Properties

Label 3872.2.a.bk.1.3
Level $3872$
Weight $2$
Character 3872.1
Self dual yes
Analytic conductor $30.918$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3872,2,Mod(1,3872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3872.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,2,0,0,0,18,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9180756626\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.22000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 15x^{2} + 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.52626\) of defining polynomial
Character \(\chi\) \(=\) 3872.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52626 q^{3} -2.85410 q^{5} +2.52626 q^{7} +3.38197 q^{9} +4.85410 q^{13} -7.21019 q^{15} -5.61803 q^{17} +2.52626 q^{19} +6.38197 q^{21} +8.17513 q^{23} +3.14590 q^{25} +0.964944 q^{27} -1.38197 q^{29} +6.61382 q^{31} -7.21019 q^{35} -0.618034 q^{37} +12.2627 q^{39} -8.61803 q^{41} +3.12262 q^{43} -9.65248 q^{45} +0.596368 q^{47} -0.618034 q^{49} -14.1926 q^{51} +0.381966 q^{53} +6.38197 q^{57} +10.7014 q^{59} +3.61803 q^{61} +8.54371 q^{63} -13.8541 q^{65} +13.2276 q^{67} +20.6525 q^{69} +11.6663 q^{71} -4.32624 q^{73} +7.94734 q^{75} +3.49120 q^{79} -7.70820 q^{81} -11.6663 q^{83} +16.0344 q^{85} -3.49120 q^{87} -7.23607 q^{89} +12.2627 q^{91} +16.7082 q^{93} -7.21019 q^{95} +17.7984 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 18 q^{9} + 6 q^{13} - 18 q^{17} + 30 q^{21} + 26 q^{25} - 10 q^{29} + 2 q^{37} - 30 q^{41} + 24 q^{45} + 2 q^{49} + 6 q^{53} + 30 q^{57} + 10 q^{61} - 42 q^{65} + 20 q^{69} + 14 q^{73} - 4 q^{81}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52626 1.45853 0.729267 0.684229i \(-0.239861\pi\)
0.729267 + 0.684229i \(0.239861\pi\)
\(4\) 0 0
\(5\) −2.85410 −1.27639 −0.638197 0.769873i \(-0.720319\pi\)
−0.638197 + 0.769873i \(0.720319\pi\)
\(6\) 0 0
\(7\) 2.52626 0.954835 0.477417 0.878677i \(-0.341573\pi\)
0.477417 + 0.878677i \(0.341573\pi\)
\(8\) 0 0
\(9\) 3.38197 1.12732
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 4.85410 1.34629 0.673143 0.739512i \(-0.264944\pi\)
0.673143 + 0.739512i \(0.264944\pi\)
\(14\) 0 0
\(15\) −7.21019 −1.86166
\(16\) 0 0
\(17\) −5.61803 −1.36257 −0.681287 0.732017i \(-0.738579\pi\)
−0.681287 + 0.732017i \(0.738579\pi\)
\(18\) 0 0
\(19\) 2.52626 0.579563 0.289781 0.957093i \(-0.406417\pi\)
0.289781 + 0.957093i \(0.406417\pi\)
\(20\) 0 0
\(21\) 6.38197 1.39266
\(22\) 0 0
\(23\) 8.17513 1.70463 0.852317 0.523026i \(-0.175197\pi\)
0.852317 + 0.523026i \(0.175197\pi\)
\(24\) 0 0
\(25\) 3.14590 0.629180
\(26\) 0 0
\(27\) 0.964944 0.185703
\(28\) 0 0
\(29\) −1.38197 −0.256625 −0.128312 0.991734i \(-0.540956\pi\)
−0.128312 + 0.991734i \(0.540956\pi\)
\(30\) 0 0
\(31\) 6.61382 1.18788 0.593939 0.804510i \(-0.297572\pi\)
0.593939 + 0.804510i \(0.297572\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.21019 −1.21874
\(36\) 0 0
\(37\) −0.618034 −0.101604 −0.0508021 0.998709i \(-0.516178\pi\)
−0.0508021 + 0.998709i \(0.516178\pi\)
\(38\) 0 0
\(39\) 12.2627 1.96360
\(40\) 0 0
\(41\) −8.61803 −1.34591 −0.672955 0.739683i \(-0.734975\pi\)
−0.672955 + 0.739683i \(0.734975\pi\)
\(42\) 0 0
\(43\) 3.12262 0.476196 0.238098 0.971241i \(-0.423476\pi\)
0.238098 + 0.971241i \(0.423476\pi\)
\(44\) 0 0
\(45\) −9.65248 −1.43891
\(46\) 0 0
\(47\) 0.596368 0.0869892 0.0434946 0.999054i \(-0.486151\pi\)
0.0434946 + 0.999054i \(0.486151\pi\)
\(48\) 0 0
\(49\) −0.618034 −0.0882906
\(50\) 0 0
\(51\) −14.1926 −1.98736
\(52\) 0 0
\(53\) 0.381966 0.0524671 0.0262335 0.999656i \(-0.491649\pi\)
0.0262335 + 0.999656i \(0.491649\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.38197 0.845312
\(58\) 0 0
\(59\) 10.7014 1.39320 0.696601 0.717459i \(-0.254695\pi\)
0.696601 + 0.717459i \(0.254695\pi\)
\(60\) 0 0
\(61\) 3.61803 0.463242 0.231621 0.972806i \(-0.425597\pi\)
0.231621 + 0.972806i \(0.425597\pi\)
\(62\) 0 0
\(63\) 8.54371 1.07641
\(64\) 0 0
\(65\) −13.8541 −1.71839
\(66\) 0 0
\(67\) 13.2276 1.61601 0.808007 0.589173i \(-0.200546\pi\)
0.808007 + 0.589173i \(0.200546\pi\)
\(68\) 0 0
\(69\) 20.6525 2.48627
\(70\) 0 0
\(71\) 11.6663 1.38454 0.692270 0.721639i \(-0.256611\pi\)
0.692270 + 0.721639i \(0.256611\pi\)
\(72\) 0 0
\(73\) −4.32624 −0.506348 −0.253174 0.967421i \(-0.581474\pi\)
−0.253174 + 0.967421i \(0.581474\pi\)
\(74\) 0 0
\(75\) 7.94734 0.917680
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.49120 0.392791 0.196395 0.980525i \(-0.437076\pi\)
0.196395 + 0.980525i \(0.437076\pi\)
\(80\) 0 0
\(81\) −7.70820 −0.856467
\(82\) 0 0
\(83\) −11.6663 −1.28055 −0.640273 0.768147i \(-0.721179\pi\)
−0.640273 + 0.768147i \(0.721179\pi\)
\(84\) 0 0
\(85\) 16.0344 1.73918
\(86\) 0 0
\(87\) −3.49120 −0.374296
\(88\) 0 0
\(89\) −7.23607 −0.767022 −0.383511 0.923536i \(-0.625285\pi\)
−0.383511 + 0.923536i \(0.625285\pi\)
\(90\) 0 0
\(91\) 12.2627 1.28548
\(92\) 0 0
\(93\) 16.7082 1.73256
\(94\) 0 0
\(95\) −7.21019 −0.739750
\(96\) 0 0
\(97\) 17.7984 1.80715 0.903576 0.428429i \(-0.140933\pi\)
0.903576 + 0.428429i \(0.140933\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.38197 0.834037 0.417018 0.908898i \(-0.363075\pi\)
0.417018 + 0.908898i \(0.363075\pi\)
\(102\) 0 0
\(103\) −5.64888 −0.556601 −0.278300 0.960494i \(-0.589771\pi\)
−0.278300 + 0.960494i \(0.589771\pi\)
\(104\) 0 0
\(105\) −18.2148 −1.77758
\(106\) 0 0
\(107\) 16.9466 1.63829 0.819147 0.573584i \(-0.194447\pi\)
0.819147 + 0.573584i \(0.194447\pi\)
\(108\) 0 0
\(109\) −10.4721 −1.00305 −0.501524 0.865144i \(-0.667227\pi\)
−0.501524 + 0.865144i \(0.667227\pi\)
\(110\) 0 0
\(111\) −1.56131 −0.148193
\(112\) 0 0
\(113\) −8.14590 −0.766302 −0.383151 0.923686i \(-0.625161\pi\)
−0.383151 + 0.923686i \(0.625161\pi\)
\(114\) 0 0
\(115\) −23.3327 −2.17578
\(116\) 0 0
\(117\) 16.4164 1.51770
\(118\) 0 0
\(119\) −14.1926 −1.30103
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −21.7714 −1.96306
\(124\) 0 0
\(125\) 5.29180 0.473313
\(126\) 0 0
\(127\) −4.68393 −0.415632 −0.207816 0.978168i \(-0.566636\pi\)
−0.207816 + 0.978168i \(0.566636\pi\)
\(128\) 0 0
\(129\) 7.88854 0.694548
\(130\) 0 0
\(131\) −1.92989 −0.168615 −0.0843075 0.996440i \(-0.526868\pi\)
−0.0843075 + 0.996440i \(0.526868\pi\)
\(132\) 0 0
\(133\) 6.38197 0.553387
\(134\) 0 0
\(135\) −2.75405 −0.237031
\(136\) 0 0
\(137\) 9.90983 0.846654 0.423327 0.905977i \(-0.360862\pi\)
0.423327 + 0.905977i \(0.360862\pi\)
\(138\) 0 0
\(139\) 13.8240 1.17254 0.586269 0.810117i \(-0.300596\pi\)
0.586269 + 0.810117i \(0.300596\pi\)
\(140\) 0 0
\(141\) 1.50658 0.126877
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.94427 0.327554
\(146\) 0 0
\(147\) −1.56131 −0.128775
\(148\) 0 0
\(149\) −9.32624 −0.764035 −0.382018 0.924155i \(-0.624771\pi\)
−0.382018 + 0.924155i \(0.624771\pi\)
\(150\) 0 0
\(151\) −10.7014 −0.870867 −0.435433 0.900221i \(-0.643405\pi\)
−0.435433 + 0.900221i \(0.643405\pi\)
\(152\) 0 0
\(153\) −19.0000 −1.53606
\(154\) 0 0
\(155\) −18.8765 −1.51620
\(156\) 0 0
\(157\) 19.5623 1.56124 0.780621 0.625005i \(-0.214903\pi\)
0.780621 + 0.625005i \(0.214903\pi\)
\(158\) 0 0
\(159\) 0.964944 0.0765250
\(160\) 0 0
\(161\) 20.6525 1.62764
\(162\) 0 0
\(163\) −11.6663 −0.913778 −0.456889 0.889524i \(-0.651036\pi\)
−0.456889 + 0.889524i \(0.651036\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.61382 0.511793 0.255896 0.966704i \(-0.417629\pi\)
0.255896 + 0.966704i \(0.417629\pi\)
\(168\) 0 0
\(169\) 10.5623 0.812485
\(170\) 0 0
\(171\) 8.54371 0.653354
\(172\) 0 0
\(173\) −17.7426 −1.34895 −0.674474 0.738298i \(-0.735630\pi\)
−0.674474 + 0.738298i \(0.735630\pi\)
\(174\) 0 0
\(175\) 7.94734 0.600763
\(176\) 0 0
\(177\) 27.0344 2.03203
\(178\) 0 0
\(179\) 2.52626 0.188821 0.0944106 0.995533i \(-0.469903\pi\)
0.0944106 + 0.995533i \(0.469903\pi\)
\(180\) 0 0
\(181\) 19.0344 1.41482 0.707409 0.706804i \(-0.249864\pi\)
0.707409 + 0.706804i \(0.249864\pi\)
\(182\) 0 0
\(183\) 9.14008 0.675654
\(184\) 0 0
\(185\) 1.76393 0.129687
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.43769 0.177316
\(190\) 0 0
\(191\) 0.596368 0.0431517 0.0215758 0.999767i \(-0.493132\pi\)
0.0215758 + 0.999767i \(0.493132\pi\)
\(192\) 0 0
\(193\) −11.3262 −0.815280 −0.407640 0.913143i \(-0.633648\pi\)
−0.407640 + 0.913143i \(0.633648\pi\)
\(194\) 0 0
\(195\) −34.9990 −2.50633
\(196\) 0 0
\(197\) 12.6525 0.901452 0.450726 0.892662i \(-0.351165\pi\)
0.450726 + 0.892662i \(0.351165\pi\)
\(198\) 0 0
\(199\) 3.12262 0.221357 0.110678 0.993856i \(-0.464698\pi\)
0.110678 + 0.993856i \(0.464698\pi\)
\(200\) 0 0
\(201\) 33.4164 2.35701
\(202\) 0 0
\(203\) −3.49120 −0.245034
\(204\) 0 0
\(205\) 24.5967 1.71791
\(206\) 0 0
\(207\) 27.6480 1.92167
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 3.49120 0.240344 0.120172 0.992753i \(-0.461655\pi\)
0.120172 + 0.992753i \(0.461655\pi\)
\(212\) 0 0
\(213\) 29.4721 2.01940
\(214\) 0 0
\(215\) −8.91229 −0.607813
\(216\) 0 0
\(217\) 16.7082 1.13423
\(218\) 0 0
\(219\) −10.9292 −0.738526
\(220\) 0 0
\(221\) −27.2705 −1.83441
\(222\) 0 0
\(223\) −17.6838 −1.18419 −0.592097 0.805867i \(-0.701700\pi\)
−0.592097 + 0.805867i \(0.701700\pi\)
\(224\) 0 0
\(225\) 10.6393 0.709288
\(226\) 0 0
\(227\) 0.596368 0.0395823 0.0197912 0.999804i \(-0.493700\pi\)
0.0197912 + 0.999804i \(0.493700\pi\)
\(228\) 0 0
\(229\) −2.56231 −0.169322 −0.0846610 0.996410i \(-0.526981\pi\)
−0.0846610 + 0.996410i \(0.526981\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.3262 1.26610 0.633052 0.774109i \(-0.281802\pi\)
0.633052 + 0.774109i \(0.281802\pi\)
\(234\) 0 0
\(235\) −1.70210 −0.111032
\(236\) 0 0
\(237\) 8.81966 0.572898
\(238\) 0 0
\(239\) −10.7014 −0.692215 −0.346108 0.938195i \(-0.612497\pi\)
−0.346108 + 0.938195i \(0.612497\pi\)
\(240\) 0 0
\(241\) −3.41641 −0.220070 −0.110035 0.993928i \(-0.535096\pi\)
−0.110035 + 0.993928i \(0.535096\pi\)
\(242\) 0 0
\(243\) −22.3677 −1.43489
\(244\) 0 0
\(245\) 1.76393 0.112693
\(246\) 0 0
\(247\) 12.2627 0.780257
\(248\) 0 0
\(249\) −29.4721 −1.86772
\(250\) 0 0
\(251\) −0.368576 −0.0232643 −0.0116321 0.999932i \(-0.503703\pi\)
−0.0116321 + 0.999932i \(0.503703\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 40.5071 2.53665
\(256\) 0 0
\(257\) −7.27051 −0.453522 −0.226761 0.973950i \(-0.572814\pi\)
−0.226761 + 0.973950i \(0.572814\pi\)
\(258\) 0 0
\(259\) −1.56131 −0.0970152
\(260\) 0 0
\(261\) −4.67376 −0.289299
\(262\) 0 0
\(263\) 6.98240 0.430553 0.215277 0.976553i \(-0.430935\pi\)
0.215277 + 0.976553i \(0.430935\pi\)
\(264\) 0 0
\(265\) −1.09017 −0.0669686
\(266\) 0 0
\(267\) −18.2802 −1.11873
\(268\) 0 0
\(269\) −4.09017 −0.249382 −0.124691 0.992196i \(-0.539794\pi\)
−0.124691 + 0.992196i \(0.539794\pi\)
\(270\) 0 0
\(271\) 27.0517 1.64327 0.821636 0.570013i \(-0.193062\pi\)
0.821636 + 0.570013i \(0.193062\pi\)
\(272\) 0 0
\(273\) 30.9787 1.87492
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −16.2705 −0.977600 −0.488800 0.872396i \(-0.662565\pi\)
−0.488800 + 0.872396i \(0.662565\pi\)
\(278\) 0 0
\(279\) 22.3677 1.33912
\(280\) 0 0
\(281\) −24.2705 −1.44786 −0.723929 0.689875i \(-0.757666\pi\)
−0.723929 + 0.689875i \(0.757666\pi\)
\(282\) 0 0
\(283\) 14.5612 0.865571 0.432786 0.901497i \(-0.357531\pi\)
0.432786 + 0.901497i \(0.357531\pi\)
\(284\) 0 0
\(285\) −18.2148 −1.07895
\(286\) 0 0
\(287\) −21.7714 −1.28512
\(288\) 0 0
\(289\) 14.5623 0.856606
\(290\) 0 0
\(291\) 44.9632 2.63579
\(292\) 0 0
\(293\) −0.798374 −0.0466415 −0.0233207 0.999728i \(-0.507424\pi\)
−0.0233207 + 0.999728i \(0.507424\pi\)
\(294\) 0 0
\(295\) −30.5429 −1.77827
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 39.6829 2.29492
\(300\) 0 0
\(301\) 7.88854 0.454688
\(302\) 0 0
\(303\) 21.1750 1.21647
\(304\) 0 0
\(305\) −10.3262 −0.591279
\(306\) 0 0
\(307\) −1.92989 −0.110144 −0.0550722 0.998482i \(-0.517539\pi\)
−0.0550722 + 0.998482i \(0.517539\pi\)
\(308\) 0 0
\(309\) −14.2705 −0.811821
\(310\) 0 0
\(311\) −7.57877 −0.429752 −0.214876 0.976641i \(-0.568935\pi\)
−0.214876 + 0.976641i \(0.568935\pi\)
\(312\) 0 0
\(313\) 4.09017 0.231190 0.115595 0.993296i \(-0.463123\pi\)
0.115595 + 0.993296i \(0.463123\pi\)
\(314\) 0 0
\(315\) −24.3846 −1.37392
\(316\) 0 0
\(317\) −5.03444 −0.282762 −0.141381 0.989955i \(-0.545154\pi\)
−0.141381 + 0.989955i \(0.545154\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 42.8115 2.38951
\(322\) 0 0
\(323\) −14.1926 −0.789697
\(324\) 0 0
\(325\) 15.2705 0.847055
\(326\) 0 0
\(327\) −26.4553 −1.46298
\(328\) 0 0
\(329\) 1.50658 0.0830603
\(330\) 0 0
\(331\) −6.24525 −0.343270 −0.171635 0.985161i \(-0.554905\pi\)
−0.171635 + 0.985161i \(0.554905\pi\)
\(332\) 0 0
\(333\) −2.09017 −0.114541
\(334\) 0 0
\(335\) −37.7530 −2.06267
\(336\) 0 0
\(337\) −10.0344 −0.546611 −0.273305 0.961927i \(-0.588117\pi\)
−0.273305 + 0.961927i \(0.588117\pi\)
\(338\) 0 0
\(339\) −20.5786 −1.11768
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −19.2451 −1.03914
\(344\) 0 0
\(345\) −58.9443 −3.17345
\(346\) 0 0
\(347\) −17.9116 −0.961544 −0.480772 0.876846i \(-0.659644\pi\)
−0.480772 + 0.876846i \(0.659644\pi\)
\(348\) 0 0
\(349\) −4.14590 −0.221925 −0.110962 0.993825i \(-0.535393\pi\)
−0.110962 + 0.993825i \(0.535393\pi\)
\(350\) 0 0
\(351\) 4.68393 0.250010
\(352\) 0 0
\(353\) −7.70820 −0.410266 −0.205133 0.978734i \(-0.565763\pi\)
−0.205133 + 0.978734i \(0.565763\pi\)
\(354\) 0 0
\(355\) −33.2969 −1.76722
\(356\) 0 0
\(357\) −35.8541 −1.89760
\(358\) 0 0
\(359\) 0.596368 0.0314751 0.0157375 0.999876i \(-0.494990\pi\)
0.0157375 + 0.999876i \(0.494990\pi\)
\(360\) 0 0
\(361\) −12.6180 −0.664107
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.3475 0.646299
\(366\) 0 0
\(367\) 3.71899 0.194130 0.0970649 0.995278i \(-0.469055\pi\)
0.0970649 + 0.995278i \(0.469055\pi\)
\(368\) 0 0
\(369\) −29.1459 −1.51727
\(370\) 0 0
\(371\) 0.964944 0.0500974
\(372\) 0 0
\(373\) −9.12461 −0.472454 −0.236227 0.971698i \(-0.575911\pi\)
−0.236227 + 0.971698i \(0.575911\pi\)
\(374\) 0 0
\(375\) 13.3684 0.690343
\(376\) 0 0
\(377\) −6.70820 −0.345490
\(378\) 0 0
\(379\) −21.0342 −1.08045 −0.540227 0.841519i \(-0.681662\pi\)
−0.540227 + 0.841519i \(0.681662\pi\)
\(380\) 0 0
\(381\) −11.8328 −0.606214
\(382\) 0 0
\(383\) −32.3320 −1.65209 −0.826043 0.563607i \(-0.809413\pi\)
−0.826043 + 0.563607i \(0.809413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.5606 0.536826
\(388\) 0 0
\(389\) −3.27051 −0.165821 −0.0829107 0.996557i \(-0.526422\pi\)
−0.0829107 + 0.996557i \(0.526422\pi\)
\(390\) 0 0
\(391\) −45.9282 −2.32269
\(392\) 0 0
\(393\) −4.87539 −0.245931
\(394\) 0 0
\(395\) −9.96424 −0.501355
\(396\) 0 0
\(397\) 16.2918 0.817662 0.408831 0.912610i \(-0.365937\pi\)
0.408831 + 0.912610i \(0.365937\pi\)
\(398\) 0 0
\(399\) 16.1225 0.807133
\(400\) 0 0
\(401\) −9.90983 −0.494873 −0.247437 0.968904i \(-0.579588\pi\)
−0.247437 + 0.968904i \(0.579588\pi\)
\(402\) 0 0
\(403\) 32.1042 1.59922
\(404\) 0 0
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −38.2705 −1.89235 −0.946177 0.323648i \(-0.895091\pi\)
−0.946177 + 0.323648i \(0.895091\pi\)
\(410\) 0 0
\(411\) 25.0348 1.23487
\(412\) 0 0
\(413\) 27.0344 1.33028
\(414\) 0 0
\(415\) 33.2969 1.63448
\(416\) 0 0
\(417\) 34.9230 1.71019
\(418\) 0 0
\(419\) 8.17513 0.399381 0.199691 0.979859i \(-0.436006\pi\)
0.199691 + 0.979859i \(0.436006\pi\)
\(420\) 0 0
\(421\) −23.0902 −1.12535 −0.562673 0.826680i \(-0.690227\pi\)
−0.562673 + 0.826680i \(0.690227\pi\)
\(422\) 0 0
\(423\) 2.01690 0.0980649
\(424\) 0 0
\(425\) −17.6738 −0.857303
\(426\) 0 0
\(427\) 9.14008 0.442319
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.0166 −1.34951 −0.674756 0.738041i \(-0.735751\pi\)
−0.674756 + 0.738041i \(0.735751\pi\)
\(432\) 0 0
\(433\) −12.5066 −0.601028 −0.300514 0.953777i \(-0.597158\pi\)
−0.300514 + 0.953777i \(0.597158\pi\)
\(434\) 0 0
\(435\) 9.96424 0.477749
\(436\) 0 0
\(437\) 20.6525 0.987942
\(438\) 0 0
\(439\) −28.3852 −1.35475 −0.677375 0.735638i \(-0.736883\pi\)
−0.677375 + 0.735638i \(0.736883\pi\)
\(440\) 0 0
\(441\) −2.09017 −0.0995319
\(442\) 0 0
\(443\) −4.45614 −0.211718 −0.105859 0.994381i \(-0.533759\pi\)
−0.105859 + 0.994381i \(0.533759\pi\)
\(444\) 0 0
\(445\) 20.6525 0.979021
\(446\) 0 0
\(447\) −23.5605 −1.11437
\(448\) 0 0
\(449\) −21.0344 −0.992677 −0.496338 0.868129i \(-0.665322\pi\)
−0.496338 + 0.868129i \(0.665322\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −27.0344 −1.27019
\(454\) 0 0
\(455\) −34.9990 −1.64078
\(456\) 0 0
\(457\) −4.96556 −0.232279 −0.116140 0.993233i \(-0.537052\pi\)
−0.116140 + 0.993233i \(0.537052\pi\)
\(458\) 0 0
\(459\) −5.42109 −0.253035
\(460\) 0 0
\(461\) 38.1803 1.77824 0.889118 0.457678i \(-0.151319\pi\)
0.889118 + 0.457678i \(0.151319\pi\)
\(462\) 0 0
\(463\) −33.4377 −1.55398 −0.776991 0.629512i \(-0.783255\pi\)
−0.776991 + 0.629512i \(0.783255\pi\)
\(464\) 0 0
\(465\) −47.6869 −2.21143
\(466\) 0 0
\(467\) 10.4736 0.484660 0.242330 0.970194i \(-0.422088\pi\)
0.242330 + 0.970194i \(0.422088\pi\)
\(468\) 0 0
\(469\) 33.4164 1.54303
\(470\) 0 0
\(471\) 49.4194 2.27712
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 7.94734 0.364649
\(476\) 0 0
\(477\) 1.29180 0.0591473
\(478\) 0 0
\(479\) 24.8940 1.13743 0.568717 0.822533i \(-0.307440\pi\)
0.568717 + 0.822533i \(0.307440\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) 0 0
\(483\) 52.1734 2.37397
\(484\) 0 0
\(485\) −50.7984 −2.30664
\(486\) 0 0
\(487\) 42.2092 1.91268 0.956340 0.292255i \(-0.0944056\pi\)
0.956340 + 0.292255i \(0.0944056\pi\)
\(488\) 0 0
\(489\) −29.4721 −1.33278
\(490\) 0 0
\(491\) 36.4195 1.64359 0.821795 0.569783i \(-0.192973\pi\)
0.821795 + 0.569783i \(0.192973\pi\)
\(492\) 0 0
\(493\) 7.76393 0.349670
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29.4721 1.32201
\(498\) 0 0
\(499\) −10.7014 −0.479060 −0.239530 0.970889i \(-0.576993\pi\)
−0.239530 + 0.970889i \(0.576993\pi\)
\(500\) 0 0
\(501\) 16.7082 0.746468
\(502\) 0 0
\(503\) −13.8240 −0.616382 −0.308191 0.951324i \(-0.599724\pi\)
−0.308191 + 0.951324i \(0.599724\pi\)
\(504\) 0 0
\(505\) −23.9230 −1.06456
\(506\) 0 0
\(507\) 26.6831 1.18504
\(508\) 0 0
\(509\) 20.9787 0.929865 0.464933 0.885346i \(-0.346079\pi\)
0.464933 + 0.885346i \(0.346079\pi\)
\(510\) 0 0
\(511\) −10.9292 −0.483479
\(512\) 0 0
\(513\) 2.43769 0.107627
\(514\) 0 0
\(515\) 16.1225 0.710441
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −44.8225 −1.96749
\(520\) 0 0
\(521\) 21.7426 0.952563 0.476281 0.879293i \(-0.341984\pi\)
0.476281 + 0.879293i \(0.341984\pi\)
\(522\) 0 0
\(523\) 29.2093 1.27724 0.638618 0.769524i \(-0.279507\pi\)
0.638618 + 0.769524i \(0.279507\pi\)
\(524\) 0 0
\(525\) 20.0770 0.876233
\(526\) 0 0
\(527\) −37.1567 −1.61857
\(528\) 0 0
\(529\) 43.8328 1.90577
\(530\) 0 0
\(531\) 36.1917 1.57059
\(532\) 0 0
\(533\) −41.8328 −1.81198
\(534\) 0 0
\(535\) −48.3674 −2.09111
\(536\) 0 0
\(537\) 6.38197 0.275402
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.9787 0.772965 0.386483 0.922297i \(-0.373690\pi\)
0.386483 + 0.922297i \(0.373690\pi\)
\(542\) 0 0
\(543\) 48.0859 2.06356
\(544\) 0 0
\(545\) 29.8885 1.28028
\(546\) 0 0
\(547\) −11.8941 −0.508556 −0.254278 0.967131i \(-0.581838\pi\)
−0.254278 + 0.967131i \(0.581838\pi\)
\(548\) 0 0
\(549\) 12.2361 0.522223
\(550\) 0 0
\(551\) −3.49120 −0.148730
\(552\) 0 0
\(553\) 8.81966 0.375050
\(554\) 0 0
\(555\) 4.45614 0.189153
\(556\) 0 0
\(557\) −10.0344 −0.425173 −0.212586 0.977142i \(-0.568189\pi\)
−0.212586 + 0.977142i \(0.568189\pi\)
\(558\) 0 0
\(559\) 15.1575 0.641095
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −42.4370 −1.78851 −0.894253 0.447562i \(-0.852292\pi\)
−0.894253 + 0.447562i \(0.852292\pi\)
\(564\) 0 0
\(565\) 23.2492 0.978102
\(566\) 0 0
\(567\) −19.4729 −0.817785
\(568\) 0 0
\(569\) −10.7984 −0.452691 −0.226346 0.974047i \(-0.572678\pi\)
−0.226346 + 0.974047i \(0.572678\pi\)
\(570\) 0 0
\(571\) −4.31536 −0.180592 −0.0902961 0.995915i \(-0.528781\pi\)
−0.0902961 + 0.995915i \(0.528781\pi\)
\(572\) 0 0
\(573\) 1.50658 0.0629382
\(574\) 0 0
\(575\) 25.7181 1.07252
\(576\) 0 0
\(577\) 28.3820 1.18156 0.590778 0.806834i \(-0.298821\pi\)
0.590778 + 0.806834i \(0.298821\pi\)
\(578\) 0 0
\(579\) −28.6130 −1.18911
\(580\) 0 0
\(581\) −29.4721 −1.22271
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −46.8541 −1.93718
\(586\) 0 0
\(587\) −35.2268 −1.45397 −0.726983 0.686656i \(-0.759078\pi\)
−0.726983 + 0.686656i \(0.759078\pi\)
\(588\) 0 0
\(589\) 16.7082 0.688450
\(590\) 0 0
\(591\) 31.9634 1.31480
\(592\) 0 0
\(593\) −2.29180 −0.0941128 −0.0470564 0.998892i \(-0.514984\pi\)
−0.0470564 + 0.998892i \(0.514984\pi\)
\(594\) 0 0
\(595\) 40.5071 1.66063
\(596\) 0 0
\(597\) 7.88854 0.322857
\(598\) 0 0
\(599\) −0.368576 −0.0150596 −0.00752980 0.999972i \(-0.502397\pi\)
−0.00752980 + 0.999972i \(0.502397\pi\)
\(600\) 0 0
\(601\) −19.2705 −0.786060 −0.393030 0.919526i \(-0.628573\pi\)
−0.393030 + 0.919526i \(0.628573\pi\)
\(602\) 0 0
\(603\) 44.7354 1.82177
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −14.0518 −0.570345 −0.285173 0.958476i \(-0.592051\pi\)
−0.285173 + 0.958476i \(0.592051\pi\)
\(608\) 0 0
\(609\) −8.81966 −0.357391
\(610\) 0 0
\(611\) 2.89483 0.117112
\(612\) 0 0
\(613\) −36.3262 −1.46720 −0.733601 0.679580i \(-0.762162\pi\)
−0.733601 + 0.679580i \(0.762162\pi\)
\(614\) 0 0
\(615\) 62.1377 2.50563
\(616\) 0 0
\(617\) 17.1246 0.689411 0.344705 0.938711i \(-0.387979\pi\)
0.344705 + 0.938711i \(0.387979\pi\)
\(618\) 0 0
\(619\) 11.8941 0.478065 0.239033 0.971012i \(-0.423170\pi\)
0.239033 + 0.971012i \(0.423170\pi\)
\(620\) 0 0
\(621\) 7.88854 0.316556
\(622\) 0 0
\(623\) −18.2802 −0.732379
\(624\) 0 0
\(625\) −30.8328 −1.23331
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.47214 0.138443
\(630\) 0 0
\(631\) −11.8941 −0.473498 −0.236749 0.971571i \(-0.576082\pi\)
−0.236749 + 0.971571i \(0.576082\pi\)
\(632\) 0 0
\(633\) 8.81966 0.350550
\(634\) 0 0
\(635\) 13.3684 0.530510
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) 39.4551 1.56082
\(640\) 0 0
\(641\) −33.7426 −1.33275 −0.666377 0.745615i \(-0.732156\pi\)
−0.666377 + 0.745615i \(0.732156\pi\)
\(642\) 0 0
\(643\) 9.73645 0.383968 0.191984 0.981398i \(-0.438508\pi\)
0.191984 + 0.981398i \(0.438508\pi\)
\(644\) 0 0
\(645\) −22.5147 −0.886516
\(646\) 0 0
\(647\) −19.1043 −0.751068 −0.375534 0.926809i \(-0.622541\pi\)
−0.375534 + 0.926809i \(0.622541\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 42.2092 1.65431
\(652\) 0 0
\(653\) −10.7984 −0.422573 −0.211287 0.977424i \(-0.567765\pi\)
−0.211287 + 0.977424i \(0.567765\pi\)
\(654\) 0 0
\(655\) 5.50810 0.215219
\(656\) 0 0
\(657\) −14.6312 −0.570817
\(658\) 0 0
\(659\) −1.92989 −0.0751777 −0.0375889 0.999293i \(-0.511968\pi\)
−0.0375889 + 0.999293i \(0.511968\pi\)
\(660\) 0 0
\(661\) 25.5279 0.992919 0.496459 0.868060i \(-0.334633\pi\)
0.496459 + 0.868060i \(0.334633\pi\)
\(662\) 0 0
\(663\) −68.8923 −2.67555
\(664\) 0 0
\(665\) −18.2148 −0.706339
\(666\) 0 0
\(667\) −11.2978 −0.437451
\(668\) 0 0
\(669\) −44.6738 −1.72719
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −39.9787 −1.54107 −0.770533 0.637400i \(-0.780010\pi\)
−0.770533 + 0.637400i \(0.780010\pi\)
\(674\) 0 0
\(675\) 3.03561 0.116841
\(676\) 0 0
\(677\) −40.5623 −1.55894 −0.779468 0.626442i \(-0.784511\pi\)
−0.779468 + 0.626442i \(0.784511\pi\)
\(678\) 0 0
\(679\) 44.9632 1.72553
\(680\) 0 0
\(681\) 1.50658 0.0577322
\(682\) 0 0
\(683\) 42.8056 1.63791 0.818955 0.573858i \(-0.194554\pi\)
0.818955 + 0.573858i \(0.194554\pi\)
\(684\) 0 0
\(685\) −28.2837 −1.08066
\(686\) 0 0
\(687\) −6.47304 −0.246962
\(688\) 0 0
\(689\) 1.85410 0.0706357
\(690\) 0 0
\(691\) −29.2093 −1.11118 −0.555588 0.831458i \(-0.687507\pi\)
−0.555588 + 0.831458i \(0.687507\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −39.4551 −1.49662
\(696\) 0 0
\(697\) 48.4164 1.83390
\(698\) 0 0
\(699\) 48.8230 1.84666
\(700\) 0 0
\(701\) −12.0344 −0.454535 −0.227267 0.973832i \(-0.572979\pi\)
−0.227267 + 0.973832i \(0.572979\pi\)
\(702\) 0 0
\(703\) −1.56131 −0.0588860
\(704\) 0 0
\(705\) −4.29993 −0.161945
\(706\) 0 0
\(707\) 21.1750 0.796367
\(708\) 0 0
\(709\) 52.1591 1.95887 0.979437 0.201749i \(-0.0646626\pi\)
0.979437 + 0.201749i \(0.0646626\pi\)
\(710\) 0 0
\(711\) 11.8071 0.442801
\(712\) 0 0
\(713\) 54.0689 2.02490
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −27.0344 −1.00962
\(718\) 0 0
\(719\) 16.4911 0.615012 0.307506 0.951546i \(-0.400506\pi\)
0.307506 + 0.951546i \(0.400506\pi\)
\(720\) 0 0
\(721\) −14.2705 −0.531462
\(722\) 0 0
\(723\) −8.63072 −0.320980
\(724\) 0 0
\(725\) −4.34752 −0.161463
\(726\) 0 0
\(727\) −6.24525 −0.231623 −0.115812 0.993271i \(-0.536947\pi\)
−0.115812 + 0.993271i \(0.536947\pi\)
\(728\) 0 0
\(729\) −33.3820 −1.23637
\(730\) 0 0
\(731\) −17.5430 −0.648851
\(732\) 0 0
\(733\) 16.3262 0.603023 0.301512 0.953462i \(-0.402509\pi\)
0.301512 + 0.953462i \(0.402509\pi\)
\(734\) 0 0
\(735\) 4.45614 0.164367
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −6.61382 −0.243293 −0.121647 0.992573i \(-0.538817\pi\)
−0.121647 + 0.992573i \(0.538817\pi\)
\(740\) 0 0
\(741\) 30.9787 1.13803
\(742\) 0 0
\(743\) 10.9292 0.400953 0.200476 0.979699i \(-0.435751\pi\)
0.200476 + 0.979699i \(0.435751\pi\)
\(744\) 0 0
\(745\) 26.6180 0.975209
\(746\) 0 0
\(747\) −39.4551 −1.44359
\(748\) 0 0
\(749\) 42.8115 1.56430
\(750\) 0 0
\(751\) 25.1218 0.916706 0.458353 0.888770i \(-0.348439\pi\)
0.458353 + 0.888770i \(0.348439\pi\)
\(752\) 0 0
\(753\) −0.931116 −0.0339318
\(754\) 0 0
\(755\) 30.5429 1.11157
\(756\) 0 0
\(757\) −38.4508 −1.39752 −0.698760 0.715356i \(-0.746264\pi\)
−0.698760 + 0.715356i \(0.746264\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.8541 −0.828461 −0.414230 0.910172i \(-0.635949\pi\)
−0.414230 + 0.910172i \(0.635949\pi\)
\(762\) 0 0
\(763\) −26.4553 −0.957746
\(764\) 0 0
\(765\) 54.2279 1.96062
\(766\) 0 0
\(767\) 51.9456 1.87565
\(768\) 0 0
\(769\) −16.1803 −0.583478 −0.291739 0.956498i \(-0.594234\pi\)
−0.291739 + 0.956498i \(0.594234\pi\)
\(770\) 0 0
\(771\) −18.3672 −0.661477
\(772\) 0 0
\(773\) 1.85410 0.0666874 0.0333437 0.999444i \(-0.489384\pi\)
0.0333437 + 0.999444i \(0.489384\pi\)
\(774\) 0 0
\(775\) 20.8064 0.747388
\(776\) 0 0
\(777\) −3.94427 −0.141500
\(778\) 0 0
\(779\) −21.7714 −0.780040
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.33352 −0.0476561
\(784\) 0 0
\(785\) −55.8328 −1.99276
\(786\) 0 0
\(787\) −52.5420 −1.87292 −0.936460 0.350774i \(-0.885918\pi\)
−0.936460 + 0.350774i \(0.885918\pi\)
\(788\) 0 0
\(789\) 17.6393 0.627976
\(790\) 0 0
\(791\) −20.5786 −0.731691
\(792\) 0 0
\(793\) 17.5623 0.623656
\(794\) 0 0
\(795\) −2.75405 −0.0976760
\(796\) 0 0
\(797\) 23.5066 0.832646 0.416323 0.909217i \(-0.363319\pi\)
0.416323 + 0.909217i \(0.363319\pi\)
\(798\) 0 0
\(799\) −3.35042 −0.118529
\(800\) 0 0
\(801\) −24.4721 −0.864680
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −58.9443 −2.07751
\(806\) 0 0
\(807\) −10.3328 −0.363732
\(808\) 0 0
\(809\) 9.14590 0.321553 0.160776 0.986991i \(-0.448600\pi\)
0.160776 + 0.986991i \(0.448600\pi\)
\(810\) 0 0
\(811\) 20.8064 0.730612 0.365306 0.930888i \(-0.380964\pi\)
0.365306 + 0.930888i \(0.380964\pi\)
\(812\) 0 0
\(813\) 68.3394 2.39677
\(814\) 0 0
\(815\) 33.2969 1.16634
\(816\) 0 0
\(817\) 7.88854 0.275985
\(818\) 0 0
\(819\) 41.4720 1.44915
\(820\) 0 0
\(821\) −11.3820 −0.397233 −0.198617 0.980077i \(-0.563645\pi\)
−0.198617 + 0.980077i \(0.563645\pi\)
\(822\) 0 0
\(823\) −24.8940 −0.867750 −0.433875 0.900973i \(-0.642854\pi\)
−0.433875 + 0.900973i \(0.642854\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.3144 1.36709 0.683547 0.729906i \(-0.260436\pi\)
0.683547 + 0.729906i \(0.260436\pi\)
\(828\) 0 0
\(829\) −33.1591 −1.15166 −0.575831 0.817569i \(-0.695321\pi\)
−0.575831 + 0.817569i \(0.695321\pi\)
\(830\) 0 0
\(831\) −41.1035 −1.42586
\(832\) 0 0
\(833\) 3.47214 0.120302
\(834\) 0 0
\(835\) −18.8765 −0.653249
\(836\) 0 0
\(837\) 6.38197 0.220593
\(838\) 0 0
\(839\) 30.1743 1.04173 0.520866 0.853638i \(-0.325609\pi\)
0.520866 + 0.853638i \(0.325609\pi\)
\(840\) 0 0
\(841\) −27.0902 −0.934144
\(842\) 0 0
\(843\) −61.3135 −2.11175
\(844\) 0 0
\(845\) −30.1459 −1.03705
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 36.7852 1.26247
\(850\) 0 0
\(851\) −5.05251 −0.173198
\(852\) 0 0
\(853\) 29.9787 1.02645 0.513226 0.858254i \(-0.328450\pi\)
0.513226 + 0.858254i \(0.328450\pi\)
\(854\) 0 0
\(855\) −24.3846 −0.833936
\(856\) 0 0
\(857\) −19.7082 −0.673219 −0.336610 0.941644i \(-0.609280\pi\)
−0.336610 + 0.941644i \(0.609280\pi\)
\(858\) 0 0
\(859\) −26.4553 −0.902643 −0.451321 0.892361i \(-0.649047\pi\)
−0.451321 + 0.892361i \(0.649047\pi\)
\(860\) 0 0
\(861\) −55.0000 −1.87439
\(862\) 0 0
\(863\) −9.28086 −0.315924 −0.157962 0.987445i \(-0.550492\pi\)
−0.157962 + 0.987445i \(0.550492\pi\)
\(864\) 0 0
\(865\) 50.6393 1.72179
\(866\) 0 0
\(867\) 36.7881 1.24939
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 64.2083 2.17562
\(872\) 0 0
\(873\) 60.1935 2.03724
\(874\) 0 0
\(875\) 13.3684 0.451935
\(876\) 0 0
\(877\) 23.4508 0.791879 0.395939 0.918277i \(-0.370419\pi\)
0.395939 + 0.918277i \(0.370419\pi\)
\(878\) 0 0
\(879\) −2.01690 −0.0680282
\(880\) 0 0
\(881\) −20.6525 −0.695800 −0.347900 0.937532i \(-0.613105\pi\)
−0.347900 + 0.937532i \(0.613105\pi\)
\(882\) 0 0
\(883\) −49.1916 −1.65543 −0.827714 0.561150i \(-0.810359\pi\)
−0.827714 + 0.561150i \(0.810359\pi\)
\(884\) 0 0
\(885\) −77.1591 −2.59367
\(886\) 0 0
\(887\) 34.4896 1.15805 0.579024 0.815310i \(-0.303434\pi\)
0.579024 + 0.815310i \(0.303434\pi\)
\(888\) 0 0
\(889\) −11.8328 −0.396860
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.50658 0.0504157
\(894\) 0 0
\(895\) −7.21019 −0.241010
\(896\) 0 0
\(897\) 100.249 3.34722
\(898\) 0 0
\(899\) −9.14008 −0.304839
\(900\) 0 0
\(901\) −2.14590 −0.0714902
\(902\) 0 0
\(903\) 19.9285 0.663178
\(904\) 0 0
\(905\) −54.3262 −1.80587
\(906\) 0 0
\(907\) 15.5261 0.515536 0.257768 0.966207i \(-0.417013\pi\)
0.257768 + 0.966207i \(0.417013\pi\)
\(908\) 0 0
\(909\) 28.3475 0.940228
\(910\) 0 0
\(911\) 47.4895 1.57340 0.786699 0.617337i \(-0.211789\pi\)
0.786699 + 0.617337i \(0.211789\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −26.0867 −0.862400
\(916\) 0 0
\(917\) −4.87539 −0.161000
\(918\) 0 0
\(919\) 30.4021 1.00287 0.501436 0.865195i \(-0.332805\pi\)
0.501436 + 0.865195i \(0.332805\pi\)
\(920\) 0 0
\(921\) −4.87539 −0.160650
\(922\) 0 0
\(923\) 56.6296 1.86398
\(924\) 0 0
\(925\) −1.94427 −0.0639273
\(926\) 0 0
\(927\) −19.1043 −0.627468
\(928\) 0 0
\(929\) −34.0902 −1.11846 −0.559231 0.829012i \(-0.688904\pi\)
−0.559231 + 0.829012i \(0.688904\pi\)
\(930\) 0 0
\(931\) −1.56131 −0.0511699
\(932\) 0 0
\(933\) −19.1459 −0.626809
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.8541 −0.746611 −0.373305 0.927708i \(-0.621776\pi\)
−0.373305 + 0.927708i \(0.621776\pi\)
\(938\) 0 0
\(939\) 10.3328 0.337199
\(940\) 0 0
\(941\) 19.9098 0.649042 0.324521 0.945879i \(-0.394797\pi\)
0.324521 + 0.945879i \(0.394797\pi\)
\(942\) 0 0
\(943\) −70.4536 −2.29428
\(944\) 0 0
\(945\) −6.95743 −0.226325
\(946\) 0 0
\(947\) 26.4553 0.859681 0.429841 0.902905i \(-0.358570\pi\)
0.429841 + 0.902905i \(0.358570\pi\)
\(948\) 0 0
\(949\) −21.0000 −0.681689
\(950\) 0 0
\(951\) −12.7183 −0.412419
\(952\) 0 0
\(953\) −8.43769 −0.273324 −0.136662 0.990618i \(-0.543637\pi\)
−0.136662 + 0.990618i \(0.543637\pi\)
\(954\) 0 0
\(955\) −1.70210 −0.0550785
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25.0348 0.808415
\(960\) 0 0
\(961\) 12.7426 0.411053
\(962\) 0 0
\(963\) 57.3129 1.84688
\(964\) 0 0
\(965\) 32.3262 1.04062
\(966\) 0 0
\(967\) 39.6829 1.27612 0.638059 0.769988i \(-0.279738\pi\)
0.638059 + 0.769988i \(0.279738\pi\)
\(968\) 0 0
\(969\) −35.8541 −1.15180
\(970\) 0 0
\(971\) 20.0693 0.644053 0.322027 0.946731i \(-0.395636\pi\)
0.322027 + 0.946731i \(0.395636\pi\)
\(972\) 0 0
\(973\) 34.9230 1.11958
\(974\) 0 0
\(975\) 38.5772 1.23546
\(976\) 0 0
\(977\) 46.3394 1.48253 0.741264 0.671213i \(-0.234227\pi\)
0.741264 + 0.671213i \(0.234227\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −35.4164 −1.13076
\(982\) 0 0
\(983\) 15.0167 0.478960 0.239480 0.970901i \(-0.423023\pi\)
0.239480 + 0.970901i \(0.423023\pi\)
\(984\) 0 0
\(985\) −36.1115 −1.15061
\(986\) 0 0
\(987\) 3.80600 0.121146
\(988\) 0 0
\(989\) 25.5279 0.811739
\(990\) 0 0
\(991\) −12.4905 −0.396774 −0.198387 0.980124i \(-0.563570\pi\)
−0.198387 + 0.980124i \(0.563570\pi\)
\(992\) 0 0
\(993\) −15.7771 −0.500671
\(994\) 0 0
\(995\) −8.91229 −0.282538
\(996\) 0 0
\(997\) −54.0344 −1.71129 −0.855644 0.517565i \(-0.826839\pi\)
−0.855644 + 0.517565i \(0.826839\pi\)
\(998\) 0 0
\(999\) −0.596368 −0.0188682
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.2.a.bk.1.3 4
4.3 odd 2 inner 3872.2.a.bk.1.2 4
8.3 odd 2 7744.2.a.dl.1.3 4
8.5 even 2 7744.2.a.dl.1.2 4
11.2 odd 10 352.2.m.d.257.2 yes 8
11.6 odd 10 352.2.m.d.289.2 yes 8
11.10 odd 2 3872.2.a.bj.1.3 4
44.35 even 10 352.2.m.d.257.1 8
44.39 even 10 352.2.m.d.289.1 yes 8
44.43 even 2 3872.2.a.bj.1.2 4
88.13 odd 10 704.2.m.j.257.1 8
88.21 odd 2 7744.2.a.dm.1.2 4
88.35 even 10 704.2.m.j.257.2 8
88.43 even 2 7744.2.a.dm.1.3 4
88.61 odd 10 704.2.m.j.641.1 8
88.83 even 10 704.2.m.j.641.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.d.257.1 8 44.35 even 10
352.2.m.d.257.2 yes 8 11.2 odd 10
352.2.m.d.289.1 yes 8 44.39 even 10
352.2.m.d.289.2 yes 8 11.6 odd 10
704.2.m.j.257.1 8 88.13 odd 10
704.2.m.j.257.2 8 88.35 even 10
704.2.m.j.641.1 8 88.61 odd 10
704.2.m.j.641.2 8 88.83 even 10
3872.2.a.bj.1.2 4 44.43 even 2
3872.2.a.bj.1.3 4 11.10 odd 2
3872.2.a.bk.1.2 4 4.3 odd 2 inner
3872.2.a.bk.1.3 4 1.1 even 1 trivial
7744.2.a.dl.1.2 4 8.5 even 2
7744.2.a.dl.1.3 4 8.3 odd 2
7744.2.a.dm.1.2 4 88.21 odd 2
7744.2.a.dm.1.3 4 88.43 even 2