Properties

Label 3871.2.a.i.1.4
Level $3871$
Weight $2$
Character 3871.1
Self dual yes
Analytic conductor $30.910$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3871,2,Mod(1,3871)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3871.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3871.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,28,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9100906224\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 3871.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.35106 q^{2} +0.333714 q^{3} +3.52747 q^{4} +1.89309 q^{5} -0.784581 q^{6} -3.59117 q^{8} -2.88863 q^{9} -4.45076 q^{10} -0.703021 q^{11} +1.17717 q^{12} +1.83326 q^{13} +0.631750 q^{15} +1.38810 q^{16} +3.07498 q^{17} +6.79134 q^{18} +7.10178 q^{19} +6.67781 q^{20} +1.65284 q^{22} -4.90913 q^{23} -1.19842 q^{24} -1.41622 q^{25} -4.31009 q^{26} -1.96512 q^{27} +5.01477 q^{29} -1.48528 q^{30} +6.47747 q^{31} +3.91883 q^{32} -0.234608 q^{33} -7.22946 q^{34} -10.1896 q^{36} -7.47724 q^{37} -16.6967 q^{38} +0.611784 q^{39} -6.79839 q^{40} +8.80318 q^{41} -6.42517 q^{43} -2.47988 q^{44} -5.46844 q^{45} +11.5416 q^{46} +0.334805 q^{47} +0.463228 q^{48} +3.32962 q^{50} +1.02617 q^{51} +6.46676 q^{52} +6.88460 q^{53} +4.62011 q^{54} -1.33088 q^{55} +2.36996 q^{57} -11.7900 q^{58} -0.651763 q^{59} +2.22848 q^{60} -13.6365 q^{61} -15.2289 q^{62} -11.9896 q^{64} +3.47052 q^{65} +0.551577 q^{66} -4.86177 q^{67} +10.8469 q^{68} -1.63825 q^{69} -6.10525 q^{71} +10.3736 q^{72} +16.2784 q^{73} +17.5794 q^{74} -0.472613 q^{75} +25.0513 q^{76} -1.43834 q^{78} -1.00000 q^{79} +2.62779 q^{80} +8.01012 q^{81} -20.6968 q^{82} -4.82664 q^{83} +5.82121 q^{85} +15.1059 q^{86} +1.67350 q^{87} +2.52466 q^{88} +4.21687 q^{89} +12.8566 q^{90} -17.3168 q^{92} +2.16162 q^{93} -0.787145 q^{94} +13.4443 q^{95} +1.30777 q^{96} +12.3793 q^{97} +2.03077 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 28 q^{4} + 18 q^{8} + 50 q^{9} + 14 q^{11} + 18 q^{15} + 36 q^{16} + 10 q^{18} - 12 q^{22} + 22 q^{23} + 56 q^{25} + 36 q^{29} + 14 q^{30} + 30 q^{32} + 8 q^{36} + 24 q^{37} + 56 q^{39}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.35106 −1.66245 −0.831224 0.555937i \(-0.812359\pi\)
−0.831224 + 0.555937i \(0.812359\pi\)
\(3\) 0.333714 0.192670 0.0963350 0.995349i \(-0.469288\pi\)
0.0963350 + 0.995349i \(0.469288\pi\)
\(4\) 3.52747 1.76373
\(5\) 1.89309 0.846614 0.423307 0.905986i \(-0.360869\pi\)
0.423307 + 0.905986i \(0.360869\pi\)
\(6\) −0.784581 −0.320304
\(7\) 0 0
\(8\) −3.59117 −1.26967
\(9\) −2.88863 −0.962878
\(10\) −4.45076 −1.40745
\(11\) −0.703021 −0.211969 −0.105984 0.994368i \(-0.533799\pi\)
−0.105984 + 0.994368i \(0.533799\pi\)
\(12\) 1.17717 0.339819
\(13\) 1.83326 0.508454 0.254227 0.967145i \(-0.418179\pi\)
0.254227 + 0.967145i \(0.418179\pi\)
\(14\) 0 0
\(15\) 0.631750 0.163117
\(16\) 1.38810 0.347025
\(17\) 3.07498 0.745793 0.372896 0.927873i \(-0.378365\pi\)
0.372896 + 0.927873i \(0.378365\pi\)
\(18\) 6.79134 1.60074
\(19\) 7.10178 1.62926 0.814630 0.579981i \(-0.196940\pi\)
0.814630 + 0.579981i \(0.196940\pi\)
\(20\) 6.67781 1.49320
\(21\) 0 0
\(22\) 1.65284 0.352387
\(23\) −4.90913 −1.02362 −0.511812 0.859097i \(-0.671026\pi\)
−0.511812 + 0.859097i \(0.671026\pi\)
\(24\) −1.19842 −0.244627
\(25\) −1.41622 −0.283244
\(26\) −4.31009 −0.845279
\(27\) −1.96512 −0.378188
\(28\) 0 0
\(29\) 5.01477 0.931220 0.465610 0.884990i \(-0.345835\pi\)
0.465610 + 0.884990i \(0.345835\pi\)
\(30\) −1.48528 −0.271174
\(31\) 6.47747 1.16339 0.581694 0.813408i \(-0.302390\pi\)
0.581694 + 0.813408i \(0.302390\pi\)
\(32\) 3.91883 0.692759
\(33\) −0.234608 −0.0408400
\(34\) −7.22946 −1.23984
\(35\) 0 0
\(36\) −10.1896 −1.69826
\(37\) −7.47724 −1.22925 −0.614625 0.788819i \(-0.710693\pi\)
−0.614625 + 0.788819i \(0.710693\pi\)
\(38\) −16.6967 −2.70856
\(39\) 0.611784 0.0979639
\(40\) −6.79839 −1.07492
\(41\) 8.80318 1.37483 0.687413 0.726267i \(-0.258746\pi\)
0.687413 + 0.726267i \(0.258746\pi\)
\(42\) 0 0
\(43\) −6.42517 −0.979829 −0.489915 0.871770i \(-0.662972\pi\)
−0.489915 + 0.871770i \(0.662972\pi\)
\(44\) −2.47988 −0.373857
\(45\) −5.46844 −0.815187
\(46\) 11.5416 1.70172
\(47\) 0.334805 0.0488363 0.0244181 0.999702i \(-0.492227\pi\)
0.0244181 + 0.999702i \(0.492227\pi\)
\(48\) 0.463228 0.0668612
\(49\) 0 0
\(50\) 3.32962 0.470879
\(51\) 1.02617 0.143692
\(52\) 6.46676 0.896778
\(53\) 6.88460 0.945673 0.472836 0.881150i \(-0.343230\pi\)
0.472836 + 0.881150i \(0.343230\pi\)
\(54\) 4.62011 0.628718
\(55\) −1.33088 −0.179456
\(56\) 0 0
\(57\) 2.36996 0.313910
\(58\) −11.7900 −1.54810
\(59\) −0.651763 −0.0848523 −0.0424261 0.999100i \(-0.513509\pi\)
−0.0424261 + 0.999100i \(0.513509\pi\)
\(60\) 2.22848 0.287695
\(61\) −13.6365 −1.74597 −0.872986 0.487744i \(-0.837820\pi\)
−0.872986 + 0.487744i \(0.837820\pi\)
\(62\) −15.2289 −1.93407
\(63\) 0 0
\(64\) −11.9896 −1.49870
\(65\) 3.47052 0.430465
\(66\) 0.551577 0.0678944
\(67\) −4.86177 −0.593959 −0.296980 0.954884i \(-0.595979\pi\)
−0.296980 + 0.954884i \(0.595979\pi\)
\(68\) 10.8469 1.31538
\(69\) −1.63825 −0.197222
\(70\) 0 0
\(71\) −6.10525 −0.724560 −0.362280 0.932069i \(-0.618002\pi\)
−0.362280 + 0.932069i \(0.618002\pi\)
\(72\) 10.3736 1.22254
\(73\) 16.2784 1.90524 0.952619 0.304165i \(-0.0983775\pi\)
0.952619 + 0.304165i \(0.0983775\pi\)
\(74\) 17.5794 2.04357
\(75\) −0.472613 −0.0545727
\(76\) 25.0513 2.87358
\(77\) 0 0
\(78\) −1.43834 −0.162860
\(79\) −1.00000 −0.112509
\(80\) 2.62779 0.293796
\(81\) 8.01012 0.890013
\(82\) −20.6968 −2.28558
\(83\) −4.82664 −0.529793 −0.264896 0.964277i \(-0.585338\pi\)
−0.264896 + 0.964277i \(0.585338\pi\)
\(84\) 0 0
\(85\) 5.82121 0.631399
\(86\) 15.1059 1.62892
\(87\) 1.67350 0.179418
\(88\) 2.52466 0.269130
\(89\) 4.21687 0.446987 0.223494 0.974705i \(-0.428254\pi\)
0.223494 + 0.974705i \(0.428254\pi\)
\(90\) 12.8566 1.35521
\(91\) 0 0
\(92\) −17.3168 −1.80540
\(93\) 2.16162 0.224150
\(94\) −0.787145 −0.0811878
\(95\) 13.4443 1.37935
\(96\) 1.30777 0.133474
\(97\) 12.3793 1.25693 0.628463 0.777839i \(-0.283684\pi\)
0.628463 + 0.777839i \(0.283684\pi\)
\(98\) 0 0
\(99\) 2.03077 0.204100
\(100\) −4.99568 −0.499568
\(101\) 11.5203 1.14632 0.573158 0.819445i \(-0.305718\pi\)
0.573158 + 0.819445i \(0.305718\pi\)
\(102\) −2.41257 −0.238880
\(103\) 10.3962 1.02437 0.512184 0.858876i \(-0.328837\pi\)
0.512184 + 0.858876i \(0.328837\pi\)
\(104\) −6.58353 −0.645569
\(105\) 0 0
\(106\) −16.1861 −1.57213
\(107\) 14.4452 1.39647 0.698235 0.715868i \(-0.253969\pi\)
0.698235 + 0.715868i \(0.253969\pi\)
\(108\) −6.93190 −0.667023
\(109\) 11.3519 1.08731 0.543657 0.839307i \(-0.317039\pi\)
0.543657 + 0.839307i \(0.317039\pi\)
\(110\) 3.12897 0.298336
\(111\) −2.49526 −0.236840
\(112\) 0 0
\(113\) 1.27051 0.119520 0.0597600 0.998213i \(-0.480966\pi\)
0.0597600 + 0.998213i \(0.480966\pi\)
\(114\) −5.57192 −0.521858
\(115\) −9.29341 −0.866615
\(116\) 17.6894 1.64242
\(117\) −5.29561 −0.489580
\(118\) 1.53233 0.141063
\(119\) 0 0
\(120\) −2.26872 −0.207105
\(121\) −10.5058 −0.955069
\(122\) 32.0602 2.90259
\(123\) 2.93775 0.264888
\(124\) 22.8491 2.05191
\(125\) −12.1465 −1.08641
\(126\) 0 0
\(127\) −0.277865 −0.0246565 −0.0123283 0.999924i \(-0.503924\pi\)
−0.0123283 + 0.999924i \(0.503924\pi\)
\(128\) 20.3506 1.79875
\(129\) −2.14417 −0.188784
\(130\) −8.15938 −0.715625
\(131\) 2.96088 0.258693 0.129347 0.991599i \(-0.458712\pi\)
0.129347 + 0.991599i \(0.458712\pi\)
\(132\) −0.827573 −0.0720310
\(133\) 0 0
\(134\) 11.4303 0.987427
\(135\) −3.72015 −0.320179
\(136\) −11.0428 −0.946910
\(137\) −3.31852 −0.283520 −0.141760 0.989901i \(-0.545276\pi\)
−0.141760 + 0.989901i \(0.545276\pi\)
\(138\) 3.85161 0.327871
\(139\) 6.75969 0.573349 0.286675 0.958028i \(-0.407450\pi\)
0.286675 + 0.958028i \(0.407450\pi\)
\(140\) 0 0
\(141\) 0.111729 0.00940928
\(142\) 14.3538 1.20454
\(143\) −1.28882 −0.107776
\(144\) −4.00971 −0.334142
\(145\) 9.49340 0.788384
\(146\) −38.2714 −3.16736
\(147\) 0 0
\(148\) −26.3757 −2.16807
\(149\) 1.52867 0.125234 0.0626169 0.998038i \(-0.480055\pi\)
0.0626169 + 0.998038i \(0.480055\pi\)
\(150\) 1.11114 0.0907242
\(151\) 1.76178 0.143372 0.0716858 0.997427i \(-0.477162\pi\)
0.0716858 + 0.997427i \(0.477162\pi\)
\(152\) −25.5037 −2.06862
\(153\) −8.88250 −0.718108
\(154\) 0 0
\(155\) 12.2624 0.984941
\(156\) 2.15805 0.172782
\(157\) −15.9448 −1.27253 −0.636265 0.771470i \(-0.719522\pi\)
−0.636265 + 0.771470i \(0.719522\pi\)
\(158\) 2.35106 0.187040
\(159\) 2.29749 0.182203
\(160\) 7.41869 0.586499
\(161\) 0 0
\(162\) −18.8322 −1.47960
\(163\) −3.74486 −0.293320 −0.146660 0.989187i \(-0.546852\pi\)
−0.146660 + 0.989187i \(0.546852\pi\)
\(164\) 31.0529 2.42483
\(165\) −0.444134 −0.0345758
\(166\) 11.3477 0.880753
\(167\) 15.9785 1.23646 0.618228 0.785999i \(-0.287851\pi\)
0.618228 + 0.785999i \(0.287851\pi\)
\(168\) 0 0
\(169\) −9.63917 −0.741474
\(170\) −13.6860 −1.04967
\(171\) −20.5144 −1.56878
\(172\) −22.6646 −1.72816
\(173\) −7.25400 −0.551512 −0.275756 0.961228i \(-0.588928\pi\)
−0.275756 + 0.961228i \(0.588928\pi\)
\(174\) −3.93449 −0.298273
\(175\) 0 0
\(176\) −0.975862 −0.0735584
\(177\) −0.217502 −0.0163485
\(178\) −9.91410 −0.743093
\(179\) −11.7908 −0.881287 −0.440643 0.897682i \(-0.645250\pi\)
−0.440643 + 0.897682i \(0.645250\pi\)
\(180\) −19.2897 −1.43777
\(181\) −4.92956 −0.366412 −0.183206 0.983075i \(-0.558647\pi\)
−0.183206 + 0.983075i \(0.558647\pi\)
\(182\) 0 0
\(183\) −4.55069 −0.336397
\(184\) 17.6295 1.29966
\(185\) −14.1551 −1.04070
\(186\) −5.08210 −0.372638
\(187\) −2.16178 −0.158085
\(188\) 1.18101 0.0861342
\(189\) 0 0
\(190\) −31.6083 −2.29311
\(191\) −0.278538 −0.0201543 −0.0100771 0.999949i \(-0.503208\pi\)
−0.0100771 + 0.999949i \(0.503208\pi\)
\(192\) −4.00110 −0.288755
\(193\) −5.76474 −0.414955 −0.207477 0.978240i \(-0.566525\pi\)
−0.207477 + 0.978240i \(0.566525\pi\)
\(194\) −29.1044 −2.08958
\(195\) 1.15816 0.0829376
\(196\) 0 0
\(197\) −9.61916 −0.685337 −0.342668 0.939456i \(-0.611331\pi\)
−0.342668 + 0.939456i \(0.611331\pi\)
\(198\) −4.77446 −0.339306
\(199\) 9.34293 0.662303 0.331151 0.943578i \(-0.392563\pi\)
0.331151 + 0.943578i \(0.392563\pi\)
\(200\) 5.08588 0.359626
\(201\) −1.62244 −0.114438
\(202\) −27.0850 −1.90569
\(203\) 0 0
\(204\) 3.61977 0.253434
\(205\) 16.6652 1.16395
\(206\) −24.4420 −1.70296
\(207\) 14.1807 0.985626
\(208\) 2.54474 0.176446
\(209\) −4.99270 −0.345352
\(210\) 0 0
\(211\) −2.50092 −0.172170 −0.0860851 0.996288i \(-0.527436\pi\)
−0.0860851 + 0.996288i \(0.527436\pi\)
\(212\) 24.2852 1.66792
\(213\) −2.03741 −0.139601
\(214\) −33.9615 −2.32156
\(215\) −12.1634 −0.829537
\(216\) 7.05708 0.480173
\(217\) 0 0
\(218\) −26.6889 −1.80760
\(219\) 5.43232 0.367082
\(220\) −4.69464 −0.316512
\(221\) 5.63723 0.379201
\(222\) 5.86650 0.393734
\(223\) 0.717213 0.0480281 0.0240141 0.999712i \(-0.492355\pi\)
0.0240141 + 0.999712i \(0.492355\pi\)
\(224\) 0 0
\(225\) 4.09095 0.272730
\(226\) −2.98705 −0.198696
\(227\) 27.4469 1.82171 0.910857 0.412722i \(-0.135422\pi\)
0.910857 + 0.412722i \(0.135422\pi\)
\(228\) 8.35998 0.553653
\(229\) 12.4869 0.825155 0.412577 0.910923i \(-0.364629\pi\)
0.412577 + 0.910923i \(0.364629\pi\)
\(230\) 21.8493 1.44070
\(231\) 0 0
\(232\) −18.0089 −1.18234
\(233\) 5.97118 0.391185 0.195592 0.980685i \(-0.437337\pi\)
0.195592 + 0.980685i \(0.437337\pi\)
\(234\) 12.4503 0.813901
\(235\) 0.633814 0.0413455
\(236\) −2.29907 −0.149657
\(237\) −0.333714 −0.0216771
\(238\) 0 0
\(239\) 18.5375 1.19909 0.599544 0.800342i \(-0.295349\pi\)
0.599544 + 0.800342i \(0.295349\pi\)
\(240\) 0.876931 0.0566057
\(241\) 26.7118 1.72066 0.860330 0.509738i \(-0.170258\pi\)
0.860330 + 0.509738i \(0.170258\pi\)
\(242\) 24.6996 1.58775
\(243\) 8.56845 0.549667
\(244\) −48.1023 −3.07943
\(245\) 0 0
\(246\) −6.90681 −0.440362
\(247\) 13.0194 0.828404
\(248\) −23.2617 −1.47712
\(249\) −1.61072 −0.102075
\(250\) 28.5570 1.80611
\(251\) −5.62714 −0.355182 −0.177591 0.984104i \(-0.556830\pi\)
−0.177591 + 0.984104i \(0.556830\pi\)
\(252\) 0 0
\(253\) 3.45122 0.216976
\(254\) 0.653276 0.0409902
\(255\) 1.94262 0.121652
\(256\) −23.8661 −1.49163
\(257\) 11.6657 0.727688 0.363844 0.931460i \(-0.381464\pi\)
0.363844 + 0.931460i \(0.381464\pi\)
\(258\) 5.04107 0.313843
\(259\) 0 0
\(260\) 12.2421 0.759225
\(261\) −14.4858 −0.896651
\(262\) −6.96120 −0.430064
\(263\) −3.16523 −0.195177 −0.0975883 0.995227i \(-0.531113\pi\)
−0.0975883 + 0.995227i \(0.531113\pi\)
\(264\) 0.842517 0.0518533
\(265\) 13.0332 0.800620
\(266\) 0 0
\(267\) 1.40723 0.0861211
\(268\) −17.1497 −1.04759
\(269\) −6.95721 −0.424189 −0.212094 0.977249i \(-0.568028\pi\)
−0.212094 + 0.977249i \(0.568028\pi\)
\(270\) 8.74628 0.532281
\(271\) −18.5226 −1.12517 −0.562583 0.826741i \(-0.690192\pi\)
−0.562583 + 0.826741i \(0.690192\pi\)
\(272\) 4.26838 0.258808
\(273\) 0 0
\(274\) 7.80203 0.471338
\(275\) 0.995633 0.0600389
\(276\) −5.77887 −0.347847
\(277\) −20.7817 −1.24865 −0.624325 0.781164i \(-0.714626\pi\)
−0.624325 + 0.781164i \(0.714626\pi\)
\(278\) −15.8924 −0.953164
\(279\) −18.7110 −1.12020
\(280\) 0 0
\(281\) 32.5498 1.94176 0.970880 0.239565i \(-0.0770047\pi\)
0.970880 + 0.239565i \(0.0770047\pi\)
\(282\) −0.262681 −0.0156424
\(283\) −15.1676 −0.901620 −0.450810 0.892620i \(-0.648865\pi\)
−0.450810 + 0.892620i \(0.648865\pi\)
\(284\) −21.5361 −1.27793
\(285\) 4.48655 0.265760
\(286\) 3.03009 0.179173
\(287\) 0 0
\(288\) −11.3201 −0.667042
\(289\) −7.54449 −0.443793
\(290\) −22.3195 −1.31065
\(291\) 4.13115 0.242172
\(292\) 57.4214 3.36033
\(293\) 9.08429 0.530710 0.265355 0.964151i \(-0.414511\pi\)
0.265355 + 0.964151i \(0.414511\pi\)
\(294\) 0 0
\(295\) −1.23384 −0.0718371
\(296\) 26.8520 1.56074
\(297\) 1.38152 0.0801640
\(298\) −3.59400 −0.208195
\(299\) −8.99970 −0.520466
\(300\) −1.66713 −0.0962517
\(301\) 0 0
\(302\) −4.14204 −0.238348
\(303\) 3.84450 0.220861
\(304\) 9.85797 0.565393
\(305\) −25.8151 −1.47817
\(306\) 20.8833 1.19382
\(307\) 4.20375 0.239921 0.119960 0.992779i \(-0.461723\pi\)
0.119960 + 0.992779i \(0.461723\pi\)
\(308\) 0 0
\(309\) 3.46936 0.197365
\(310\) −28.8296 −1.63741
\(311\) 17.1938 0.974969 0.487484 0.873132i \(-0.337915\pi\)
0.487484 + 0.873132i \(0.337915\pi\)
\(312\) −2.19702 −0.124382
\(313\) −4.79410 −0.270979 −0.135489 0.990779i \(-0.543261\pi\)
−0.135489 + 0.990779i \(0.543261\pi\)
\(314\) 37.4870 2.11552
\(315\) 0 0
\(316\) −3.52747 −0.198436
\(317\) −7.16341 −0.402337 −0.201169 0.979557i \(-0.564474\pi\)
−0.201169 + 0.979557i \(0.564474\pi\)
\(318\) −5.40153 −0.302903
\(319\) −3.52549 −0.197389
\(320\) −22.6974 −1.26882
\(321\) 4.82057 0.269058
\(322\) 0 0
\(323\) 21.8378 1.21509
\(324\) 28.2554 1.56975
\(325\) −2.59630 −0.144017
\(326\) 8.80439 0.487630
\(327\) 3.78829 0.209493
\(328\) −31.6137 −1.74557
\(329\) 0 0
\(330\) 1.04418 0.0574804
\(331\) 3.67598 0.202050 0.101025 0.994884i \(-0.467788\pi\)
0.101025 + 0.994884i \(0.467788\pi\)
\(332\) −17.0258 −0.934414
\(333\) 21.5990 1.18362
\(334\) −37.5665 −2.05554
\(335\) −9.20375 −0.502854
\(336\) 0 0
\(337\) 13.1255 0.714994 0.357497 0.933914i \(-0.383630\pi\)
0.357497 + 0.933914i \(0.383630\pi\)
\(338\) 22.6622 1.23266
\(339\) 0.423989 0.0230279
\(340\) 20.5341 1.11362
\(341\) −4.55380 −0.246602
\(342\) 48.2306 2.60801
\(343\) 0 0
\(344\) 23.0738 1.24406
\(345\) −3.10134 −0.166971
\(346\) 17.0546 0.916859
\(347\) 6.37663 0.342315 0.171158 0.985244i \(-0.445249\pi\)
0.171158 + 0.985244i \(0.445249\pi\)
\(348\) 5.90322 0.316446
\(349\) 15.3035 0.819176 0.409588 0.912271i \(-0.365672\pi\)
0.409588 + 0.912271i \(0.365672\pi\)
\(350\) 0 0
\(351\) −3.60257 −0.192291
\(352\) −2.75502 −0.146843
\(353\) 18.8437 1.00295 0.501475 0.865172i \(-0.332791\pi\)
0.501475 + 0.865172i \(0.332791\pi\)
\(354\) 0.511361 0.0271785
\(355\) −11.5578 −0.613423
\(356\) 14.8749 0.788367
\(357\) 0 0
\(358\) 27.7209 1.46509
\(359\) 13.1014 0.691467 0.345734 0.938333i \(-0.387630\pi\)
0.345734 + 0.938333i \(0.387630\pi\)
\(360\) 19.6381 1.03502
\(361\) 31.4353 1.65449
\(362\) 11.5897 0.609140
\(363\) −3.50592 −0.184013
\(364\) 0 0
\(365\) 30.8164 1.61300
\(366\) 10.6989 0.559242
\(367\) −29.1113 −1.51960 −0.759799 0.650157i \(-0.774703\pi\)
−0.759799 + 0.650157i \(0.774703\pi\)
\(368\) −6.81436 −0.355223
\(369\) −25.4292 −1.32379
\(370\) 33.2794 1.73011
\(371\) 0 0
\(372\) 7.62506 0.395341
\(373\) −13.5929 −0.703815 −0.351908 0.936035i \(-0.614467\pi\)
−0.351908 + 0.936035i \(0.614467\pi\)
\(374\) 5.08246 0.262808
\(375\) −4.05345 −0.209319
\(376\) −1.20234 −0.0620059
\(377\) 9.19337 0.473482
\(378\) 0 0
\(379\) 38.0652 1.95528 0.977638 0.210295i \(-0.0674425\pi\)
0.977638 + 0.210295i \(0.0674425\pi\)
\(380\) 47.4243 2.43282
\(381\) −0.0927274 −0.00475057
\(382\) 0.654858 0.0335055
\(383\) −27.0353 −1.38144 −0.690720 0.723122i \(-0.742706\pi\)
−0.690720 + 0.723122i \(0.742706\pi\)
\(384\) 6.79127 0.346566
\(385\) 0 0
\(386\) 13.5532 0.689841
\(387\) 18.5600 0.943456
\(388\) 43.6676 2.21688
\(389\) 11.7462 0.595556 0.297778 0.954635i \(-0.403754\pi\)
0.297778 + 0.954635i \(0.403754\pi\)
\(390\) −2.72290 −0.137880
\(391\) −15.0955 −0.763412
\(392\) 0 0
\(393\) 0.988088 0.0498425
\(394\) 22.6152 1.13934
\(395\) −1.89309 −0.0952516
\(396\) 7.16348 0.359978
\(397\) 36.4690 1.83032 0.915162 0.403086i \(-0.132062\pi\)
0.915162 + 0.403086i \(0.132062\pi\)
\(398\) −21.9658 −1.10104
\(399\) 0 0
\(400\) −1.96585 −0.0982927
\(401\) 33.8240 1.68909 0.844544 0.535486i \(-0.179871\pi\)
0.844544 + 0.535486i \(0.179871\pi\)
\(402\) 3.81445 0.190248
\(403\) 11.8749 0.591530
\(404\) 40.6376 2.02180
\(405\) 15.1638 0.753498
\(406\) 0 0
\(407\) 5.25666 0.260563
\(408\) −3.68513 −0.182441
\(409\) −1.16517 −0.0576137 −0.0288069 0.999585i \(-0.509171\pi\)
−0.0288069 + 0.999585i \(0.509171\pi\)
\(410\) −39.1808 −1.93500
\(411\) −1.10744 −0.0546258
\(412\) 36.6722 1.80671
\(413\) 0 0
\(414\) −33.3396 −1.63855
\(415\) −9.13726 −0.448530
\(416\) 7.18423 0.352236
\(417\) 2.25580 0.110467
\(418\) 11.7381 0.574130
\(419\) 40.3909 1.97322 0.986612 0.163083i \(-0.0521440\pi\)
0.986612 + 0.163083i \(0.0521440\pi\)
\(420\) 0 0
\(421\) 28.5030 1.38915 0.694576 0.719419i \(-0.255592\pi\)
0.694576 + 0.719419i \(0.255592\pi\)
\(422\) 5.87980 0.286224
\(423\) −0.967128 −0.0470234
\(424\) −24.7237 −1.20069
\(425\) −4.35485 −0.211241
\(426\) 4.79006 0.232079
\(427\) 0 0
\(428\) 50.9550 2.46300
\(429\) −0.430097 −0.0207653
\(430\) 28.5969 1.37906
\(431\) 36.0228 1.73516 0.867578 0.497301i \(-0.165675\pi\)
0.867578 + 0.497301i \(0.165675\pi\)
\(432\) −2.72778 −0.131240
\(433\) −19.0901 −0.917410 −0.458705 0.888589i \(-0.651687\pi\)
−0.458705 + 0.888589i \(0.651687\pi\)
\(434\) 0 0
\(435\) 3.16808 0.151898
\(436\) 40.0434 1.91773
\(437\) −34.8636 −1.66775
\(438\) −12.7717 −0.610255
\(439\) −37.8067 −1.80442 −0.902208 0.431302i \(-0.858054\pi\)
−0.902208 + 0.431302i \(0.858054\pi\)
\(440\) 4.77941 0.227849
\(441\) 0 0
\(442\) −13.2535 −0.630403
\(443\) −34.3769 −1.63330 −0.816649 0.577135i \(-0.804171\pi\)
−0.816649 + 0.577135i \(0.804171\pi\)
\(444\) −8.80196 −0.417722
\(445\) 7.98290 0.378426
\(446\) −1.68621 −0.0798443
\(447\) 0.510140 0.0241288
\(448\) 0 0
\(449\) 28.5444 1.34709 0.673547 0.739144i \(-0.264770\pi\)
0.673547 + 0.739144i \(0.264770\pi\)
\(450\) −9.61805 −0.453399
\(451\) −6.18882 −0.291420
\(452\) 4.48170 0.210801
\(453\) 0.587931 0.0276234
\(454\) −64.5292 −3.02850
\(455\) 0 0
\(456\) −8.51094 −0.398561
\(457\) 16.8828 0.789746 0.394873 0.918736i \(-0.370789\pi\)
0.394873 + 0.918736i \(0.370789\pi\)
\(458\) −29.3573 −1.37178
\(459\) −6.04271 −0.282050
\(460\) −32.7822 −1.52848
\(461\) −38.7527 −1.80489 −0.902446 0.430802i \(-0.858231\pi\)
−0.902446 + 0.430802i \(0.858231\pi\)
\(462\) 0 0
\(463\) 14.2136 0.660564 0.330282 0.943882i \(-0.392856\pi\)
0.330282 + 0.943882i \(0.392856\pi\)
\(464\) 6.96099 0.323156
\(465\) 4.09214 0.189769
\(466\) −14.0386 −0.650324
\(467\) −6.06817 −0.280802 −0.140401 0.990095i \(-0.544839\pi\)
−0.140401 + 0.990095i \(0.544839\pi\)
\(468\) −18.6801 −0.863488
\(469\) 0 0
\(470\) −1.49013 −0.0687347
\(471\) −5.32099 −0.245178
\(472\) 2.34059 0.107734
\(473\) 4.51703 0.207693
\(474\) 0.784581 0.0360370
\(475\) −10.0577 −0.461478
\(476\) 0 0
\(477\) −19.8871 −0.910568
\(478\) −43.5826 −1.99342
\(479\) −3.63220 −0.165960 −0.0829798 0.996551i \(-0.526444\pi\)
−0.0829798 + 0.996551i \(0.526444\pi\)
\(480\) 2.47572 0.113001
\(481\) −13.7077 −0.625018
\(482\) −62.8010 −2.86051
\(483\) 0 0
\(484\) −37.0587 −1.68449
\(485\) 23.4351 1.06413
\(486\) −20.1449 −0.913792
\(487\) −15.2264 −0.689976 −0.344988 0.938607i \(-0.612117\pi\)
−0.344988 + 0.938607i \(0.612117\pi\)
\(488\) 48.9709 2.21681
\(489\) −1.24971 −0.0565140
\(490\) 0 0
\(491\) −3.72789 −0.168237 −0.0841186 0.996456i \(-0.526807\pi\)
−0.0841186 + 0.996456i \(0.526807\pi\)
\(492\) 10.3628 0.467191
\(493\) 15.4203 0.694497
\(494\) −30.6093 −1.37718
\(495\) 3.84443 0.172794
\(496\) 8.99137 0.403724
\(497\) 0 0
\(498\) 3.78689 0.169695
\(499\) 6.68732 0.299366 0.149683 0.988734i \(-0.452175\pi\)
0.149683 + 0.988734i \(0.452175\pi\)
\(500\) −42.8463 −1.91614
\(501\) 5.33227 0.238228
\(502\) 13.2297 0.590472
\(503\) 2.65119 0.118211 0.0591054 0.998252i \(-0.481175\pi\)
0.0591054 + 0.998252i \(0.481175\pi\)
\(504\) 0 0
\(505\) 21.8090 0.970488
\(506\) −8.11402 −0.360712
\(507\) −3.21673 −0.142860
\(508\) −0.980159 −0.0434875
\(509\) 33.9270 1.50379 0.751894 0.659285i \(-0.229141\pi\)
0.751894 + 0.659285i \(0.229141\pi\)
\(510\) −4.56721 −0.202240
\(511\) 0 0
\(512\) 15.4095 0.681010
\(513\) −13.9559 −0.616166
\(514\) −27.4268 −1.20974
\(515\) 19.6809 0.867244
\(516\) −7.56349 −0.332964
\(517\) −0.235375 −0.0103518
\(518\) 0 0
\(519\) −2.42076 −0.106260
\(520\) −12.4632 −0.546548
\(521\) −16.4363 −0.720089 −0.360045 0.932935i \(-0.617239\pi\)
−0.360045 + 0.932935i \(0.617239\pi\)
\(522\) 34.0570 1.49064
\(523\) 27.7912 1.21522 0.607611 0.794234i \(-0.292128\pi\)
0.607611 + 0.794234i \(0.292128\pi\)
\(524\) 10.4444 0.456266
\(525\) 0 0
\(526\) 7.44164 0.324471
\(527\) 19.9181 0.867646
\(528\) −0.325659 −0.0141725
\(529\) 1.09957 0.0478075
\(530\) −30.6417 −1.33099
\(531\) 1.88270 0.0817024
\(532\) 0 0
\(533\) 16.1385 0.699036
\(534\) −3.30848 −0.143172
\(535\) 27.3460 1.18227
\(536\) 17.4594 0.754132
\(537\) −3.93476 −0.169798
\(538\) 16.3568 0.705192
\(539\) 0 0
\(540\) −13.1227 −0.564711
\(541\) −3.89180 −0.167321 −0.0836607 0.996494i \(-0.526661\pi\)
−0.0836607 + 0.996494i \(0.526661\pi\)
\(542\) 43.5476 1.87053
\(543\) −1.64507 −0.0705965
\(544\) 12.0503 0.516654
\(545\) 21.4901 0.920536
\(546\) 0 0
\(547\) −27.9363 −1.19447 −0.597235 0.802066i \(-0.703734\pi\)
−0.597235 + 0.802066i \(0.703734\pi\)
\(548\) −11.7060 −0.500054
\(549\) 39.3908 1.68116
\(550\) −2.34079 −0.0998116
\(551\) 35.6138 1.51720
\(552\) 5.88322 0.250406
\(553\) 0 0
\(554\) 48.8589 2.07582
\(555\) −4.72375 −0.200512
\(556\) 23.8446 1.01124
\(557\) 7.59365 0.321753 0.160877 0.986975i \(-0.448568\pi\)
0.160877 + 0.986975i \(0.448568\pi\)
\(558\) 43.9907 1.86228
\(559\) −11.7790 −0.498198
\(560\) 0 0
\(561\) −0.721416 −0.0304582
\(562\) −76.5265 −3.22808
\(563\) −5.65920 −0.238507 −0.119254 0.992864i \(-0.538050\pi\)
−0.119254 + 0.992864i \(0.538050\pi\)
\(564\) 0.394121 0.0165955
\(565\) 2.40520 0.101187
\(566\) 35.6599 1.49890
\(567\) 0 0
\(568\) 21.9250 0.919951
\(569\) −32.5994 −1.36664 −0.683319 0.730120i \(-0.739464\pi\)
−0.683319 + 0.730120i \(0.739464\pi\)
\(570\) −10.5481 −0.441813
\(571\) −16.9712 −0.710223 −0.355111 0.934824i \(-0.615557\pi\)
−0.355111 + 0.934824i \(0.615557\pi\)
\(572\) −4.54627 −0.190089
\(573\) −0.0929521 −0.00388313
\(574\) 0 0
\(575\) 6.95242 0.289936
\(576\) 34.6336 1.44307
\(577\) 5.39249 0.224492 0.112246 0.993680i \(-0.464196\pi\)
0.112246 + 0.993680i \(0.464196\pi\)
\(578\) 17.7375 0.737783
\(579\) −1.92377 −0.0799494
\(580\) 33.4877 1.39050
\(581\) 0 0
\(582\) −9.71256 −0.402598
\(583\) −4.84002 −0.200453
\(584\) −58.4583 −2.41902
\(585\) −10.0251 −0.414485
\(586\) −21.3577 −0.882277
\(587\) 26.7043 1.10220 0.551102 0.834438i \(-0.314207\pi\)
0.551102 + 0.834438i \(0.314207\pi\)
\(588\) 0 0
\(589\) 46.0016 1.89546
\(590\) 2.90084 0.119426
\(591\) −3.21005 −0.132044
\(592\) −10.3791 −0.426580
\(593\) 25.2557 1.03713 0.518564 0.855039i \(-0.326467\pi\)
0.518564 + 0.855039i \(0.326467\pi\)
\(594\) −3.24804 −0.133269
\(595\) 0 0
\(596\) 5.39235 0.220879
\(597\) 3.11787 0.127606
\(598\) 21.1588 0.865248
\(599\) 12.0680 0.493086 0.246543 0.969132i \(-0.420705\pi\)
0.246543 + 0.969132i \(0.420705\pi\)
\(600\) 1.69723 0.0692892
\(601\) −15.8026 −0.644603 −0.322302 0.946637i \(-0.604457\pi\)
−0.322302 + 0.946637i \(0.604457\pi\)
\(602\) 0 0
\(603\) 14.0439 0.571911
\(604\) 6.21462 0.252869
\(605\) −19.8883 −0.808575
\(606\) −9.03864 −0.367170
\(607\) −16.1703 −0.656334 −0.328167 0.944620i \(-0.606431\pi\)
−0.328167 + 0.944620i \(0.606431\pi\)
\(608\) 27.8307 1.12868
\(609\) 0 0
\(610\) 60.6927 2.45737
\(611\) 0.613783 0.0248310
\(612\) −31.3327 −1.26655
\(613\) −44.3319 −1.79055 −0.895275 0.445515i \(-0.853021\pi\)
−0.895275 + 0.445515i \(0.853021\pi\)
\(614\) −9.88327 −0.398856
\(615\) 5.56141 0.224258
\(616\) 0 0
\(617\) −24.9956 −1.00629 −0.503143 0.864203i \(-0.667823\pi\)
−0.503143 + 0.864203i \(0.667823\pi\)
\(618\) −8.15666 −0.328109
\(619\) −38.1139 −1.53193 −0.765964 0.642884i \(-0.777738\pi\)
−0.765964 + 0.642884i \(0.777738\pi\)
\(620\) 43.2553 1.73717
\(621\) 9.64704 0.387122
\(622\) −40.4235 −1.62084
\(623\) 0 0
\(624\) 0.849217 0.0339959
\(625\) −15.9132 −0.636529
\(626\) 11.2712 0.450488
\(627\) −1.66613 −0.0665390
\(628\) −56.2446 −2.24441
\(629\) −22.9924 −0.916766
\(630\) 0 0
\(631\) −14.7258 −0.586224 −0.293112 0.956078i \(-0.594691\pi\)
−0.293112 + 0.956078i \(0.594691\pi\)
\(632\) 3.59117 0.142849
\(633\) −0.834592 −0.0331720
\(634\) 16.8416 0.668865
\(635\) −0.526022 −0.0208746
\(636\) 8.10432 0.321357
\(637\) 0 0
\(638\) 8.28862 0.328150
\(639\) 17.6358 0.697663
\(640\) 38.5254 1.52285
\(641\) 31.0164 1.22507 0.612537 0.790442i \(-0.290149\pi\)
0.612537 + 0.790442i \(0.290149\pi\)
\(642\) −11.3334 −0.447295
\(643\) 3.76583 0.148510 0.0742550 0.997239i \(-0.476342\pi\)
0.0742550 + 0.997239i \(0.476342\pi\)
\(644\) 0 0
\(645\) −4.05910 −0.159827
\(646\) −51.3420 −2.02002
\(647\) 42.1849 1.65846 0.829231 0.558907i \(-0.188779\pi\)
0.829231 + 0.558907i \(0.188779\pi\)
\(648\) −28.7657 −1.13002
\(649\) 0.458203 0.0179860
\(650\) 6.10404 0.239420
\(651\) 0 0
\(652\) −13.2099 −0.517339
\(653\) −4.68498 −0.183337 −0.0916686 0.995790i \(-0.529220\pi\)
−0.0916686 + 0.995790i \(0.529220\pi\)
\(654\) −8.90648 −0.348271
\(655\) 5.60521 0.219014
\(656\) 12.2197 0.477098
\(657\) −47.0223 −1.83451
\(658\) 0 0
\(659\) 25.4657 0.992001 0.496001 0.868322i \(-0.334801\pi\)
0.496001 + 0.868322i \(0.334801\pi\)
\(660\) −1.56667 −0.0609824
\(661\) −1.42535 −0.0554396 −0.0277198 0.999616i \(-0.508825\pi\)
−0.0277198 + 0.999616i \(0.508825\pi\)
\(662\) −8.64243 −0.335898
\(663\) 1.88123 0.0730607
\(664\) 17.3333 0.672662
\(665\) 0 0
\(666\) −50.7805 −1.96771
\(667\) −24.6182 −0.953219
\(668\) 56.3638 2.18078
\(669\) 0.239344 0.00925358
\(670\) 21.6385 0.835970
\(671\) 9.58673 0.370092
\(672\) 0 0
\(673\) 44.0238 1.69699 0.848497 0.529201i \(-0.177508\pi\)
0.848497 + 0.529201i \(0.177508\pi\)
\(674\) −30.8589 −1.18864
\(675\) 2.78305 0.107119
\(676\) −34.0019 −1.30776
\(677\) −1.58863 −0.0610559 −0.0305280 0.999534i \(-0.509719\pi\)
−0.0305280 + 0.999534i \(0.509719\pi\)
\(678\) −0.996822 −0.0382827
\(679\) 0 0
\(680\) −20.9049 −0.801667
\(681\) 9.15942 0.350990
\(682\) 10.7062 0.409963
\(683\) −35.3892 −1.35413 −0.677066 0.735922i \(-0.736749\pi\)
−0.677066 + 0.735922i \(0.736749\pi\)
\(684\) −72.3641 −2.76691
\(685\) −6.28225 −0.240032
\(686\) 0 0
\(687\) 4.16704 0.158983
\(688\) −8.91877 −0.340025
\(689\) 12.6213 0.480831
\(690\) 7.29144 0.277580
\(691\) 16.9553 0.645012 0.322506 0.946567i \(-0.395475\pi\)
0.322506 + 0.946567i \(0.395475\pi\)
\(692\) −25.5883 −0.972720
\(693\) 0 0
\(694\) −14.9918 −0.569081
\(695\) 12.7967 0.485406
\(696\) −6.00982 −0.227802
\(697\) 27.0696 1.02533
\(698\) −35.9793 −1.36184
\(699\) 1.99267 0.0753696
\(700\) 0 0
\(701\) 39.9698 1.50964 0.754819 0.655933i \(-0.227725\pi\)
0.754819 + 0.655933i \(0.227725\pi\)
\(702\) 8.46986 0.319674
\(703\) −53.1017 −2.00277
\(704\) 8.42894 0.317678
\(705\) 0.211513 0.00796603
\(706\) −44.3027 −1.66735
\(707\) 0 0
\(708\) −0.767233 −0.0288344
\(709\) −4.67881 −0.175716 −0.0878581 0.996133i \(-0.528002\pi\)
−0.0878581 + 0.996133i \(0.528002\pi\)
\(710\) 27.1730 1.01978
\(711\) 2.88863 0.108332
\(712\) −15.1435 −0.567526
\(713\) −31.7988 −1.19087
\(714\) 0 0
\(715\) −2.43985 −0.0912451
\(716\) −41.5917 −1.55436
\(717\) 6.18621 0.231028
\(718\) −30.8022 −1.14953
\(719\) 5.78026 0.215567 0.107784 0.994174i \(-0.465625\pi\)
0.107784 + 0.994174i \(0.465625\pi\)
\(720\) −7.59073 −0.282890
\(721\) 0 0
\(722\) −73.9061 −2.75050
\(723\) 8.91411 0.331519
\(724\) −17.3889 −0.646253
\(725\) −7.10202 −0.263763
\(726\) 8.24262 0.305912
\(727\) −4.01519 −0.148915 −0.0744576 0.997224i \(-0.523723\pi\)
−0.0744576 + 0.997224i \(0.523723\pi\)
\(728\) 0 0
\(729\) −21.1709 −0.784109
\(730\) −72.4510 −2.68153
\(731\) −19.7573 −0.730749
\(732\) −16.0524 −0.593314
\(733\) 44.7733 1.65374 0.826870 0.562393i \(-0.190119\pi\)
0.826870 + 0.562393i \(0.190119\pi\)
\(734\) 68.4424 2.52625
\(735\) 0 0
\(736\) −19.2381 −0.709125
\(737\) 3.41792 0.125901
\(738\) 59.7854 2.20073
\(739\) −11.0827 −0.407684 −0.203842 0.979004i \(-0.565343\pi\)
−0.203842 + 0.979004i \(0.565343\pi\)
\(740\) −49.9316 −1.83552
\(741\) 4.34476 0.159609
\(742\) 0 0
\(743\) 6.02279 0.220955 0.110477 0.993879i \(-0.464762\pi\)
0.110477 + 0.993879i \(0.464762\pi\)
\(744\) −7.76275 −0.284596
\(745\) 2.89391 0.106025
\(746\) 31.9578 1.17006
\(747\) 13.9424 0.510126
\(748\) −7.62560 −0.278820
\(749\) 0 0
\(750\) 9.52989 0.347982
\(751\) 35.5872 1.29859 0.649297 0.760535i \(-0.275063\pi\)
0.649297 + 0.760535i \(0.275063\pi\)
\(752\) 0.464742 0.0169474
\(753\) −1.87786 −0.0684329
\(754\) −21.6141 −0.787140
\(755\) 3.33520 0.121380
\(756\) 0 0
\(757\) 28.4248 1.03312 0.516558 0.856252i \(-0.327213\pi\)
0.516558 + 0.856252i \(0.327213\pi\)
\(758\) −89.4934 −3.25055
\(759\) 1.15172 0.0418049
\(760\) −48.2807 −1.75132
\(761\) 29.0380 1.05263 0.526313 0.850291i \(-0.323574\pi\)
0.526313 + 0.850291i \(0.323574\pi\)
\(762\) 0.218007 0.00789758
\(763\) 0 0
\(764\) −0.982534 −0.0355468
\(765\) −16.8153 −0.607960
\(766\) 63.5616 2.29657
\(767\) −1.19485 −0.0431435
\(768\) −7.96447 −0.287393
\(769\) −28.6495 −1.03313 −0.516563 0.856249i \(-0.672789\pi\)
−0.516563 + 0.856249i \(0.672789\pi\)
\(770\) 0 0
\(771\) 3.89302 0.140204
\(772\) −20.3349 −0.731870
\(773\) 24.5726 0.883813 0.441907 0.897061i \(-0.354302\pi\)
0.441907 + 0.897061i \(0.354302\pi\)
\(774\) −43.6355 −1.56845
\(775\) −9.17353 −0.329523
\(776\) −44.4561 −1.59588
\(777\) 0 0
\(778\) −27.6160 −0.990081
\(779\) 62.5182 2.23995
\(780\) 4.08538 0.146280
\(781\) 4.29212 0.153584
\(782\) 35.4904 1.26913
\(783\) −9.85463 −0.352176
\(784\) 0 0
\(785\) −30.1848 −1.07734
\(786\) −2.32305 −0.0828605
\(787\) −50.5704 −1.80264 −0.901319 0.433155i \(-0.857400\pi\)
−0.901319 + 0.433155i \(0.857400\pi\)
\(788\) −33.9313 −1.20875
\(789\) −1.05628 −0.0376047
\(790\) 4.45076 0.158351
\(791\) 0 0
\(792\) −7.29283 −0.259140
\(793\) −24.9992 −0.887747
\(794\) −85.7406 −3.04282
\(795\) 4.34935 0.154255
\(796\) 32.9569 1.16813
\(797\) 18.3867 0.651289 0.325645 0.945492i \(-0.394419\pi\)
0.325645 + 0.945492i \(0.394419\pi\)
\(798\) 0 0
\(799\) 1.02952 0.0364217
\(800\) −5.54994 −0.196220
\(801\) −12.1810 −0.430394
\(802\) −79.5221 −2.80802
\(803\) −11.4440 −0.403851
\(804\) −5.72311 −0.201839
\(805\) 0 0
\(806\) −27.9185 −0.983387
\(807\) −2.32172 −0.0817285
\(808\) −41.3714 −1.45544
\(809\) −44.9845 −1.58157 −0.790785 0.612094i \(-0.790327\pi\)
−0.790785 + 0.612094i \(0.790327\pi\)
\(810\) −35.6511 −1.25265
\(811\) 39.7104 1.39442 0.697210 0.716867i \(-0.254424\pi\)
0.697210 + 0.716867i \(0.254424\pi\)
\(812\) 0 0
\(813\) −6.18125 −0.216786
\(814\) −12.3587 −0.433172
\(815\) −7.08935 −0.248329
\(816\) 1.42442 0.0498646
\(817\) −45.6301 −1.59640
\(818\) 2.73937 0.0957798
\(819\) 0 0
\(820\) 58.7859 2.05289
\(821\) 30.4242 1.06181 0.530906 0.847431i \(-0.321852\pi\)
0.530906 + 0.847431i \(0.321852\pi\)
\(822\) 2.60365 0.0908126
\(823\) −48.4546 −1.68902 −0.844510 0.535540i \(-0.820108\pi\)
−0.844510 + 0.535540i \(0.820108\pi\)
\(824\) −37.3345 −1.30061
\(825\) 0.332257 0.0115677
\(826\) 0 0
\(827\) −41.0783 −1.42843 −0.714216 0.699926i \(-0.753217\pi\)
−0.714216 + 0.699926i \(0.753217\pi\)
\(828\) 50.0219 1.73838
\(829\) 17.6480 0.612941 0.306471 0.951880i \(-0.400852\pi\)
0.306471 + 0.951880i \(0.400852\pi\)
\(830\) 21.4822 0.745658
\(831\) −6.93515 −0.240578
\(832\) −21.9800 −0.762020
\(833\) 0 0
\(834\) −5.30353 −0.183646
\(835\) 30.2488 1.04680
\(836\) −17.6116 −0.609110
\(837\) −12.7290 −0.439979
\(838\) −94.9613 −3.28038
\(839\) −0.952084 −0.0328696 −0.0164348 0.999865i \(-0.505232\pi\)
−0.0164348 + 0.999865i \(0.505232\pi\)
\(840\) 0 0
\(841\) −3.85208 −0.132830
\(842\) −67.0122 −2.30939
\(843\) 10.8623 0.374119
\(844\) −8.82191 −0.303662
\(845\) −18.2478 −0.627743
\(846\) 2.27377 0.0781739
\(847\) 0 0
\(848\) 9.55650 0.328172
\(849\) −5.06164 −0.173715
\(850\) 10.2385 0.351178
\(851\) 36.7068 1.25829
\(852\) −7.18689 −0.246219
\(853\) 36.9306 1.26448 0.632240 0.774773i \(-0.282136\pi\)
0.632240 + 0.774773i \(0.282136\pi\)
\(854\) 0 0
\(855\) −38.8356 −1.32815
\(856\) −51.8751 −1.77306
\(857\) 22.7125 0.775843 0.387922 0.921692i \(-0.373193\pi\)
0.387922 + 0.921692i \(0.373193\pi\)
\(858\) 1.01118 0.0345212
\(859\) −3.98918 −0.136109 −0.0680545 0.997682i \(-0.521679\pi\)
−0.0680545 + 0.997682i \(0.521679\pi\)
\(860\) −42.9060 −1.46308
\(861\) 0 0
\(862\) −84.6916 −2.88461
\(863\) −12.7373 −0.433582 −0.216791 0.976218i \(-0.569559\pi\)
−0.216791 + 0.976218i \(0.569559\pi\)
\(864\) −7.70098 −0.261993
\(865\) −13.7325 −0.466918
\(866\) 44.8818 1.52515
\(867\) −2.51770 −0.0855057
\(868\) 0 0
\(869\) 0.703021 0.0238484
\(870\) −7.44834 −0.252522
\(871\) −8.91287 −0.302001
\(872\) −40.7665 −1.38053
\(873\) −35.7592 −1.21027
\(874\) 81.9662 2.77255
\(875\) 0 0
\(876\) 19.1623 0.647436
\(877\) −16.8880 −0.570267 −0.285134 0.958488i \(-0.592038\pi\)
−0.285134 + 0.958488i \(0.592038\pi\)
\(878\) 88.8857 2.99975
\(879\) 3.03156 0.102252
\(880\) −1.84739 −0.0622756
\(881\) −1.39323 −0.0469390 −0.0234695 0.999725i \(-0.507471\pi\)
−0.0234695 + 0.999725i \(0.507471\pi\)
\(882\) 0 0
\(883\) −29.2134 −0.983110 −0.491555 0.870846i \(-0.663571\pi\)
−0.491555 + 0.870846i \(0.663571\pi\)
\(884\) 19.8852 0.668811
\(885\) −0.411751 −0.0138409
\(886\) 80.8221 2.71527
\(887\) 18.7513 0.629606 0.314803 0.949157i \(-0.398062\pi\)
0.314803 + 0.949157i \(0.398062\pi\)
\(888\) 8.96090 0.300708
\(889\) 0 0
\(890\) −18.7683 −0.629114
\(891\) −5.63128 −0.188655
\(892\) 2.52995 0.0847088
\(893\) 2.37771 0.0795670
\(894\) −1.19937 −0.0401129
\(895\) −22.3210 −0.746110
\(896\) 0 0
\(897\) −3.00333 −0.100278
\(898\) −67.1096 −2.23948
\(899\) 32.4830 1.08337
\(900\) 14.4307 0.481023
\(901\) 21.1700 0.705276
\(902\) 14.5503 0.484471
\(903\) 0 0
\(904\) −4.56263 −0.151751
\(905\) −9.33209 −0.310209
\(906\) −1.38226 −0.0459225
\(907\) −27.3052 −0.906655 −0.453327 0.891344i \(-0.649763\pi\)
−0.453327 + 0.891344i \(0.649763\pi\)
\(908\) 96.8180 3.21302
\(909\) −33.2780 −1.10376
\(910\) 0 0
\(911\) −37.1703 −1.23151 −0.615753 0.787939i \(-0.711148\pi\)
−0.615753 + 0.787939i \(0.711148\pi\)
\(912\) 3.28974 0.108934
\(913\) 3.39323 0.112300
\(914\) −39.6925 −1.31291
\(915\) −8.61485 −0.284798
\(916\) 44.0470 1.45535
\(917\) 0 0
\(918\) 14.2068 0.468893
\(919\) −19.1946 −0.633171 −0.316586 0.948564i \(-0.602536\pi\)
−0.316586 + 0.948564i \(0.602536\pi\)
\(920\) 33.3742 1.10031
\(921\) 1.40285 0.0462256
\(922\) 91.1098 3.00054
\(923\) −11.1925 −0.368405
\(924\) 0 0
\(925\) 10.5894 0.348178
\(926\) −33.4171 −1.09815
\(927\) −30.0308 −0.986341
\(928\) 19.6521 0.645110
\(929\) −31.0110 −1.01744 −0.508718 0.860933i \(-0.669880\pi\)
−0.508718 + 0.860933i \(0.669880\pi\)
\(930\) −9.62086 −0.315480
\(931\) 0 0
\(932\) 21.0631 0.689946
\(933\) 5.73780 0.187847
\(934\) 14.2666 0.466818
\(935\) −4.09243 −0.133837
\(936\) 19.0174 0.621604
\(937\) −8.44101 −0.275756 −0.137878 0.990449i \(-0.544028\pi\)
−0.137878 + 0.990449i \(0.544028\pi\)
\(938\) 0 0
\(939\) −1.59986 −0.0522095
\(940\) 2.23576 0.0729224
\(941\) 29.9788 0.977282 0.488641 0.872485i \(-0.337493\pi\)
0.488641 + 0.872485i \(0.337493\pi\)
\(942\) 12.5100 0.407596
\(943\) −43.2160 −1.40730
\(944\) −0.904711 −0.0294458
\(945\) 0 0
\(946\) −10.6198 −0.345279
\(947\) 35.4147 1.15082 0.575411 0.817864i \(-0.304842\pi\)
0.575411 + 0.817864i \(0.304842\pi\)
\(948\) −1.17717 −0.0382326
\(949\) 29.8424 0.968727
\(950\) 23.6462 0.767184
\(951\) −2.39053 −0.0775183
\(952\) 0 0
\(953\) −33.3026 −1.07878 −0.539389 0.842057i \(-0.681345\pi\)
−0.539389 + 0.842057i \(0.681345\pi\)
\(954\) 46.7557 1.51377
\(955\) −0.527296 −0.0170629
\(956\) 65.3903 2.11487
\(957\) −1.17651 −0.0380310
\(958\) 8.53951 0.275899
\(959\) 0 0
\(960\) −7.57443 −0.244464
\(961\) 10.9576 0.353472
\(962\) 32.2276 1.03906
\(963\) −41.7269 −1.34463
\(964\) 94.2251 3.03479
\(965\) −10.9131 −0.351307
\(966\) 0 0
\(967\) −24.6945 −0.794122 −0.397061 0.917792i \(-0.629970\pi\)
−0.397061 + 0.917792i \(0.629970\pi\)
\(968\) 37.7279 1.21262
\(969\) 7.28760 0.234111
\(970\) −55.0972 −1.76906
\(971\) 2.23403 0.0716935 0.0358467 0.999357i \(-0.488587\pi\)
0.0358467 + 0.999357i \(0.488587\pi\)
\(972\) 30.2250 0.969466
\(973\) 0 0
\(974\) 35.7982 1.14705
\(975\) −0.866422 −0.0277477
\(976\) −18.9288 −0.605895
\(977\) 44.1258 1.41171 0.705855 0.708357i \(-0.250563\pi\)
0.705855 + 0.708357i \(0.250563\pi\)
\(978\) 2.93815 0.0939517
\(979\) −2.96455 −0.0947474
\(980\) 0 0
\(981\) −32.7915 −1.04695
\(982\) 8.76448 0.279686
\(983\) −44.6809 −1.42510 −0.712550 0.701621i \(-0.752460\pi\)
−0.712550 + 0.701621i \(0.752460\pi\)
\(984\) −10.5499 −0.336320
\(985\) −18.2099 −0.580216
\(986\) −36.2541 −1.15456
\(987\) 0 0
\(988\) 45.9255 1.46108
\(989\) 31.5420 1.00298
\(990\) −9.03846 −0.287261
\(991\) −55.6872 −1.76896 −0.884481 0.466577i \(-0.845487\pi\)
−0.884481 + 0.466577i \(0.845487\pi\)
\(992\) 25.3841 0.805947
\(993\) 1.22673 0.0389290
\(994\) 0 0
\(995\) 17.6870 0.560715
\(996\) −5.68176 −0.180034
\(997\) −3.60002 −0.114014 −0.0570069 0.998374i \(-0.518156\pi\)
−0.0570069 + 0.998374i \(0.518156\pi\)
\(998\) −15.7223 −0.497680
\(999\) 14.6937 0.464888
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3871.2.a.i.1.4 yes 24
7.6 odd 2 inner 3871.2.a.i.1.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3871.2.a.i.1.3 24 7.6 odd 2 inner
3871.2.a.i.1.4 yes 24 1.1 even 1 trivial