
−0.846924 + 0.531713i \(0.821548\pi\)
\(648\) 0 0
\(649\) −18.3266 −0.719380
\(650\) 0 0
\(651\) 12.3448 0.483832
\(652\) 0 0
\(653\) 21.6447 + 12.4966i 0.847022 + 0.489028i 0.859645 0.510892i \(-0.170685\pi\)
−0.0126233 + 0.999920i \(0.504018\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.71587 + 9.90018i 0.222997 + 0.386243i
\(658\) 0 0
\(659\) 11.3259 + 19.6171i 0.441195 + 0.764172i 0.997778 0.0666195i \(-0.0212214\pi\)
−0.556583 + 0.830792i \(0.687888\pi\)
\(660\) 0 0
\(661\) −25.0675 14.4727i −0.975014 0.562924i −0.0742527 0.997239i \(-0.523657\pi\)
−0.900761 + 0.434315i \(0.856990\pi\)
\(662\) 0 0
\(663\) −12.6567 + 20.9796i −0.491547 + 0.814778i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 21.7035 12.5305i 0.840363 0.485184i
\(668\) 0 0
\(669\) −0.289129 + 0.166929i −0.0111784 + 0.00645384i
\(670\) 0 0
\(671\) 25.4527i 0.982590i
\(672\) 0 0
\(673\) −5.52072 3.18739i −0.212808 0.122865i 0.389808 0.920896i \(-0.372541\pi\)
−0.602616 + 0.798032i \(0.705875\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.18855i 0.0841129i 0.999115 + 0.0420565i \(0.0133909\pi\)
−0.999115 + 0.0420565i \(0.986609\pi\)
\(678\) 0 0
\(679\) 12.3430 21.3788i 0.473682 0.820442i
\(680\) 0 0
\(681\) 10.6685i 0.408820i
\(682\) 0 0
\(683\) −7.93261 13.7397i −0.303533 0.525734i 0.673401 0.739278i \(-0.264833\pi\)
−0.976934 + 0.213543i \(0.931500\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.9265 + 18.9253i −0.416872 + 0.722044i
\(688\) 0 0
\(689\) −1.74467 1.05254i −0.0664667 0.0400986i
\(690\) 0 0
\(691\) −30.6956 17.7221i −1.16772 0.674182i −0.214576 0.976707i \(-0.568837\pi\)
−0.953141 + 0.302525i \(0.902170\pi\)
\(692\) 0 0
\(693\) −2.75529 + 1.59077i −0.104665 + 0.0604284i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3.27792 0.124160
\(698\) 0 0
\(699\) 0.412630 0.714695i 0.0156071 0.0270323i
\(700\) 0 0
\(701\) 48.8074 1.84343 0.921714 0.387869i \(-0.126789\pi\)
0.921714 + 0.387869i \(0.126789\pi\)
\(702\) 0 0
\(703\) 21.4498i 0.808994i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.8175 −0.632487
\(708\) 0 0
\(709\) −29.3654 + 16.9541i −1.10284 + 0.636725i −0.936965 0.349422i \(-0.886378\pi\)
−0.165874 + 0.986147i \(0.553045\pi\)
\(710\) 0 0
\(711\) 4.59808 + 7.96410i 0.172441 + 0.298677i
\(712\) 0 0
\(713\) −36.8022 + 63.7433i −1.37825 + 2.38721i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.22304 7.31453i 0.157713 0.273166i
\(718\) 0 0
\(719\) 15.8458 + 27.4458i 0.590950 + 1.02356i 0.994105 + 0.108423i \(0.0345802\pi\)
−0.403155 + 0.915132i \(0.632086\pi\)
\(720\) 0 0
\(721\) −20.2949 + 11.7173i −0.755822 + 0.436374i
\(722\) 0 0
\(723\) −5.95278 −0.221386
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 41.4882i 1.53871i −0.638820 0.769356i \(-0.720577\pi\)
0.638820 0.769356i \(-0.279423\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 27.1202 46.9735i 1.00308 1.73738i
\(732\) 0 0
\(733\) −24.7661 −0.914757 −0.457379 0.889272i \(-0.651212\pi\)
−0.457379 + 0.889272i \(0.651212\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.0597 12.1588i 0.775743 0.447876i
\(738\) 0 0
\(739\) 16.8459 + 9.72600i 0.619687 + 0.357777i 0.776747 0.629812i \(-0.216868\pi\)
−0.157060 + 0.987589i \(0.550202\pi\)
\(740\) 0 0
\(741\) −5.47370 + 9.07311i −0.201082 + 0.333309i
\(742\) 0 0
\(743\) 24.7123 42.8030i 0.906607 1.57029i 0.0878606 0.996133i \(-0.471997\pi\)
0.818746 0.574156i \(-0.194670\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.64066 + 8.03786i 0.169793 + 0.294090i
\(748\) 0 0
\(749\) 29.0434i 1.06122i
\(750\) 0 0
\(751\) 22.6941 39.3073i 0.828119 1.43434i −0.0713924 0.997448i \(-0.522744\pi\)
0.899512 0.436897i \(-0.143922\pi\)
\(752\) 0 0
\(753\) 16.6870i 0.608107i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −32.6723 18.8633i −1.18749 0.685600i −0.229757 0.973248i \(-0.573793\pi\)
−0.957736 + 0.287648i \(0.907127\pi\)
\(758\) 0 0
\(759\) 18.9695i 0.688550i
\(760\) 0 0
\(761\) 15.9074 9.18412i 0.576641 0.332924i −0.183156 0.983084i \(-0.558631\pi\)
0.759798 + 0.650160i \(0.225298\pi\)
\(762\) 0 0
\(763\) 7.71471 4.45409i 0.279291 0.161249i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.592170 30.7815i 0.0213820 1.11145i
\(768\) 0 0
\(769\) −2.16546 1.25023i −0.0780885 0.0450844i 0.460447 0.887687i \(-0.347689\pi\)
−0.538536 + 0.842603i \(0.681022\pi\)
\(770\) 0 0
\(771\) −14.7634 25.5710i −0.531692 0.920918i
\(772\) 0 0
\(773\) −0.326221 0.565031i −0.0117333 0.0203228i 0.860099 0.510127i \(-0.170402\pi\)
−0.871832 + 0.489804i \(0.837068\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 9.36965 + 5.40957i 0.336134 + 0.194067i
\(778\) 0 0
\(779\) 1.41761 0.0507913
\(780\) 0 0
\(781\) −9.01388 −0.322542
\(782\) 0 0
\(783\) 2.45559 + 1.41774i 0.0877558 + 0.0506658i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.2101 + 24.6126i 0.506535 + 0.877344i 0.999971 + 0.00756251i \(0.00240724\pi\)
−0.493436 + 0.869782i \(0.664259\pi\)
\(788\) 0 0
\(789\) 7.80078 + 13.5113i 0.277715 + 0.481017i
\(790\) 0 0
\(791\) 25.7384 + 14.8601i 0.915151 + 0.528363i
\(792\) 0 0
\(793\) 42.7505 + 0.822430i 1.51812 + 0.0292053i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.4774 + 16.4414i −1.00872 + 0.582386i −0.910817 0.412810i \(-0.864547\pi\)
−0.0979044 + 0.995196i \(0.531214\pi\)
\(798\) 0 0
\(799\) −71.7344 + 41.4159i −2.53778 + 1.46519i
\(800\) 0 0
\(801\) 12.4971i 0.441565i
\(802\) 0 0
\(803\) −21.2484 12.2678i −0.749840 0.432920i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.07671i 0.249112i
\(808\) 0 0
\(809\) −9.83715 + 17.0384i −0.345856 + 0.599040i −0.985509 0.169624i \(-0.945745\pi\)
0.639653 + 0.768664i \(0.279078\pi\)
\(810\) 0 0
\(811\) 1.86785i 0.0655891i 0.999462 + 0.0327945i \(0.0104407\pi\)
−0.999462 + 0.0327945i \(0.989559\pi\)
\(812\) 0 0
\(813\) −2.95019 5.10989i −0.103468 0.179212i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 11.7288 20.3148i 0.410338 0.710726i
\(818\) 0 0
\(819\) −2.58284 4.67922i −0.0902518 0.163505i
\(820\) 0 0
\(821\) −2.22390 1.28397i −0.0776146 0.0448108i 0.460690 0.887561i \(-0.347602\pi\)
−0.538305 + 0.842750i \(0.680935\pi\)
\(822\) 0 0
\(823\) 25.0698 14.4741i 0.873879 0.504534i 0.00524374 0.999986i \(-0.498331\pi\)
0.868635 + 0.495452i \(0.164998\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.30704 0.0454502 0.0227251 0.999742i \(-0.492766\pi\)
0.0227251 + 0.999742i \(0.492766\pi\)
\(828\) 0 0
\(829\) −16.5976 + 28.7479i −0.576458 + 0.998455i 0.419423 + 0.907791i \(0.362232\pi\)
−0.995882 + 0.0906643i \(0.971101\pi\)
\(830\) 0 0
\(831\) −24.7778 −0.859533
\(832\) 0 0
\(833\) 32.6364i 1.13078i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −8.32780 −0.287851
\(838\) 0 0
\(839\) −17.7161 + 10.2284i −0.611626 + 0.353122i −0.773602 0.633672i \(-0.781547\pi\)
0.161975 + 0.986795i \(0.448213\pi\)
\(840\) 0 0
\(841\) 10.4800 + 18.1520i 0.361381 + 0.625930i
\(842\) 0 0
\(843\) 15.9126 27.5615i 0.548061 0.949269i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −4.73878 + 8.20780i −0.162826 + 0.282023i
\(848\) 0 0
\(849\) −0.865901 1.49978i −0.0297176 0.0514725i
\(850\) 0 0
\(851\) −55.8653 + 32.2539i −1.91504 + 1.10565i
\(852\) 0 0
\(853\) −35.4366 −1.21332 −0.606662 0.794960i \(-0.707492\pi\)
−0.606662 + 0.794960i \(0.707492\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.6965i 1.18521i −0.805494 0.592604i \(-0.798100\pi\)
0.805494 0.592604i \(-0.201900\pi\)
\(858\) 0 0
\(859\) −3.72422 −0.127069 −0.0635344 0.997980i \(-0.520237\pi\)
−0.0635344 + 0.997980i \(0.520237\pi\)
\(860\) 0 0
\(861\) −0.357517 + 0.619238i −0.0121842 + 0.0211036i
\(862\) 0 0
\(863\) 29.9610 1.01988 0.509942 0.860209i \(-0.329667\pi\)
0.509942 + 0.860209i \(0.329667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 25.2702 14.5898i 0.858223 0.495495i
\(868\) 0 0
\(869\) −17.0931 9.86869i −0.579843 0.334772i
\(870\) 0 0
\(871\) 19.7416 + 35.7649i 0.668917 + 1.21185i
\(872\) 0 0
\(873\) −8.32660 + 14.4221i −0.281813 + 0.488114i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19.8199 + 34.3290i 0.669270 + 1.15921i 0.978109 + 0.208095i \(0.0667264\pi\)
−0.308839 + 0.951114i \(0.599940\pi\)
\(878\) 0 0
\(879\) 8.25485i 0.278429i
\(880\) 0 0
\(881\) −15.5498 + 26.9330i −0.523885 + 0.907396i 0.475728 + 0.879592i \(0.342185\pi\)
−0.999613 + 0.0278037i \(0.991149\pi\)
\(882\) 0 0
\(883\) 8.19692i 0.275848i −0.990443 0.137924i \(-0.955957\pi\)
0.990443 0.137924i \(-0.0440430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.11703 + 3.53167i 0.205390 + 0.118582i 0.599167 0.800624i \(-0.295499\pi\)
−0.393777 + 0.919206i \(0.628832\pi\)
\(888\) 0 0
\(889\) 7.39263i 0.247941i
\(890\) 0 0
\(891\) 1.85872 1.07313i 0.0622694 0.0359513i
\(892\) 0 0
\(893\) −31.0232 + 17.9113i −1.03815 + 0.599378i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 31.8614 + 0.612946i 1.06382 + 0.0204657i
\(898\) 0 0
\(899\) 20.4497 + 11.8066i 0.682036 + 0.393774i
\(900\) 0 0
\(901\) 1.92016 + 3.32581i 0.0639698 + 0.110799i
\(902\) 0 0
\(903\) 5.91591 + 10.2467i 0.196869 + 0.340988i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 25.5097 + 14.7280i 0.847036 + 0.489036i 0.859650 0.510884i \(-0.170682\pi\)
−0.0126137 + 0.999920i \(0.504015\pi\)
\(908\) 0 0
\(909\) 11.3451 0.376292
\(910\) 0 0
\(911\) −3.27384 −0.108467 −0.0542335 0.998528i \(-0.517272\pi\)
−0.0542335 + 0.998528i \(0.517272\pi\)
\(912\) 0 0
\(913\) −17.2514 9.96008i −0.570937 0.329631i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.42601 9.39812i −0.179182 0.310353i
\(918\) 0 0
\(919\) −20.5422 35.5801i −0.677624 1.17368i −0.975694 0.219136i \(-0.929676\pi\)
0.298070 0.954544i \(-0.403657\pi\)
\(920\) 0 0
\(921\) −5.46378 3.15451i −0.180038 0.103945i
\(922\) 0 0
\(923\) 0.291258 15.1398i 0.00958686 0.498332i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 13.6909 7.90446i 0.449669 0.259617i
\(928\) 0 0
\(929\) −26.1187 + 15.0796i −0.856926 + 0.494747i −0.862982 0.505235i \(-0.831406\pi\)
0.00605561 + 0.999982i \(0.498072\pi\)
\(930\) 0 0
\(931\) 14.1144i 0.462580i
\(932\) 0 0
\(933\) −1.00820 0.582087i −0.0330071 0.0190567i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 48.4005i 1.58117i −0.612350 0.790587i \(-0.709775\pi\)
0.612350 0.790587i \(-0.290225\pi\)
\(938\) 0 0
\(939\) −9.85092 + 17.0623i −0.321473 + 0.556807i
\(940\) 0 0
\(941\) 12.6829i 0.413452i −0.978399 0.206726i \(-0.933719\pi\)
0.978399 0.206726i \(-0.0662809\pi\)
\(942\) 0 0
\(943\) −2.13165 3.69213i −0.0694162 0.120232i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.2105 + 24.6133i −0.461780 + 0.799826i −0.999050 0.0435841i \(-0.986122\pi\)
0.537270 + 0.843410i \(0.319456\pi\)
\(948\) 0 0
\(949\) 21.2916 35.2926i 0.691156 1.14565i
\(950\) 0 0
\(951\) −0.764018 0.441106i −0.0247750 0.0143038i
\(952\) 0 0
\(953\) 15.0381 8.68225i 0.487132 0.281246i −0.236252 0.971692i \(-0.575919\pi\)
0.723384 + 0.690446i \(0.242586\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6.08568 −0.196722
\(958\) 0 0
\(959\) 6.82649 11.8238i 0.220439 0.381811i
\(960\) 0 0
\(961\) −38.3523 −1.23717
\(962\) 0 0
\(963\) 19.5926i 0.631363i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −26.3359 −0.846906 −0.423453 0.905918i \(-0.639182\pi\)
−0.423453 + 0.905918i \(0.639182\pi\)
\(968\) 0 0
\(969\) 17.2958 9.98573i 0.555621 0.320788i
\(970\) 0 0
\(971\) −12.4170 21.5068i −0.398479 0.690186i 0.595059 0.803682i \(-0.297129\pi\)
−0.993538 + 0.113496i \(0.963795\pi\)
\(972\) 0 0
\(973\) 5.60024 9.69990i 0.179535 0.310965i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.4281 31.9184i 0.589567 1.02116i −0.404722 0.914440i \(-0.632632\pi\)
0.994289 0.106720i \(-0.0340349\pi\)
\(978\) 0 0
\(979\) −13.4111 23.2287i −0.428620 0.742392i
\(980\) 0 0
\(981\) −5.20434 + 3.00473i −0.166162 + 0.0959335i
\(982\) 0 0
\(983\) 5.00673 0.159690 0.0798450 0.996807i \(-0.474557\pi\)
0.0798450 + 0.996807i \(0.474557\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 18.0687i 0.575132i
\(988\) 0 0
\(989\) −70.5458 −2.24322
\(990\) 0 0
\(991\) 9.01343 15.6117i 0.286321 0.495922i −0.686608 0.727028i \(-0.740901\pi\)
0.972929 + 0.231106i \(0.0742343\pi\)
\(992\) 0 0
\(993\) 19.6323 0.623011
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −49.9853 + 28.8590i −1.58305 + 0.913974i −0.588639 + 0.808396i \(0.700336\pi\)
−0.994411 + 0.105578i \(0.966331\pi\)
\(998\) 0 0
\(999\) −6.32076 3.64929i −0.199980 0.115458i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.bw.g.2149.4 8
5.2 odd 4 3900.2.cd.l.901.3 8
5.3 odd 4 780.2.cc.b.121.2 8
5.4 even 2 3900.2.bw.l.2149.1 8
13.10 even 6 3900.2.bw.l.49.1 8
15.8 even 4 2340.2.dj.c.901.4 8
65.23 odd 12 780.2.cc.b.361.4 yes 8
65.49 even 6 inner 3900.2.bw.g.49.4 8
65.62 odd 12 3900.2.cd.l.2701.3 8
195.23 even 12 2340.2.dj.c.361.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.2 8 5.3 odd 4
780.2.cc.b.361.4 yes 8 65.23 odd 12
2340.2.dj.c.361.2 8 195.23 even 12
2340.2.dj.c.901.4 8 15.8 even 4
3900.2.bw.g.49.4 8 65.49 even 6 inner
3900.2.bw.g.2149.4 8 1.1 even 1 trivial
3900.2.bw.l.49.1 8 13.10 even 6
3900.2.bw.l.2149.1 8 5.4 even 2
3900.2.cd.l.901.3 8 5.2 odd 4
3900.2.cd.l.2701.3 8 65.62 odd 12