Properties

Label 3871.2.a.i.1.12
Level $3871$
Weight $2$
Character 3871.1
Self dual yes
Analytic conductor $30.910$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3871,2,Mod(1,3871)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3871.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3871.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,28,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9100906224\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 3871.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0847728 q^{2} +2.25088 q^{3} -1.99281 q^{4} +0.792214 q^{5} -0.190813 q^{6} +0.338482 q^{8} +2.06645 q^{9} -0.0671582 q^{10} +4.82174 q^{11} -4.48558 q^{12} +3.03783 q^{13} +1.78318 q^{15} +3.95693 q^{16} +5.93429 q^{17} -0.175179 q^{18} -4.99844 q^{19} -1.57874 q^{20} -0.408752 q^{22} +2.59183 q^{23} +0.761882 q^{24} -4.37240 q^{25} -0.257525 q^{26} -2.10130 q^{27} -5.54886 q^{29} -0.151165 q^{30} +1.01430 q^{31} -1.01240 q^{32} +10.8531 q^{33} -0.503066 q^{34} -4.11805 q^{36} +2.40651 q^{37} +0.423732 q^{38} +6.83778 q^{39} +0.268150 q^{40} +7.84236 q^{41} +4.98433 q^{43} -9.60882 q^{44} +1.63707 q^{45} -0.219717 q^{46} -2.19804 q^{47} +8.90657 q^{48} +0.370660 q^{50} +13.3574 q^{51} -6.05382 q^{52} +8.23376 q^{53} +0.178133 q^{54} +3.81985 q^{55} -11.2509 q^{57} +0.470393 q^{58} -5.31212 q^{59} -3.55354 q^{60} +14.5460 q^{61} -0.0859851 q^{62} -7.82804 q^{64} +2.40661 q^{65} -0.920051 q^{66} -13.0920 q^{67} -11.8259 q^{68} +5.83389 q^{69} -16.5753 q^{71} +0.699457 q^{72} +15.8536 q^{73} -0.204006 q^{74} -9.84173 q^{75} +9.96095 q^{76} -0.579658 q^{78} -1.00000 q^{79} +3.13474 q^{80} -10.9291 q^{81} -0.664819 q^{82} +2.63695 q^{83} +4.70123 q^{85} -0.422536 q^{86} -12.4898 q^{87} +1.63207 q^{88} -9.86298 q^{89} -0.138779 q^{90} -5.16503 q^{92} +2.28307 q^{93} +0.186334 q^{94} -3.95983 q^{95} -2.27880 q^{96} -9.69545 q^{97} +9.96389 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 28 q^{4} + 18 q^{8} + 50 q^{9} + 14 q^{11} + 18 q^{15} + 36 q^{16} + 10 q^{18} - 12 q^{22} + 22 q^{23} + 56 q^{25} + 36 q^{29} + 14 q^{30} + 30 q^{32} + 8 q^{36} + 24 q^{37} + 56 q^{39}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0847728 −0.0599434 −0.0299717 0.999551i \(-0.509542\pi\)
−0.0299717 + 0.999551i \(0.509542\pi\)
\(3\) 2.25088 1.29954 0.649772 0.760129i \(-0.274864\pi\)
0.649772 + 0.760129i \(0.274864\pi\)
\(4\) −1.99281 −0.996407
\(5\) 0.792214 0.354289 0.177144 0.984185i \(-0.443314\pi\)
0.177144 + 0.984185i \(0.443314\pi\)
\(6\) −0.190813 −0.0778992
\(7\) 0 0
\(8\) 0.338482 0.119671
\(9\) 2.06645 0.688817
\(10\) −0.0671582 −0.0212373
\(11\) 4.82174 1.45381 0.726904 0.686739i \(-0.240958\pi\)
0.726904 + 0.686739i \(0.240958\pi\)
\(12\) −4.48558 −1.29488
\(13\) 3.03783 0.842542 0.421271 0.906935i \(-0.361584\pi\)
0.421271 + 0.906935i \(0.361584\pi\)
\(14\) 0 0
\(15\) 1.78318 0.460414
\(16\) 3.95693 0.989233
\(17\) 5.93429 1.43928 0.719638 0.694349i \(-0.244308\pi\)
0.719638 + 0.694349i \(0.244308\pi\)
\(18\) −0.175179 −0.0412901
\(19\) −4.99844 −1.14672 −0.573360 0.819303i \(-0.694360\pi\)
−0.573360 + 0.819303i \(0.694360\pi\)
\(20\) −1.57874 −0.353016
\(21\) 0 0
\(22\) −0.408752 −0.0871463
\(23\) 2.59183 0.540433 0.270217 0.962800i \(-0.412905\pi\)
0.270217 + 0.962800i \(0.412905\pi\)
\(24\) 0.761882 0.155518
\(25\) −4.37240 −0.874479
\(26\) −0.257525 −0.0505048
\(27\) −2.10130 −0.404396
\(28\) 0 0
\(29\) −5.54886 −1.03040 −0.515199 0.857071i \(-0.672282\pi\)
−0.515199 + 0.857071i \(0.672282\pi\)
\(30\) −0.151165 −0.0275988
\(31\) 1.01430 0.182174 0.0910869 0.995843i \(-0.470966\pi\)
0.0910869 + 0.995843i \(0.470966\pi\)
\(32\) −1.01240 −0.178970
\(33\) 10.8531 1.88929
\(34\) −0.503066 −0.0862752
\(35\) 0 0
\(36\) −4.11805 −0.686342
\(37\) 2.40651 0.395627 0.197814 0.980240i \(-0.436616\pi\)
0.197814 + 0.980240i \(0.436616\pi\)
\(38\) 0.423732 0.0687384
\(39\) 6.83778 1.09492
\(40\) 0.268150 0.0423983
\(41\) 7.84236 1.22477 0.612385 0.790560i \(-0.290210\pi\)
0.612385 + 0.790560i \(0.290210\pi\)
\(42\) 0 0
\(43\) 4.98433 0.760104 0.380052 0.924965i \(-0.375906\pi\)
0.380052 + 0.924965i \(0.375906\pi\)
\(44\) −9.60882 −1.44858
\(45\) 1.63707 0.244040
\(46\) −0.219717 −0.0323954
\(47\) −2.19804 −0.320617 −0.160308 0.987067i \(-0.551249\pi\)
−0.160308 + 0.987067i \(0.551249\pi\)
\(48\) 8.90657 1.28555
\(49\) 0 0
\(50\) 0.370660 0.0524193
\(51\) 13.3574 1.87040
\(52\) −6.05382 −0.839514
\(53\) 8.23376 1.13099 0.565497 0.824751i \(-0.308685\pi\)
0.565497 + 0.824751i \(0.308685\pi\)
\(54\) 0.178133 0.0242409
\(55\) 3.81985 0.515068
\(56\) 0 0
\(57\) −11.2509 −1.49021
\(58\) 0.470393 0.0617656
\(59\) −5.31212 −0.691579 −0.345790 0.938312i \(-0.612389\pi\)
−0.345790 + 0.938312i \(0.612389\pi\)
\(60\) −3.55354 −0.458760
\(61\) 14.5460 1.86242 0.931210 0.364483i \(-0.118754\pi\)
0.931210 + 0.364483i \(0.118754\pi\)
\(62\) −0.0859851 −0.0109201
\(63\) 0 0
\(64\) −7.82804 −0.978505
\(65\) 2.40661 0.298503
\(66\) −0.920051 −0.113251
\(67\) −13.0920 −1.59944 −0.799720 0.600374i \(-0.795019\pi\)
−0.799720 + 0.600374i \(0.795019\pi\)
\(68\) −11.8259 −1.43410
\(69\) 5.83389 0.702317
\(70\) 0 0
\(71\) −16.5753 −1.96713 −0.983566 0.180549i \(-0.942213\pi\)
−0.983566 + 0.180549i \(0.942213\pi\)
\(72\) 0.699457 0.0824318
\(73\) 15.8536 1.85553 0.927763 0.373169i \(-0.121729\pi\)
0.927763 + 0.373169i \(0.121729\pi\)
\(74\) −0.204006 −0.0237153
\(75\) −9.84173 −1.13643
\(76\) 9.96095 1.14260
\(77\) 0 0
\(78\) −0.579658 −0.0656333
\(79\) −1.00000 −0.112509
\(80\) 3.13474 0.350474
\(81\) −10.9291 −1.21435
\(82\) −0.664819 −0.0734169
\(83\) 2.63695 0.289443 0.144721 0.989472i \(-0.453771\pi\)
0.144721 + 0.989472i \(0.453771\pi\)
\(84\) 0 0
\(85\) 4.70123 0.509920
\(86\) −0.422536 −0.0455632
\(87\) −12.4898 −1.33905
\(88\) 1.63207 0.173979
\(89\) −9.86298 −1.04547 −0.522737 0.852494i \(-0.675089\pi\)
−0.522737 + 0.852494i \(0.675089\pi\)
\(90\) −0.138779 −0.0146286
\(91\) 0 0
\(92\) −5.16503 −0.538491
\(93\) 2.28307 0.236743
\(94\) 0.186334 0.0192189
\(95\) −3.95983 −0.406270
\(96\) −2.27880 −0.232579
\(97\) −9.69545 −0.984424 −0.492212 0.870475i \(-0.663812\pi\)
−0.492212 + 0.870475i \(0.663812\pi\)
\(98\) 0 0
\(99\) 9.96389 1.00141
\(100\) 8.71337 0.871337
\(101\) 11.1292 1.10739 0.553697 0.832718i \(-0.313217\pi\)
0.553697 + 0.832718i \(0.313217\pi\)
\(102\) −1.13234 −0.112118
\(103\) 6.22826 0.613689 0.306845 0.951760i \(-0.400727\pi\)
0.306845 + 0.951760i \(0.400727\pi\)
\(104\) 1.02825 0.100828
\(105\) 0 0
\(106\) −0.697999 −0.0677956
\(107\) 13.4518 1.30044 0.650218 0.759748i \(-0.274678\pi\)
0.650218 + 0.759748i \(0.274678\pi\)
\(108\) 4.18751 0.402943
\(109\) 15.9791 1.53052 0.765259 0.643722i \(-0.222611\pi\)
0.765259 + 0.643722i \(0.222611\pi\)
\(110\) −0.323819 −0.0308750
\(111\) 5.41675 0.514136
\(112\) 0 0
\(113\) −8.94774 −0.841732 −0.420866 0.907123i \(-0.638274\pi\)
−0.420866 + 0.907123i \(0.638274\pi\)
\(114\) 0.953768 0.0893286
\(115\) 2.05328 0.191470
\(116\) 11.0578 1.02670
\(117\) 6.27752 0.580357
\(118\) 0.450324 0.0414556
\(119\) 0 0
\(120\) 0.603574 0.0550985
\(121\) 12.2491 1.11356
\(122\) −1.23310 −0.111640
\(123\) 17.6522 1.59164
\(124\) −2.02131 −0.181519
\(125\) −7.42495 −0.664107
\(126\) 0 0
\(127\) 8.14554 0.722800 0.361400 0.932411i \(-0.382299\pi\)
0.361400 + 0.932411i \(0.382299\pi\)
\(128\) 2.68841 0.237625
\(129\) 11.2191 0.987789
\(130\) −0.204015 −0.0178933
\(131\) −12.7634 −1.11514 −0.557571 0.830129i \(-0.688267\pi\)
−0.557571 + 0.830129i \(0.688267\pi\)
\(132\) −21.6283 −1.88250
\(133\) 0 0
\(134\) 1.10984 0.0958759
\(135\) −1.66468 −0.143273
\(136\) 2.00865 0.172240
\(137\) 13.8404 1.18247 0.591234 0.806500i \(-0.298641\pi\)
0.591234 + 0.806500i \(0.298641\pi\)
\(138\) −0.494555 −0.0420993
\(139\) −10.1945 −0.864684 −0.432342 0.901710i \(-0.642313\pi\)
−0.432342 + 0.901710i \(0.642313\pi\)
\(140\) 0 0
\(141\) −4.94751 −0.416656
\(142\) 1.40514 0.117917
\(143\) 14.6476 1.22489
\(144\) 8.17681 0.681401
\(145\) −4.39589 −0.365059
\(146\) −1.34396 −0.111227
\(147\) 0 0
\(148\) −4.79572 −0.394206
\(149\) 0.0894068 0.00732449 0.00366224 0.999993i \(-0.498834\pi\)
0.00366224 + 0.999993i \(0.498834\pi\)
\(150\) 0.834311 0.0681212
\(151\) 16.3581 1.33120 0.665602 0.746307i \(-0.268175\pi\)
0.665602 + 0.746307i \(0.268175\pi\)
\(152\) −1.69188 −0.137230
\(153\) 12.2629 0.991398
\(154\) 0 0
\(155\) 0.803543 0.0645421
\(156\) −13.6264 −1.09099
\(157\) 13.4954 1.07705 0.538527 0.842608i \(-0.318981\pi\)
0.538527 + 0.842608i \(0.318981\pi\)
\(158\) 0.0847728 0.00674416
\(159\) 18.5332 1.46978
\(160\) −0.802041 −0.0634069
\(161\) 0 0
\(162\) 0.926493 0.0727922
\(163\) 16.9182 1.32514 0.662569 0.749001i \(-0.269466\pi\)
0.662569 + 0.749001i \(0.269466\pi\)
\(164\) −15.6284 −1.22037
\(165\) 8.59801 0.669354
\(166\) −0.223542 −0.0173502
\(167\) 1.46920 0.113690 0.0568449 0.998383i \(-0.481896\pi\)
0.0568449 + 0.998383i \(0.481896\pi\)
\(168\) 0 0
\(169\) −3.77161 −0.290124
\(170\) −0.398536 −0.0305663
\(171\) −10.3290 −0.789881
\(172\) −9.93285 −0.757372
\(173\) 3.67774 0.279614 0.139807 0.990179i \(-0.455352\pi\)
0.139807 + 0.990179i \(0.455352\pi\)
\(174\) 1.05880 0.0802672
\(175\) 0 0
\(176\) 19.0793 1.43816
\(177\) −11.9569 −0.898738
\(178\) 0.836113 0.0626693
\(179\) 9.68683 0.724028 0.362014 0.932173i \(-0.382089\pi\)
0.362014 + 0.932173i \(0.382089\pi\)
\(180\) −3.26238 −0.243163
\(181\) −7.11939 −0.529180 −0.264590 0.964361i \(-0.585237\pi\)
−0.264590 + 0.964361i \(0.585237\pi\)
\(182\) 0 0
\(183\) 32.7412 2.42030
\(184\) 0.877287 0.0646745
\(185\) 1.90647 0.140166
\(186\) −0.193542 −0.0141912
\(187\) 28.6136 2.09243
\(188\) 4.38028 0.319465
\(189\) 0 0
\(190\) 0.335686 0.0243532
\(191\) −4.18228 −0.302619 −0.151309 0.988486i \(-0.548349\pi\)
−0.151309 + 0.988486i \(0.548349\pi\)
\(192\) −17.6200 −1.27161
\(193\) −1.54825 −0.111445 −0.0557226 0.998446i \(-0.517746\pi\)
−0.0557226 + 0.998446i \(0.517746\pi\)
\(194\) 0.821911 0.0590098
\(195\) 5.41698 0.387918
\(196\) 0 0
\(197\) −7.85465 −0.559621 −0.279810 0.960055i \(-0.590272\pi\)
−0.279810 + 0.960055i \(0.590272\pi\)
\(198\) −0.844667 −0.0600279
\(199\) −19.3246 −1.36989 −0.684943 0.728596i \(-0.740173\pi\)
−0.684943 + 0.728596i \(0.740173\pi\)
\(200\) −1.47998 −0.104650
\(201\) −29.4684 −2.07854
\(202\) −0.943451 −0.0663810
\(203\) 0 0
\(204\) −26.6187 −1.86368
\(205\) 6.21283 0.433923
\(206\) −0.527988 −0.0367866
\(207\) 5.35588 0.372260
\(208\) 12.0205 0.833470
\(209\) −24.1012 −1.66711
\(210\) 0 0
\(211\) 23.8096 1.63912 0.819561 0.572992i \(-0.194217\pi\)
0.819561 + 0.572992i \(0.194217\pi\)
\(212\) −16.4083 −1.12693
\(213\) −37.3091 −2.55638
\(214\) −1.14035 −0.0779526
\(215\) 3.94866 0.269296
\(216\) −0.711254 −0.0483947
\(217\) 0 0
\(218\) −1.35459 −0.0917446
\(219\) 35.6846 2.41134
\(220\) −7.61225 −0.513217
\(221\) 18.0273 1.21265
\(222\) −0.459194 −0.0308191
\(223\) −7.55781 −0.506108 −0.253054 0.967452i \(-0.581435\pi\)
−0.253054 + 0.967452i \(0.581435\pi\)
\(224\) 0 0
\(225\) −9.03535 −0.602356
\(226\) 0.758525 0.0504563
\(227\) 11.9790 0.795071 0.397535 0.917587i \(-0.369866\pi\)
0.397535 + 0.917587i \(0.369866\pi\)
\(228\) 22.4209 1.48486
\(229\) −6.16032 −0.407086 −0.203543 0.979066i \(-0.565246\pi\)
−0.203543 + 0.979066i \(0.565246\pi\)
\(230\) −0.174063 −0.0114773
\(231\) 0 0
\(232\) −1.87819 −0.123309
\(233\) 13.5069 0.884868 0.442434 0.896801i \(-0.354115\pi\)
0.442434 + 0.896801i \(0.354115\pi\)
\(234\) −0.532163 −0.0347886
\(235\) −1.74132 −0.113591
\(236\) 10.5861 0.689094
\(237\) −2.25088 −0.146210
\(238\) 0 0
\(239\) 10.2744 0.664595 0.332298 0.943175i \(-0.392176\pi\)
0.332298 + 0.943175i \(0.392176\pi\)
\(240\) 7.05591 0.455457
\(241\) −2.33555 −0.150446 −0.0752230 0.997167i \(-0.523967\pi\)
−0.0752230 + 0.997167i \(0.523967\pi\)
\(242\) −1.03840 −0.0667506
\(243\) −18.2962 −1.17370
\(244\) −28.9874 −1.85573
\(245\) 0 0
\(246\) −1.49643 −0.0954086
\(247\) −15.1844 −0.966159
\(248\) 0.343323 0.0218010
\(249\) 5.93545 0.376144
\(250\) 0.629434 0.0398089
\(251\) −15.6121 −0.985424 −0.492712 0.870192i \(-0.663994\pi\)
−0.492712 + 0.870192i \(0.663994\pi\)
\(252\) 0 0
\(253\) 12.4971 0.785687
\(254\) −0.690520 −0.0433271
\(255\) 10.5819 0.662664
\(256\) 15.4282 0.964261
\(257\) 31.8247 1.98517 0.992585 0.121552i \(-0.0387871\pi\)
0.992585 + 0.121552i \(0.0387871\pi\)
\(258\) −0.951077 −0.0592115
\(259\) 0 0
\(260\) −4.79592 −0.297431
\(261\) −11.4665 −0.709756
\(262\) 1.08199 0.0668454
\(263\) −29.2379 −1.80289 −0.901444 0.432896i \(-0.857492\pi\)
−0.901444 + 0.432896i \(0.857492\pi\)
\(264\) 3.67359 0.226094
\(265\) 6.52290 0.400698
\(266\) 0 0
\(267\) −22.2004 −1.35864
\(268\) 26.0899 1.59369
\(269\) 15.6038 0.951380 0.475690 0.879613i \(-0.342198\pi\)
0.475690 + 0.879613i \(0.342198\pi\)
\(270\) 0.141120 0.00858828
\(271\) −14.6440 −0.889562 −0.444781 0.895639i \(-0.646718\pi\)
−0.444781 + 0.895639i \(0.646718\pi\)
\(272\) 23.4816 1.42378
\(273\) 0 0
\(274\) −1.17329 −0.0708812
\(275\) −21.0825 −1.27133
\(276\) −11.6258 −0.699794
\(277\) −2.14604 −0.128943 −0.0644715 0.997920i \(-0.520536\pi\)
−0.0644715 + 0.997920i \(0.520536\pi\)
\(278\) 0.864215 0.0518322
\(279\) 2.09600 0.125484
\(280\) 0 0
\(281\) −8.56660 −0.511041 −0.255520 0.966804i \(-0.582247\pi\)
−0.255520 + 0.966804i \(0.582247\pi\)
\(282\) 0.419415 0.0249758
\(283\) 6.56059 0.389987 0.194993 0.980805i \(-0.437531\pi\)
0.194993 + 0.980805i \(0.437531\pi\)
\(284\) 33.0316 1.96006
\(285\) −8.91310 −0.527966
\(286\) −1.24172 −0.0734244
\(287\) 0 0
\(288\) −2.09208 −0.123277
\(289\) 18.2158 1.07152
\(290\) 0.372652 0.0218829
\(291\) −21.8233 −1.27930
\(292\) −31.5933 −1.84886
\(293\) −14.5262 −0.848630 −0.424315 0.905515i \(-0.639485\pi\)
−0.424315 + 0.905515i \(0.639485\pi\)
\(294\) 0 0
\(295\) −4.20834 −0.245019
\(296\) 0.814560 0.0473453
\(297\) −10.1319 −0.587915
\(298\) −0.00757927 −0.000439055 0
\(299\) 7.87352 0.455338
\(300\) 19.6127 1.13234
\(301\) 0 0
\(302\) −1.38672 −0.0797969
\(303\) 25.0504 1.43911
\(304\) −19.7785 −1.13437
\(305\) 11.5235 0.659835
\(306\) −1.03956 −0.0594278
\(307\) −6.01140 −0.343089 −0.171544 0.985176i \(-0.554876\pi\)
−0.171544 + 0.985176i \(0.554876\pi\)
\(308\) 0 0
\(309\) 14.0191 0.797517
\(310\) −0.0681186 −0.00386888
\(311\) −29.3317 −1.66325 −0.831623 0.555340i \(-0.812588\pi\)
−0.831623 + 0.555340i \(0.812588\pi\)
\(312\) 2.31446 0.131031
\(313\) 11.4089 0.644870 0.322435 0.946592i \(-0.395499\pi\)
0.322435 + 0.946592i \(0.395499\pi\)
\(314\) −1.14405 −0.0645623
\(315\) 0 0
\(316\) 1.99281 0.112105
\(317\) −13.3876 −0.751921 −0.375961 0.926636i \(-0.622687\pi\)
−0.375961 + 0.926636i \(0.622687\pi\)
\(318\) −1.57111 −0.0881035
\(319\) −26.7552 −1.49800
\(320\) −6.20149 −0.346674
\(321\) 30.2784 1.68998
\(322\) 0 0
\(323\) −29.6622 −1.65045
\(324\) 21.7797 1.20998
\(325\) −13.2826 −0.736785
\(326\) −1.43421 −0.0794333
\(327\) 35.9670 1.98898
\(328\) 2.65450 0.146570
\(329\) 0 0
\(330\) −0.728878 −0.0401234
\(331\) −23.2790 −1.27953 −0.639765 0.768571i \(-0.720968\pi\)
−0.639765 + 0.768571i \(0.720968\pi\)
\(332\) −5.25495 −0.288403
\(333\) 4.97293 0.272515
\(334\) −0.124548 −0.00681496
\(335\) −10.3716 −0.566664
\(336\) 0 0
\(337\) 32.4217 1.76612 0.883060 0.469260i \(-0.155479\pi\)
0.883060 + 0.469260i \(0.155479\pi\)
\(338\) 0.319730 0.0173910
\(339\) −20.1403 −1.09387
\(340\) −9.36867 −0.508088
\(341\) 4.89069 0.264846
\(342\) 0.875621 0.0473482
\(343\) 0 0
\(344\) 1.68711 0.0909627
\(345\) 4.62169 0.248823
\(346\) −0.311773 −0.0167610
\(347\) −6.94452 −0.372802 −0.186401 0.982474i \(-0.559682\pi\)
−0.186401 + 0.982474i \(0.559682\pi\)
\(348\) 24.8899 1.33424
\(349\) −22.3618 −1.19700 −0.598500 0.801123i \(-0.704236\pi\)
−0.598500 + 0.801123i \(0.704236\pi\)
\(350\) 0 0
\(351\) −6.38340 −0.340721
\(352\) −4.88155 −0.260187
\(353\) 4.89439 0.260502 0.130251 0.991481i \(-0.458422\pi\)
0.130251 + 0.991481i \(0.458422\pi\)
\(354\) 1.01362 0.0538735
\(355\) −13.1312 −0.696933
\(356\) 19.6551 1.04172
\(357\) 0 0
\(358\) −0.821180 −0.0434007
\(359\) 8.00023 0.422236 0.211118 0.977461i \(-0.432290\pi\)
0.211118 + 0.977461i \(0.432290\pi\)
\(360\) 0.554120 0.0292047
\(361\) 5.98438 0.314967
\(362\) 0.603530 0.0317209
\(363\) 27.5713 1.44712
\(364\) 0 0
\(365\) 12.5595 0.657393
\(366\) −2.77556 −0.145081
\(367\) 29.0958 1.51879 0.759393 0.650632i \(-0.225496\pi\)
0.759393 + 0.650632i \(0.225496\pi\)
\(368\) 10.2557 0.534615
\(369\) 16.2058 0.843643
\(370\) −0.161617 −0.00840206
\(371\) 0 0
\(372\) −4.54973 −0.235892
\(373\) −0.876666 −0.0453920 −0.0226960 0.999742i \(-0.507225\pi\)
−0.0226960 + 0.999742i \(0.507225\pi\)
\(374\) −2.42565 −0.125428
\(375\) −16.7126 −0.863037
\(376\) −0.743996 −0.0383687
\(377\) −16.8565 −0.868153
\(378\) 0 0
\(379\) 7.05888 0.362590 0.181295 0.983429i \(-0.441971\pi\)
0.181295 + 0.983429i \(0.441971\pi\)
\(380\) 7.89121 0.404810
\(381\) 18.3346 0.939311
\(382\) 0.354543 0.0181400
\(383\) −6.87591 −0.351342 −0.175671 0.984449i \(-0.556210\pi\)
−0.175671 + 0.984449i \(0.556210\pi\)
\(384\) 6.05129 0.308804
\(385\) 0 0
\(386\) 0.131249 0.00668041
\(387\) 10.2999 0.523572
\(388\) 19.3212 0.980887
\(389\) −2.30306 −0.116770 −0.0583848 0.998294i \(-0.518595\pi\)
−0.0583848 + 0.998294i \(0.518595\pi\)
\(390\) −0.459213 −0.0232532
\(391\) 15.3807 0.777833
\(392\) 0 0
\(393\) −28.7288 −1.44918
\(394\) 0.665861 0.0335456
\(395\) −0.792214 −0.0398606
\(396\) −19.8562 −0.997810
\(397\) −16.2023 −0.813171 −0.406585 0.913613i \(-0.633281\pi\)
−0.406585 + 0.913613i \(0.633281\pi\)
\(398\) 1.63820 0.0821157
\(399\) 0 0
\(400\) −17.3013 −0.865064
\(401\) −0.847274 −0.0423109 −0.0211554 0.999776i \(-0.506734\pi\)
−0.0211554 + 0.999776i \(0.506734\pi\)
\(402\) 2.49812 0.124595
\(403\) 3.08127 0.153489
\(404\) −22.1784 −1.10341
\(405\) −8.65821 −0.430230
\(406\) 0 0
\(407\) 11.6035 0.575166
\(408\) 4.52123 0.223834
\(409\) −4.77171 −0.235946 −0.117973 0.993017i \(-0.537640\pi\)
−0.117973 + 0.993017i \(0.537640\pi\)
\(410\) −0.526679 −0.0260108
\(411\) 31.1531 1.53667
\(412\) −12.4118 −0.611484
\(413\) 0 0
\(414\) −0.454033 −0.0223145
\(415\) 2.08903 0.102546
\(416\) −3.07551 −0.150789
\(417\) −22.9465 −1.12370
\(418\) 2.04312 0.0999324
\(419\) −19.6367 −0.959318 −0.479659 0.877455i \(-0.659240\pi\)
−0.479659 + 0.877455i \(0.659240\pi\)
\(420\) 0 0
\(421\) −21.6191 −1.05365 −0.526826 0.849973i \(-0.676618\pi\)
−0.526826 + 0.849973i \(0.676618\pi\)
\(422\) −2.01841 −0.0982546
\(423\) −4.54214 −0.220846
\(424\) 2.78698 0.135348
\(425\) −25.9471 −1.25862
\(426\) 3.16280 0.153238
\(427\) 0 0
\(428\) −26.8070 −1.29576
\(429\) 32.9700 1.59180
\(430\) −0.334739 −0.0161425
\(431\) −2.67736 −0.128964 −0.0644819 0.997919i \(-0.520539\pi\)
−0.0644819 + 0.997919i \(0.520539\pi\)
\(432\) −8.31472 −0.400042
\(433\) −11.0838 −0.532653 −0.266326 0.963883i \(-0.585810\pi\)
−0.266326 + 0.963883i \(0.585810\pi\)
\(434\) 0 0
\(435\) −9.89461 −0.474410
\(436\) −31.8433 −1.52502
\(437\) −12.9551 −0.619726
\(438\) −3.02508 −0.144544
\(439\) −5.90223 −0.281698 −0.140849 0.990031i \(-0.544983\pi\)
−0.140849 + 0.990031i \(0.544983\pi\)
\(440\) 1.29295 0.0616390
\(441\) 0 0
\(442\) −1.52823 −0.0726904
\(443\) −33.2952 −1.58190 −0.790951 0.611880i \(-0.790414\pi\)
−0.790951 + 0.611880i \(0.790414\pi\)
\(444\) −10.7946 −0.512288
\(445\) −7.81359 −0.370400
\(446\) 0.640697 0.0303379
\(447\) 0.201244 0.00951850
\(448\) 0 0
\(449\) 23.9754 1.13147 0.565736 0.824587i \(-0.308592\pi\)
0.565736 + 0.824587i \(0.308592\pi\)
\(450\) 0.765952 0.0361073
\(451\) 37.8138 1.78058
\(452\) 17.8312 0.838708
\(453\) 36.8201 1.72996
\(454\) −1.01549 −0.0476593
\(455\) 0 0
\(456\) −3.80822 −0.178336
\(457\) −4.24088 −0.198380 −0.0991900 0.995069i \(-0.531625\pi\)
−0.0991900 + 0.995069i \(0.531625\pi\)
\(458\) 0.522228 0.0244021
\(459\) −12.4697 −0.582038
\(460\) −4.09181 −0.190782
\(461\) −34.0610 −1.58638 −0.793190 0.608974i \(-0.791581\pi\)
−0.793190 + 0.608974i \(0.791581\pi\)
\(462\) 0 0
\(463\) −32.8739 −1.52778 −0.763891 0.645346i \(-0.776713\pi\)
−0.763891 + 0.645346i \(0.776713\pi\)
\(464\) −21.9565 −1.01930
\(465\) 1.80868 0.0838754
\(466\) −1.14502 −0.0530420
\(467\) 36.3645 1.68275 0.841374 0.540453i \(-0.181747\pi\)
0.841374 + 0.540453i \(0.181747\pi\)
\(468\) −12.5099 −0.578272
\(469\) 0 0
\(470\) 0.147616 0.00680903
\(471\) 30.3766 1.39968
\(472\) −1.79806 −0.0827623
\(473\) 24.0331 1.10505
\(474\) 0.190813 0.00876434
\(475\) 21.8552 1.00278
\(476\) 0 0
\(477\) 17.0147 0.779048
\(478\) −0.870989 −0.0398381
\(479\) −3.48304 −0.159144 −0.0795720 0.996829i \(-0.525355\pi\)
−0.0795720 + 0.996829i \(0.525355\pi\)
\(480\) −1.80530 −0.0824001
\(481\) 7.31055 0.333333
\(482\) 0.197991 0.00901825
\(483\) 0 0
\(484\) −24.4103 −1.10956
\(485\) −7.68087 −0.348771
\(486\) 1.55102 0.0703558
\(487\) 1.73690 0.0787066 0.0393533 0.999225i \(-0.487470\pi\)
0.0393533 + 0.999225i \(0.487470\pi\)
\(488\) 4.92355 0.222879
\(489\) 38.0809 1.72208
\(490\) 0 0
\(491\) 38.7407 1.74834 0.874172 0.485617i \(-0.161405\pi\)
0.874172 + 0.485617i \(0.161405\pi\)
\(492\) −35.1775 −1.58592
\(493\) −32.9286 −1.48303
\(494\) 1.28722 0.0579149
\(495\) 7.89353 0.354788
\(496\) 4.01352 0.180212
\(497\) 0 0
\(498\) −0.503165 −0.0225474
\(499\) 10.0411 0.449501 0.224750 0.974416i \(-0.427843\pi\)
0.224750 + 0.974416i \(0.427843\pi\)
\(500\) 14.7965 0.661721
\(501\) 3.30698 0.147745
\(502\) 1.32348 0.0590697
\(503\) −39.8106 −1.77507 −0.887533 0.460745i \(-0.847582\pi\)
−0.887533 + 0.460745i \(0.847582\pi\)
\(504\) 0 0
\(505\) 8.81669 0.392337
\(506\) −1.05942 −0.0470968
\(507\) −8.48943 −0.377029
\(508\) −16.2325 −0.720203
\(509\) −41.2887 −1.83009 −0.915045 0.403351i \(-0.867845\pi\)
−0.915045 + 0.403351i \(0.867845\pi\)
\(510\) −0.897057 −0.0397223
\(511\) 0 0
\(512\) −6.68472 −0.295426
\(513\) 10.5032 0.463729
\(514\) −2.69787 −0.118998
\(515\) 4.93412 0.217423
\(516\) −22.3576 −0.984239
\(517\) −10.5984 −0.466115
\(518\) 0 0
\(519\) 8.27815 0.363371
\(520\) 0.814594 0.0357223
\(521\) −24.1019 −1.05592 −0.527962 0.849268i \(-0.677044\pi\)
−0.527962 + 0.849268i \(0.677044\pi\)
\(522\) 0.972044 0.0425452
\(523\) −32.7731 −1.43307 −0.716534 0.697552i \(-0.754273\pi\)
−0.716534 + 0.697552i \(0.754273\pi\)
\(524\) 25.4350 1.11114
\(525\) 0 0
\(526\) 2.47858 0.108071
\(527\) 6.01915 0.262198
\(528\) 42.9452 1.86895
\(529\) −16.2824 −0.707932
\(530\) −0.552964 −0.0240192
\(531\) −10.9772 −0.476372
\(532\) 0 0
\(533\) 23.8237 1.03192
\(534\) 1.88199 0.0814416
\(535\) 10.6567 0.460730
\(536\) −4.43140 −0.191407
\(537\) 21.8039 0.940907
\(538\) −1.32278 −0.0570290
\(539\) 0 0
\(540\) 3.31740 0.142758
\(541\) −28.4384 −1.22266 −0.611332 0.791374i \(-0.709366\pi\)
−0.611332 + 0.791374i \(0.709366\pi\)
\(542\) 1.24142 0.0533234
\(543\) −16.0249 −0.687693
\(544\) −6.00790 −0.257587
\(545\) 12.6589 0.542246
\(546\) 0 0
\(547\) 8.67034 0.370717 0.185358 0.982671i \(-0.440655\pi\)
0.185358 + 0.982671i \(0.440655\pi\)
\(548\) −27.5814 −1.17822
\(549\) 30.0585 1.28287
\(550\) 1.78723 0.0762076
\(551\) 27.7356 1.18158
\(552\) 1.97467 0.0840474
\(553\) 0 0
\(554\) 0.181926 0.00772929
\(555\) 4.29123 0.182153
\(556\) 20.3157 0.861577
\(557\) −12.7601 −0.540664 −0.270332 0.962767i \(-0.587133\pi\)
−0.270332 + 0.962767i \(0.587133\pi\)
\(558\) −0.177684 −0.00752197
\(559\) 15.1415 0.640419
\(560\) 0 0
\(561\) 64.4057 2.71921
\(562\) 0.726215 0.0306335
\(563\) −9.72295 −0.409774 −0.204887 0.978786i \(-0.565683\pi\)
−0.204887 + 0.978786i \(0.565683\pi\)
\(564\) 9.85947 0.415159
\(565\) −7.08853 −0.298217
\(566\) −0.556160 −0.0233772
\(567\) 0 0
\(568\) −5.61046 −0.235410
\(569\) 23.4306 0.982263 0.491131 0.871085i \(-0.336583\pi\)
0.491131 + 0.871085i \(0.336583\pi\)
\(570\) 0.755589 0.0316481
\(571\) −18.6552 −0.780698 −0.390349 0.920667i \(-0.627646\pi\)
−0.390349 + 0.920667i \(0.627646\pi\)
\(572\) −29.1899 −1.22049
\(573\) −9.41379 −0.393267
\(574\) 0 0
\(575\) −11.3325 −0.472598
\(576\) −16.1763 −0.674011
\(577\) 14.3500 0.597399 0.298700 0.954347i \(-0.403447\pi\)
0.298700 + 0.954347i \(0.403447\pi\)
\(578\) −1.54420 −0.0642304
\(579\) −3.48491 −0.144828
\(580\) 8.76018 0.363747
\(581\) 0 0
\(582\) 1.85002 0.0766858
\(583\) 39.7010 1.64425
\(584\) 5.36617 0.222054
\(585\) 4.97314 0.205614
\(586\) 1.23143 0.0508698
\(587\) 19.2156 0.793112 0.396556 0.918011i \(-0.370205\pi\)
0.396556 + 0.918011i \(0.370205\pi\)
\(588\) 0 0
\(589\) −5.06992 −0.208902
\(590\) 0.356753 0.0146873
\(591\) −17.6799 −0.727252
\(592\) 9.52239 0.391368
\(593\) −24.3195 −0.998682 −0.499341 0.866406i \(-0.666424\pi\)
−0.499341 + 0.866406i \(0.666424\pi\)
\(594\) 0.858913 0.0352416
\(595\) 0 0
\(596\) −0.178171 −0.00729817
\(597\) −43.4974 −1.78023
\(598\) −0.667461 −0.0272945
\(599\) 10.2639 0.419370 0.209685 0.977769i \(-0.432756\pi\)
0.209685 + 0.977769i \(0.432756\pi\)
\(600\) −3.33125 −0.135998
\(601\) −23.1772 −0.945419 −0.472709 0.881218i \(-0.656724\pi\)
−0.472709 + 0.881218i \(0.656724\pi\)
\(602\) 0 0
\(603\) −27.0539 −1.10172
\(604\) −32.5987 −1.32642
\(605\) 9.70395 0.394522
\(606\) −2.12359 −0.0862651
\(607\) 4.30242 0.174630 0.0873150 0.996181i \(-0.472171\pi\)
0.0873150 + 0.996181i \(0.472171\pi\)
\(608\) 5.06044 0.205228
\(609\) 0 0
\(610\) −0.976881 −0.0395528
\(611\) −6.67725 −0.270133
\(612\) −24.4377 −0.987836
\(613\) −24.2401 −0.979050 −0.489525 0.871989i \(-0.662830\pi\)
−0.489525 + 0.871989i \(0.662830\pi\)
\(614\) 0.509604 0.0205659
\(615\) 13.9843 0.563902
\(616\) 0 0
\(617\) −0.987912 −0.0397718 −0.0198859 0.999802i \(-0.506330\pi\)
−0.0198859 + 0.999802i \(0.506330\pi\)
\(618\) −1.18844 −0.0478059
\(619\) 0.109181 0.00438834 0.00219417 0.999998i \(-0.499302\pi\)
0.00219417 + 0.999998i \(0.499302\pi\)
\(620\) −1.60131 −0.0643102
\(621\) −5.44622 −0.218549
\(622\) 2.48653 0.0997007
\(623\) 0 0
\(624\) 27.0566 1.08313
\(625\) 15.9798 0.639193
\(626\) −0.967165 −0.0386557
\(627\) −54.2488 −2.16649
\(628\) −26.8939 −1.07318
\(629\) 14.2809 0.569417
\(630\) 0 0
\(631\) −24.2703 −0.966186 −0.483093 0.875569i \(-0.660487\pi\)
−0.483093 + 0.875569i \(0.660487\pi\)
\(632\) −0.338482 −0.0134641
\(633\) 53.5926 2.13011
\(634\) 1.13490 0.0450727
\(635\) 6.45301 0.256080
\(636\) −36.9332 −1.46450
\(637\) 0 0
\(638\) 2.26811 0.0897953
\(639\) −34.2522 −1.35499
\(640\) 2.12980 0.0841877
\(641\) −0.0426367 −0.00168405 −0.000842025 1.00000i \(-0.500268\pi\)
−0.000842025 1.00000i \(0.500268\pi\)
\(642\) −2.56678 −0.101303
\(643\) 29.1391 1.14913 0.574566 0.818458i \(-0.305171\pi\)
0.574566 + 0.818458i \(0.305171\pi\)
\(644\) 0 0
\(645\) 8.88795 0.349963
\(646\) 2.51455 0.0989335
\(647\) −35.9839 −1.41467 −0.707337 0.706877i \(-0.750103\pi\)
−0.707337 + 0.706877i \(0.750103\pi\)
\(648\) −3.69932 −0.145323
\(649\) −25.6137 −1.00542
\(650\) 1.12600 0.0441654
\(651\) 0 0
\(652\) −33.7149 −1.32038
\(653\) 33.5789 1.31404 0.657022 0.753871i \(-0.271816\pi\)
0.657022 + 0.753871i \(0.271816\pi\)
\(654\) −3.04902 −0.119226
\(655\) −10.1113 −0.395082
\(656\) 31.0317 1.21158
\(657\) 32.7607 1.27812
\(658\) 0 0
\(659\) 18.5502 0.722614 0.361307 0.932447i \(-0.382331\pi\)
0.361307 + 0.932447i \(0.382331\pi\)
\(660\) −17.1342 −0.666949
\(661\) 47.0598 1.83041 0.915207 0.402984i \(-0.132027\pi\)
0.915207 + 0.402984i \(0.132027\pi\)
\(662\) 1.97343 0.0766994
\(663\) 40.5773 1.57589
\(664\) 0.892560 0.0346381
\(665\) 0 0
\(666\) −0.421569 −0.0163355
\(667\) −14.3817 −0.556861
\(668\) −2.92783 −0.113281
\(669\) −17.0117 −0.657710
\(670\) 0.879234 0.0339678
\(671\) 70.1368 2.70760
\(672\) 0 0
\(673\) −30.6004 −1.17956 −0.589779 0.807565i \(-0.700785\pi\)
−0.589779 + 0.807565i \(0.700785\pi\)
\(674\) −2.74847 −0.105867
\(675\) 9.18773 0.353636
\(676\) 7.51611 0.289081
\(677\) −24.9894 −0.960421 −0.480211 0.877153i \(-0.659440\pi\)
−0.480211 + 0.877153i \(0.659440\pi\)
\(678\) 1.70735 0.0655703
\(679\) 0 0
\(680\) 1.59128 0.0610229
\(681\) 26.9632 1.03323
\(682\) −0.414598 −0.0158758
\(683\) 15.4855 0.592535 0.296267 0.955105i \(-0.404258\pi\)
0.296267 + 0.955105i \(0.404258\pi\)
\(684\) 20.5838 0.787042
\(685\) 10.9646 0.418935
\(686\) 0 0
\(687\) −13.8661 −0.529026
\(688\) 19.7227 0.751920
\(689\) 25.0127 0.952909
\(690\) −0.391793 −0.0149153
\(691\) −46.0971 −1.75362 −0.876809 0.480839i \(-0.840332\pi\)
−0.876809 + 0.480839i \(0.840332\pi\)
\(692\) −7.32906 −0.278609
\(693\) 0 0
\(694\) 0.588707 0.0223470
\(695\) −8.07621 −0.306348
\(696\) −4.22758 −0.160246
\(697\) 46.5388 1.76278
\(698\) 1.89567 0.0717523
\(699\) 30.4024 1.14993
\(700\) 0 0
\(701\) 18.5437 0.700387 0.350193 0.936677i \(-0.386116\pi\)
0.350193 + 0.936677i \(0.386116\pi\)
\(702\) 0.541139 0.0204240
\(703\) −12.0288 −0.453674
\(704\) −37.7448 −1.42256
\(705\) −3.91949 −0.147616
\(706\) −0.414911 −0.0156154
\(707\) 0 0
\(708\) 23.8279 0.895509
\(709\) 5.73344 0.215324 0.107662 0.994188i \(-0.465664\pi\)
0.107662 + 0.994188i \(0.465664\pi\)
\(710\) 1.11317 0.0417766
\(711\) −2.06645 −0.0774980
\(712\) −3.33844 −0.125113
\(713\) 2.62889 0.0984528
\(714\) 0 0
\(715\) 11.6040 0.433966
\(716\) −19.3041 −0.721426
\(717\) 23.1264 0.863671
\(718\) −0.678202 −0.0253103
\(719\) −53.0755 −1.97938 −0.989692 0.143215i \(-0.954256\pi\)
−0.989692 + 0.143215i \(0.954256\pi\)
\(720\) 6.47778 0.241413
\(721\) 0 0
\(722\) −0.507313 −0.0188802
\(723\) −5.25703 −0.195511
\(724\) 14.1876 0.527278
\(725\) 24.2618 0.901062
\(726\) −2.33730 −0.0867454
\(727\) 9.88620 0.366659 0.183329 0.983052i \(-0.441312\pi\)
0.183329 + 0.983052i \(0.441312\pi\)
\(728\) 0 0
\(729\) −8.39519 −0.310933
\(730\) −1.06470 −0.0394064
\(731\) 29.5785 1.09400
\(732\) −65.2471 −2.41160
\(733\) 45.1755 1.66860 0.834298 0.551314i \(-0.185873\pi\)
0.834298 + 0.551314i \(0.185873\pi\)
\(734\) −2.46653 −0.0910413
\(735\) 0 0
\(736\) −2.62398 −0.0967211
\(737\) −63.1261 −2.32528
\(738\) −1.37382 −0.0505708
\(739\) 11.5593 0.425216 0.212608 0.977138i \(-0.431804\pi\)
0.212608 + 0.977138i \(0.431804\pi\)
\(740\) −3.79924 −0.139663
\(741\) −34.1782 −1.25557
\(742\) 0 0
\(743\) 19.1615 0.702967 0.351484 0.936194i \(-0.385677\pi\)
0.351484 + 0.936194i \(0.385677\pi\)
\(744\) 0.772777 0.0283314
\(745\) 0.0708293 0.00259499
\(746\) 0.0743174 0.00272095
\(747\) 5.44913 0.199373
\(748\) −57.0215 −2.08491
\(749\) 0 0
\(750\) 1.41678 0.0517334
\(751\) 5.77892 0.210876 0.105438 0.994426i \(-0.466376\pi\)
0.105438 + 0.994426i \(0.466376\pi\)
\(752\) −8.69748 −0.317165
\(753\) −35.1408 −1.28060
\(754\) 1.42897 0.0520401
\(755\) 12.9591 0.471631
\(756\) 0 0
\(757\) 46.7327 1.69853 0.849264 0.527968i \(-0.177046\pi\)
0.849264 + 0.527968i \(0.177046\pi\)
\(758\) −0.598401 −0.0217349
\(759\) 28.1295 1.02103
\(760\) −1.34033 −0.0486190
\(761\) −28.2213 −1.02302 −0.511510 0.859277i \(-0.670914\pi\)
−0.511510 + 0.859277i \(0.670914\pi\)
\(762\) −1.55428 −0.0563055
\(763\) 0 0
\(764\) 8.33450 0.301531
\(765\) 9.71486 0.351241
\(766\) 0.582890 0.0210607
\(767\) −16.1373 −0.582684
\(768\) 34.7269 1.25310
\(769\) −2.16739 −0.0781581 −0.0390791 0.999236i \(-0.512442\pi\)
−0.0390791 + 0.999236i \(0.512442\pi\)
\(770\) 0 0
\(771\) 71.6335 2.57982
\(772\) 3.08536 0.111045
\(773\) 1.63826 0.0589243 0.0294621 0.999566i \(-0.490621\pi\)
0.0294621 + 0.999566i \(0.490621\pi\)
\(774\) −0.873150 −0.0313847
\(775\) −4.43492 −0.159307
\(776\) −3.28174 −0.117807
\(777\) 0 0
\(778\) 0.195237 0.00699957
\(779\) −39.1995 −1.40447
\(780\) −10.7950 −0.386524
\(781\) −79.9220 −2.85983
\(782\) −1.30386 −0.0466260
\(783\) 11.6598 0.416689
\(784\) 0 0
\(785\) 10.6913 0.381588
\(786\) 2.43542 0.0868687
\(787\) −27.0166 −0.963037 −0.481518 0.876436i \(-0.659915\pi\)
−0.481518 + 0.876436i \(0.659915\pi\)
\(788\) 15.6528 0.557610
\(789\) −65.8110 −2.34293
\(790\) 0.0671582 0.00238938
\(791\) 0 0
\(792\) 3.37260 0.119840
\(793\) 44.1881 1.56917
\(794\) 1.37352 0.0487443
\(795\) 14.6822 0.520726
\(796\) 38.5104 1.36496
\(797\) −30.3636 −1.07553 −0.537766 0.843094i \(-0.680732\pi\)
−0.537766 + 0.843094i \(0.680732\pi\)
\(798\) 0 0
\(799\) −13.0438 −0.461456
\(800\) 4.42663 0.156505
\(801\) −20.3814 −0.720140
\(802\) 0.0718258 0.00253626
\(803\) 76.4420 2.69758
\(804\) 58.7251 2.07107
\(805\) 0 0
\(806\) −0.261208 −0.00920066
\(807\) 35.1222 1.23636
\(808\) 3.76702 0.132523
\(809\) 20.7559 0.729740 0.364870 0.931058i \(-0.381113\pi\)
0.364870 + 0.931058i \(0.381113\pi\)
\(810\) 0.733981 0.0257895
\(811\) 45.8919 1.61148 0.805742 0.592267i \(-0.201767\pi\)
0.805742 + 0.592267i \(0.201767\pi\)
\(812\) 0 0
\(813\) −32.9619 −1.15603
\(814\) −0.983665 −0.0344775
\(815\) 13.4029 0.469482
\(816\) 52.8542 1.85027
\(817\) −24.9139 −0.871626
\(818\) 0.404512 0.0141434
\(819\) 0 0
\(820\) −12.3810 −0.432363
\(821\) −27.5321 −0.960879 −0.480439 0.877028i \(-0.659523\pi\)
−0.480439 + 0.877028i \(0.659523\pi\)
\(822\) −2.64094 −0.0921133
\(823\) −4.57527 −0.159484 −0.0797419 0.996816i \(-0.525410\pi\)
−0.0797419 + 0.996816i \(0.525410\pi\)
\(824\) 2.10816 0.0734411
\(825\) −47.4542 −1.65214
\(826\) 0 0
\(827\) −45.0134 −1.56527 −0.782635 0.622481i \(-0.786125\pi\)
−0.782635 + 0.622481i \(0.786125\pi\)
\(828\) −10.6733 −0.370922
\(829\) −48.8234 −1.69571 −0.847853 0.530232i \(-0.822105\pi\)
−0.847853 + 0.530232i \(0.822105\pi\)
\(830\) −0.177093 −0.00614698
\(831\) −4.83047 −0.167567
\(832\) −23.7802 −0.824431
\(833\) 0 0
\(834\) 1.94524 0.0673582
\(835\) 1.16392 0.0402790
\(836\) 48.0291 1.66112
\(837\) −2.13135 −0.0736704
\(838\) 1.66466 0.0575048
\(839\) 17.3617 0.599391 0.299695 0.954035i \(-0.403115\pi\)
0.299695 + 0.954035i \(0.403115\pi\)
\(840\) 0 0
\(841\) 1.78988 0.0617200
\(842\) 1.83271 0.0631595
\(843\) −19.2824 −0.664120
\(844\) −47.4482 −1.63323
\(845\) −2.98792 −0.102788
\(846\) 0.385050 0.0132383
\(847\) 0 0
\(848\) 32.5804 1.11882
\(849\) 14.7671 0.506805
\(850\) 2.19961 0.0754459
\(851\) 6.23725 0.213810
\(852\) 74.3501 2.54719
\(853\) −16.2893 −0.557735 −0.278867 0.960330i \(-0.589959\pi\)
−0.278867 + 0.960330i \(0.589959\pi\)
\(854\) 0 0
\(855\) −8.18280 −0.279846
\(856\) 4.55320 0.155625
\(857\) 19.5205 0.666809 0.333405 0.942784i \(-0.391802\pi\)
0.333405 + 0.942784i \(0.391802\pi\)
\(858\) −2.79496 −0.0954183
\(859\) −43.0960 −1.47042 −0.735208 0.677841i \(-0.762916\pi\)
−0.735208 + 0.677841i \(0.762916\pi\)
\(860\) −7.86894 −0.268329
\(861\) 0 0
\(862\) 0.226967 0.00773054
\(863\) 39.6169 1.34857 0.674287 0.738469i \(-0.264451\pi\)
0.674287 + 0.738469i \(0.264451\pi\)
\(864\) 2.12737 0.0723746
\(865\) 2.91356 0.0990640
\(866\) 0.939604 0.0319290
\(867\) 41.0015 1.39248
\(868\) 0 0
\(869\) −4.82174 −0.163566
\(870\) 0.838794 0.0284378
\(871\) −39.7712 −1.34759
\(872\) 5.40863 0.183159
\(873\) −20.0352 −0.678088
\(874\) 1.09824 0.0371485
\(875\) 0 0
\(876\) −71.1127 −2.40268
\(877\) −53.8932 −1.81984 −0.909922 0.414780i \(-0.863859\pi\)
−0.909922 + 0.414780i \(0.863859\pi\)
\(878\) 0.500349 0.0168859
\(879\) −32.6967 −1.10283
\(880\) 15.1149 0.509523
\(881\) −5.58577 −0.188190 −0.0940948 0.995563i \(-0.529996\pi\)
−0.0940948 + 0.995563i \(0.529996\pi\)
\(882\) 0 0
\(883\) 24.3533 0.819553 0.409776 0.912186i \(-0.365607\pi\)
0.409776 + 0.912186i \(0.365607\pi\)
\(884\) −35.9251 −1.20829
\(885\) −9.47245 −0.318413
\(886\) 2.82253 0.0948246
\(887\) 16.4606 0.552693 0.276346 0.961058i \(-0.410876\pi\)
0.276346 + 0.961058i \(0.410876\pi\)
\(888\) 1.83347 0.0615274
\(889\) 0 0
\(890\) 0.662380 0.0222030
\(891\) −52.6974 −1.76543
\(892\) 15.0613 0.504290
\(893\) 10.9867 0.367657
\(894\) −0.0170600 −0.000570572 0
\(895\) 7.67405 0.256515
\(896\) 0 0
\(897\) 17.7223 0.591732
\(898\) −2.03247 −0.0678243
\(899\) −5.62821 −0.187711
\(900\) 18.0058 0.600192
\(901\) 48.8615 1.62781
\(902\) −3.20558 −0.106734
\(903\) 0 0
\(904\) −3.02865 −0.100731
\(905\) −5.64008 −0.187483
\(906\) −3.12134 −0.103700
\(907\) 30.0872 0.999028 0.499514 0.866306i \(-0.333512\pi\)
0.499514 + 0.866306i \(0.333512\pi\)
\(908\) −23.8718 −0.792214
\(909\) 22.9979 0.762792
\(910\) 0 0
\(911\) 19.1588 0.634758 0.317379 0.948299i \(-0.397197\pi\)
0.317379 + 0.948299i \(0.397197\pi\)
\(912\) −44.5189 −1.47417
\(913\) 12.7147 0.420794
\(914\) 0.359511 0.0118916
\(915\) 25.9380 0.857485
\(916\) 12.2764 0.405623
\(917\) 0 0
\(918\) 1.05710 0.0348894
\(919\) −18.7329 −0.617940 −0.308970 0.951072i \(-0.599984\pi\)
−0.308970 + 0.951072i \(0.599984\pi\)
\(920\) 0.694999 0.0229134
\(921\) −13.5309 −0.445859
\(922\) 2.88745 0.0950931
\(923\) −50.3530 −1.65739
\(924\) 0 0
\(925\) −10.5222 −0.345968
\(926\) 2.78682 0.0915805
\(927\) 12.8704 0.422720
\(928\) 5.61769 0.184410
\(929\) −38.4994 −1.26312 −0.631562 0.775325i \(-0.717586\pi\)
−0.631562 + 0.775325i \(0.717586\pi\)
\(930\) −0.153327 −0.00502778
\(931\) 0 0
\(932\) −26.9168 −0.881689
\(933\) −66.0220 −2.16146
\(934\) −3.08272 −0.100870
\(935\) 22.6681 0.741326
\(936\) 2.12483 0.0694522
\(937\) −31.7402 −1.03691 −0.518454 0.855106i \(-0.673492\pi\)
−0.518454 + 0.855106i \(0.673492\pi\)
\(938\) 0 0
\(939\) 25.6801 0.838037
\(940\) 3.47012 0.113183
\(941\) −20.7177 −0.675378 −0.337689 0.941258i \(-0.609645\pi\)
−0.337689 + 0.941258i \(0.609645\pi\)
\(942\) −2.57511 −0.0839016
\(943\) 20.3260 0.661907
\(944\) −21.0197 −0.684133
\(945\) 0 0
\(946\) −2.03736 −0.0662402
\(947\) −37.9316 −1.23261 −0.616305 0.787508i \(-0.711371\pi\)
−0.616305 + 0.787508i \(0.711371\pi\)
\(948\) 4.48558 0.145685
\(949\) 48.1606 1.56336
\(950\) −1.85272 −0.0601103
\(951\) −30.1338 −0.977156
\(952\) 0 0
\(953\) 21.6747 0.702113 0.351057 0.936354i \(-0.385822\pi\)
0.351057 + 0.936354i \(0.385822\pi\)
\(954\) −1.44238 −0.0466988
\(955\) −3.31326 −0.107214
\(956\) −20.4749 −0.662207
\(957\) −60.2226 −1.94672
\(958\) 0.295267 0.00953964
\(959\) 0 0
\(960\) −13.9588 −0.450518
\(961\) −29.9712 −0.966813
\(962\) −0.619736 −0.0199811
\(963\) 27.7975 0.895763
\(964\) 4.65431 0.149905
\(965\) −1.22654 −0.0394838
\(966\) 0 0
\(967\) −20.9033 −0.672205 −0.336103 0.941825i \(-0.609109\pi\)
−0.336103 + 0.941825i \(0.609109\pi\)
\(968\) 4.14612 0.133261
\(969\) −66.7659 −2.14483
\(970\) 0.651129 0.0209065
\(971\) −24.2669 −0.778762 −0.389381 0.921077i \(-0.627311\pi\)
−0.389381 + 0.921077i \(0.627311\pi\)
\(972\) 36.4610 1.16949
\(973\) 0 0
\(974\) −0.147242 −0.00471794
\(975\) −29.8975 −0.957485
\(976\) 57.5574 1.84237
\(977\) 40.7081 1.30237 0.651184 0.758920i \(-0.274273\pi\)
0.651184 + 0.758920i \(0.274273\pi\)
\(978\) −3.22822 −0.103227
\(979\) −47.5567 −1.51992
\(980\) 0 0
\(981\) 33.0200 1.05425
\(982\) −3.28416 −0.104802
\(983\) 5.66733 0.180760 0.0903798 0.995907i \(-0.471192\pi\)
0.0903798 + 0.995907i \(0.471192\pi\)
\(984\) 5.97495 0.190474
\(985\) −6.22256 −0.198267
\(986\) 2.79145 0.0888978
\(987\) 0 0
\(988\) 30.2597 0.962688
\(989\) 12.9185 0.410785
\(990\) −0.669157 −0.0212672
\(991\) 4.61955 0.146745 0.0733724 0.997305i \(-0.476624\pi\)
0.0733724 + 0.997305i \(0.476624\pi\)
\(992\) −1.02688 −0.0326036
\(993\) −52.3982 −1.66281
\(994\) 0 0
\(995\) −15.3092 −0.485336
\(996\) −11.8282 −0.374792
\(997\) −4.09577 −0.129714 −0.0648571 0.997895i \(-0.520659\pi\)
−0.0648571 + 0.997895i \(0.520659\pi\)
\(998\) −0.851211 −0.0269446
\(999\) −5.05680 −0.159990
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3871.2.a.i.1.12 yes 24
7.6 odd 2 inner 3871.2.a.i.1.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3871.2.a.i.1.11 24 7.6 odd 2 inner
3871.2.a.i.1.12 yes 24 1.1 even 1 trivial