Properties

Label 3871.2.a.i.1.10
Level $3871$
Weight $2$
Character 3871.1
Self dual yes
Analytic conductor $30.910$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3871,2,Mod(1,3871)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3871.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3871.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,28,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9100906224\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 3871.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.380222 q^{2} +1.62042 q^{3} -1.85543 q^{4} -3.79610 q^{5} -0.616119 q^{6} +1.46592 q^{8} -0.374245 q^{9} +1.44336 q^{10} -0.391089 q^{11} -3.00657 q^{12} -7.07220 q^{13} -6.15126 q^{15} +3.15349 q^{16} -4.17204 q^{17} +0.142296 q^{18} -6.56066 q^{19} +7.04340 q^{20} +0.148701 q^{22} +1.55903 q^{23} +2.37540 q^{24} +9.41035 q^{25} +2.68901 q^{26} -5.46769 q^{27} -2.62613 q^{29} +2.33885 q^{30} +5.73522 q^{31} -4.13087 q^{32} -0.633728 q^{33} +1.58630 q^{34} +0.694386 q^{36} +4.14653 q^{37} +2.49451 q^{38} -11.4599 q^{39} -5.56478 q^{40} -1.34115 q^{41} -11.5513 q^{43} +0.725639 q^{44} +1.42067 q^{45} -0.592779 q^{46} -5.55629 q^{47} +5.10997 q^{48} -3.57802 q^{50} -6.76044 q^{51} +13.1220 q^{52} +7.60160 q^{53} +2.07894 q^{54} +1.48461 q^{55} -10.6310 q^{57} +0.998512 q^{58} -4.38862 q^{59} +11.4132 q^{60} -5.80738 q^{61} -2.18066 q^{62} -4.73633 q^{64} +26.8468 q^{65} +0.240957 q^{66} +2.49625 q^{67} +7.74093 q^{68} +2.52629 q^{69} +1.76933 q^{71} -0.548613 q^{72} +14.3344 q^{73} -1.57660 q^{74} +15.2487 q^{75} +12.1729 q^{76} +4.35732 q^{78} -1.00000 q^{79} -11.9709 q^{80} -7.73721 q^{81} +0.509935 q^{82} -2.87184 q^{83} +15.8375 q^{85} +4.39207 q^{86} -4.25542 q^{87} -0.573306 q^{88} +11.4266 q^{89} -0.540170 q^{90} -2.89268 q^{92} +9.29345 q^{93} +2.11262 q^{94} +24.9049 q^{95} -6.69373 q^{96} -4.69311 q^{97} +0.146363 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 28 q^{4} + 18 q^{8} + 50 q^{9} + 14 q^{11} + 18 q^{15} + 36 q^{16} + 10 q^{18} - 12 q^{22} + 22 q^{23} + 56 q^{25} + 36 q^{29} + 14 q^{30} + 30 q^{32} + 8 q^{36} + 24 q^{37} + 56 q^{39}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.380222 −0.268858 −0.134429 0.990923i \(-0.542920\pi\)
−0.134429 + 0.990923i \(0.542920\pi\)
\(3\) 1.62042 0.935549 0.467774 0.883848i \(-0.345056\pi\)
0.467774 + 0.883848i \(0.345056\pi\)
\(4\) −1.85543 −0.927716
\(5\) −3.79610 −1.69767 −0.848833 0.528661i \(-0.822694\pi\)
−0.848833 + 0.528661i \(0.822694\pi\)
\(6\) −0.616119 −0.251529
\(7\) 0 0
\(8\) 1.46592 0.518281
\(9\) −0.374245 −0.124748
\(10\) 1.44336 0.456431
\(11\) −0.391089 −0.117918 −0.0589589 0.998260i \(-0.518778\pi\)
−0.0589589 + 0.998260i \(0.518778\pi\)
\(12\) −3.00657 −0.867923
\(13\) −7.07220 −1.96148 −0.980738 0.195328i \(-0.937423\pi\)
−0.980738 + 0.195328i \(0.937423\pi\)
\(14\) 0 0
\(15\) −6.15126 −1.58825
\(16\) 3.15349 0.788372
\(17\) −4.17204 −1.01187 −0.505934 0.862572i \(-0.668852\pi\)
−0.505934 + 0.862572i \(0.668852\pi\)
\(18\) 0.142296 0.0335396
\(19\) −6.56066 −1.50512 −0.752559 0.658525i \(-0.771181\pi\)
−0.752559 + 0.658525i \(0.771181\pi\)
\(20\) 7.04340 1.57495
\(21\) 0 0
\(22\) 0.148701 0.0317031
\(23\) 1.55903 0.325081 0.162541 0.986702i \(-0.448031\pi\)
0.162541 + 0.986702i \(0.448031\pi\)
\(24\) 2.37540 0.484877
\(25\) 9.41035 1.88207
\(26\) 2.68901 0.527358
\(27\) −5.46769 −1.05226
\(28\) 0 0
\(29\) −2.62613 −0.487660 −0.243830 0.969818i \(-0.578404\pi\)
−0.243830 + 0.969818i \(0.578404\pi\)
\(30\) 2.33885 0.427013
\(31\) 5.73522 1.03008 0.515038 0.857168i \(-0.327778\pi\)
0.515038 + 0.857168i \(0.327778\pi\)
\(32\) −4.13087 −0.730241
\(33\) −0.633728 −0.110318
\(34\) 1.58630 0.272048
\(35\) 0 0
\(36\) 0.694386 0.115731
\(37\) 4.14653 0.681686 0.340843 0.940120i \(-0.389288\pi\)
0.340843 + 0.940120i \(0.389288\pi\)
\(38\) 2.49451 0.404663
\(39\) −11.4599 −1.83506
\(40\) −5.56478 −0.879868
\(41\) −1.34115 −0.209452 −0.104726 0.994501i \(-0.533397\pi\)
−0.104726 + 0.994501i \(0.533397\pi\)
\(42\) 0 0
\(43\) −11.5513 −1.76156 −0.880780 0.473526i \(-0.842981\pi\)
−0.880780 + 0.473526i \(0.842981\pi\)
\(44\) 0.725639 0.109394
\(45\) 1.42067 0.211781
\(46\) −0.592779 −0.0874005
\(47\) −5.55629 −0.810468 −0.405234 0.914213i \(-0.632810\pi\)
−0.405234 + 0.914213i \(0.632810\pi\)
\(48\) 5.10997 0.737560
\(49\) 0 0
\(50\) −3.57802 −0.506009
\(51\) −6.76044 −0.946651
\(52\) 13.1220 1.81969
\(53\) 7.60160 1.04416 0.522080 0.852896i \(-0.325156\pi\)
0.522080 + 0.852896i \(0.325156\pi\)
\(54\) 2.07894 0.282907
\(55\) 1.48461 0.200185
\(56\) 0 0
\(57\) −10.6310 −1.40811
\(58\) 0.998512 0.131111
\(59\) −4.38862 −0.571349 −0.285675 0.958327i \(-0.592218\pi\)
−0.285675 + 0.958327i \(0.592218\pi\)
\(60\) 11.4132 1.47344
\(61\) −5.80738 −0.743559 −0.371779 0.928321i \(-0.621252\pi\)
−0.371779 + 0.928321i \(0.621252\pi\)
\(62\) −2.18066 −0.276944
\(63\) 0 0
\(64\) −4.73633 −0.592041
\(65\) 26.8468 3.32993
\(66\) 0.240957 0.0296598
\(67\) 2.49625 0.304966 0.152483 0.988306i \(-0.451273\pi\)
0.152483 + 0.988306i \(0.451273\pi\)
\(68\) 7.74093 0.938725
\(69\) 2.52629 0.304129
\(70\) 0 0
\(71\) 1.76933 0.209981 0.104990 0.994473i \(-0.466519\pi\)
0.104990 + 0.994473i \(0.466519\pi\)
\(72\) −0.548613 −0.0646547
\(73\) 14.3344 1.67772 0.838858 0.544351i \(-0.183224\pi\)
0.838858 + 0.544351i \(0.183224\pi\)
\(74\) −1.57660 −0.183276
\(75\) 15.2487 1.76077
\(76\) 12.1729 1.39632
\(77\) 0 0
\(78\) 4.35732 0.493369
\(79\) −1.00000 −0.112509
\(80\) −11.9709 −1.33839
\(81\) −7.73721 −0.859689
\(82\) 0.509935 0.0563129
\(83\) −2.87184 −0.315226 −0.157613 0.987501i \(-0.550380\pi\)
−0.157613 + 0.987501i \(0.550380\pi\)
\(84\) 0 0
\(85\) 15.8375 1.71781
\(86\) 4.39207 0.473609
\(87\) −4.25542 −0.456229
\(88\) −0.573306 −0.0611146
\(89\) 11.4266 1.21122 0.605609 0.795763i \(-0.292930\pi\)
0.605609 + 0.795763i \(0.292930\pi\)
\(90\) −0.540170 −0.0569390
\(91\) 0 0
\(92\) −2.89268 −0.301583
\(93\) 9.29345 0.963686
\(94\) 2.11262 0.217900
\(95\) 24.9049 2.55519
\(96\) −6.69373 −0.683176
\(97\) −4.69311 −0.476514 −0.238257 0.971202i \(-0.576576\pi\)
−0.238257 + 0.971202i \(0.576576\pi\)
\(98\) 0 0
\(99\) 0.146363 0.0147101
\(100\) −17.4603 −1.74603
\(101\) 7.43342 0.739653 0.369827 0.929101i \(-0.379417\pi\)
0.369827 + 0.929101i \(0.379417\pi\)
\(102\) 2.57047 0.254514
\(103\) −5.20633 −0.512995 −0.256498 0.966545i \(-0.582569\pi\)
−0.256498 + 0.966545i \(0.582569\pi\)
\(104\) −10.3673 −1.01660
\(105\) 0 0
\(106\) −2.89030 −0.280730
\(107\) −17.5404 −1.69570 −0.847848 0.530239i \(-0.822102\pi\)
−0.847848 + 0.530239i \(0.822102\pi\)
\(108\) 10.1449 0.976195
\(109\) 5.46934 0.523868 0.261934 0.965086i \(-0.415640\pi\)
0.261934 + 0.965086i \(0.415640\pi\)
\(110\) −0.564483 −0.0538213
\(111\) 6.71912 0.637750
\(112\) 0 0
\(113\) 13.8208 1.30015 0.650075 0.759870i \(-0.274737\pi\)
0.650075 + 0.759870i \(0.274737\pi\)
\(114\) 4.04215 0.378582
\(115\) −5.91825 −0.551879
\(116\) 4.87260 0.452409
\(117\) 2.64674 0.244691
\(118\) 1.66865 0.153612
\(119\) 0 0
\(120\) −9.01726 −0.823160
\(121\) −10.8470 −0.986095
\(122\) 2.20809 0.199911
\(123\) −2.17322 −0.195953
\(124\) −10.6413 −0.955617
\(125\) −16.7421 −1.49746
\(126\) 0 0
\(127\) −5.30396 −0.470650 −0.235325 0.971917i \(-0.575616\pi\)
−0.235325 + 0.971917i \(0.575616\pi\)
\(128\) 10.0626 0.889416
\(129\) −18.7180 −1.64802
\(130\) −10.2077 −0.895278
\(131\) 14.6059 1.27612 0.638060 0.769987i \(-0.279737\pi\)
0.638060 + 0.769987i \(0.279737\pi\)
\(132\) 1.17584 0.102344
\(133\) 0 0
\(134\) −0.949131 −0.0819924
\(135\) 20.7559 1.78638
\(136\) −6.11587 −0.524432
\(137\) −11.4271 −0.976279 −0.488140 0.872765i \(-0.662324\pi\)
−0.488140 + 0.872765i \(0.662324\pi\)
\(138\) −0.960550 −0.0817675
\(139\) 15.8047 1.34053 0.670267 0.742120i \(-0.266180\pi\)
0.670267 + 0.742120i \(0.266180\pi\)
\(140\) 0 0
\(141\) −9.00351 −0.758232
\(142\) −0.672738 −0.0564549
\(143\) 2.76586 0.231293
\(144\) −1.18018 −0.0983481
\(145\) 9.96903 0.827883
\(146\) −5.45026 −0.451067
\(147\) 0 0
\(148\) −7.69361 −0.632411
\(149\) −10.4829 −0.858796 −0.429398 0.903115i \(-0.641274\pi\)
−0.429398 + 0.903115i \(0.641274\pi\)
\(150\) −5.79790 −0.473396
\(151\) −15.6069 −1.27007 −0.635037 0.772482i \(-0.719015\pi\)
−0.635037 + 0.772482i \(0.719015\pi\)
\(152\) −9.61740 −0.780074
\(153\) 1.56136 0.126229
\(154\) 0 0
\(155\) −21.7714 −1.74872
\(156\) 21.2631 1.70241
\(157\) −13.8941 −1.10887 −0.554437 0.832226i \(-0.687066\pi\)
−0.554437 + 0.832226i \(0.687066\pi\)
\(158\) 0.380222 0.0302488
\(159\) 12.3178 0.976863
\(160\) 15.6812 1.23971
\(161\) 0 0
\(162\) 2.94186 0.231134
\(163\) 25.1091 1.96669 0.983347 0.181735i \(-0.0581714\pi\)
0.983347 + 0.181735i \(0.0581714\pi\)
\(164\) 2.48841 0.194312
\(165\) 2.40569 0.187283
\(166\) 1.09194 0.0847509
\(167\) 8.47630 0.655916 0.327958 0.944692i \(-0.393640\pi\)
0.327958 + 0.944692i \(0.393640\pi\)
\(168\) 0 0
\(169\) 37.0160 2.84739
\(170\) −6.02175 −0.461847
\(171\) 2.45529 0.187761
\(172\) 21.4327 1.63423
\(173\) −26.1289 −1.98655 −0.993273 0.115795i \(-0.963059\pi\)
−0.993273 + 0.115795i \(0.963059\pi\)
\(174\) 1.61801 0.122661
\(175\) 0 0
\(176\) −1.23330 −0.0929631
\(177\) −7.11139 −0.534525
\(178\) −4.34465 −0.325645
\(179\) 17.2217 1.28721 0.643607 0.765356i \(-0.277437\pi\)
0.643607 + 0.765356i \(0.277437\pi\)
\(180\) −2.63596 −0.196473
\(181\) −4.80860 −0.357421 −0.178710 0.983902i \(-0.557192\pi\)
−0.178710 + 0.983902i \(0.557192\pi\)
\(182\) 0 0
\(183\) −9.41038 −0.695636
\(184\) 2.28542 0.168483
\(185\) −15.7406 −1.15728
\(186\) −3.53357 −0.259094
\(187\) 1.63164 0.119317
\(188\) 10.3093 0.751884
\(189\) 0 0
\(190\) −9.46939 −0.686982
\(191\) −7.88049 −0.570212 −0.285106 0.958496i \(-0.592029\pi\)
−0.285106 + 0.958496i \(0.592029\pi\)
\(192\) −7.67483 −0.553883
\(193\) 14.1925 1.02160 0.510801 0.859699i \(-0.329349\pi\)
0.510801 + 0.859699i \(0.329349\pi\)
\(194\) 1.78443 0.128114
\(195\) 43.5030 3.11531
\(196\) 0 0
\(197\) 16.5450 1.17878 0.589390 0.807848i \(-0.299368\pi\)
0.589390 + 0.807848i \(0.299368\pi\)
\(198\) −0.0556506 −0.00395491
\(199\) 7.55864 0.535817 0.267909 0.963444i \(-0.413667\pi\)
0.267909 + 0.963444i \(0.413667\pi\)
\(200\) 13.7948 0.975442
\(201\) 4.04498 0.285311
\(202\) −2.82635 −0.198861
\(203\) 0 0
\(204\) 12.5435 0.878223
\(205\) 5.09113 0.355580
\(206\) 1.97956 0.137923
\(207\) −0.583461 −0.0405533
\(208\) −22.3021 −1.54637
\(209\) 2.56580 0.177480
\(210\) 0 0
\(211\) −5.81483 −0.400309 −0.200155 0.979764i \(-0.564144\pi\)
−0.200155 + 0.979764i \(0.564144\pi\)
\(212\) −14.1042 −0.968684
\(213\) 2.86705 0.196447
\(214\) 6.66925 0.455901
\(215\) 43.8499 2.99054
\(216\) −8.01519 −0.545365
\(217\) 0 0
\(218\) −2.07957 −0.140846
\(219\) 23.2277 1.56958
\(220\) −2.75460 −0.185715
\(221\) 29.5055 1.98475
\(222\) −2.55476 −0.171464
\(223\) −12.9648 −0.868190 −0.434095 0.900867i \(-0.642932\pi\)
−0.434095 + 0.900867i \(0.642932\pi\)
\(224\) 0 0
\(225\) −3.52178 −0.234785
\(226\) −5.25497 −0.349555
\(227\) −25.0355 −1.66166 −0.830832 0.556523i \(-0.812135\pi\)
−0.830832 + 0.556523i \(0.812135\pi\)
\(228\) 19.7251 1.30633
\(229\) −8.40522 −0.555433 −0.277716 0.960663i \(-0.589578\pi\)
−0.277716 + 0.960663i \(0.589578\pi\)
\(230\) 2.25025 0.148377
\(231\) 0 0
\(232\) −3.84969 −0.252745
\(233\) −0.0651189 −0.00426608 −0.00213304 0.999998i \(-0.500679\pi\)
−0.00213304 + 0.999998i \(0.500679\pi\)
\(234\) −1.00635 −0.0657870
\(235\) 21.0922 1.37590
\(236\) 8.14277 0.530049
\(237\) −1.62042 −0.105257
\(238\) 0 0
\(239\) −7.03630 −0.455140 −0.227570 0.973762i \(-0.573078\pi\)
−0.227570 + 0.973762i \(0.573078\pi\)
\(240\) −19.3979 −1.25213
\(241\) 5.09495 0.328195 0.164097 0.986444i \(-0.447529\pi\)
0.164097 + 0.986444i \(0.447529\pi\)
\(242\) 4.12429 0.265119
\(243\) 3.86556 0.247976
\(244\) 10.7752 0.689811
\(245\) 0 0
\(246\) 0.826307 0.0526834
\(247\) 46.3983 2.95225
\(248\) 8.40737 0.533868
\(249\) −4.65359 −0.294909
\(250\) 6.36573 0.402604
\(251\) 0.625014 0.0394505 0.0197253 0.999805i \(-0.493721\pi\)
0.0197253 + 0.999805i \(0.493721\pi\)
\(252\) 0 0
\(253\) −0.609722 −0.0383329
\(254\) 2.01668 0.126538
\(255\) 25.6633 1.60710
\(256\) 5.64664 0.352915
\(257\) 25.9276 1.61732 0.808659 0.588277i \(-0.200194\pi\)
0.808659 + 0.588277i \(0.200194\pi\)
\(258\) 7.11698 0.443084
\(259\) 0 0
\(260\) −49.8123 −3.08923
\(261\) 0.982815 0.0608347
\(262\) −5.55347 −0.343094
\(263\) 11.0204 0.679547 0.339773 0.940507i \(-0.389650\pi\)
0.339773 + 0.940507i \(0.389650\pi\)
\(264\) −0.928995 −0.0571757
\(265\) −28.8564 −1.77264
\(266\) 0 0
\(267\) 18.5159 1.13315
\(268\) −4.63163 −0.282922
\(269\) 21.4108 1.30544 0.652721 0.757599i \(-0.273627\pi\)
0.652721 + 0.757599i \(0.273627\pi\)
\(270\) −7.89184 −0.480282
\(271\) 8.91945 0.541818 0.270909 0.962605i \(-0.412676\pi\)
0.270909 + 0.962605i \(0.412676\pi\)
\(272\) −13.1565 −0.797728
\(273\) 0 0
\(274\) 4.34482 0.262480
\(275\) −3.68029 −0.221930
\(276\) −4.68735 −0.282145
\(277\) −16.5864 −0.996579 −0.498290 0.867011i \(-0.666038\pi\)
−0.498290 + 0.867011i \(0.666038\pi\)
\(278\) −6.00928 −0.360413
\(279\) −2.14638 −0.128500
\(280\) 0 0
\(281\) 14.6728 0.875308 0.437654 0.899144i \(-0.355810\pi\)
0.437654 + 0.899144i \(0.355810\pi\)
\(282\) 3.42333 0.203857
\(283\) 2.19960 0.130753 0.0653763 0.997861i \(-0.479175\pi\)
0.0653763 + 0.997861i \(0.479175\pi\)
\(284\) −3.28287 −0.194802
\(285\) 40.3564 2.39050
\(286\) −1.05164 −0.0621849
\(287\) 0 0
\(288\) 1.54596 0.0910964
\(289\) 0.405885 0.0238756
\(290\) −3.79045 −0.222583
\(291\) −7.60481 −0.445802
\(292\) −26.5965 −1.55644
\(293\) −27.2921 −1.59442 −0.797211 0.603700i \(-0.793692\pi\)
−0.797211 + 0.603700i \(0.793692\pi\)
\(294\) 0 0
\(295\) 16.6596 0.969960
\(296\) 6.07849 0.353305
\(297\) 2.13835 0.124080
\(298\) 3.98585 0.230894
\(299\) −11.0258 −0.637639
\(300\) −28.2929 −1.63349
\(301\) 0 0
\(302\) 5.93410 0.341469
\(303\) 12.0453 0.691982
\(304\) −20.6890 −1.18659
\(305\) 22.0454 1.26231
\(306\) −0.593665 −0.0339376
\(307\) −14.8235 −0.846024 −0.423012 0.906124i \(-0.639027\pi\)
−0.423012 + 0.906124i \(0.639027\pi\)
\(308\) 0 0
\(309\) −8.43644 −0.479932
\(310\) 8.27798 0.470158
\(311\) 19.7831 1.12180 0.560900 0.827884i \(-0.310455\pi\)
0.560900 + 0.827884i \(0.310455\pi\)
\(312\) −16.7993 −0.951075
\(313\) −16.2823 −0.920330 −0.460165 0.887833i \(-0.652210\pi\)
−0.460165 + 0.887833i \(0.652210\pi\)
\(314\) 5.28286 0.298129
\(315\) 0 0
\(316\) 1.85543 0.104376
\(317\) 20.7179 1.16363 0.581815 0.813321i \(-0.302343\pi\)
0.581815 + 0.813321i \(0.302343\pi\)
\(318\) −4.68349 −0.262637
\(319\) 1.02705 0.0575038
\(320\) 17.9796 1.00509
\(321\) −28.4228 −1.58641
\(322\) 0 0
\(323\) 27.3713 1.52298
\(324\) 14.3559 0.797547
\(325\) −66.5519 −3.69164
\(326\) −9.54703 −0.528761
\(327\) 8.86263 0.490104
\(328\) −1.96602 −0.108555
\(329\) 0 0
\(330\) −0.914698 −0.0503525
\(331\) 13.7123 0.753695 0.376848 0.926275i \(-0.377008\pi\)
0.376848 + 0.926275i \(0.377008\pi\)
\(332\) 5.32851 0.292440
\(333\) −1.55182 −0.0850392
\(334\) −3.22288 −0.176348
\(335\) −9.47602 −0.517731
\(336\) 0 0
\(337\) −18.7359 −1.02061 −0.510305 0.859993i \(-0.670468\pi\)
−0.510305 + 0.859993i \(0.670468\pi\)
\(338\) −14.0743 −0.765542
\(339\) 22.3955 1.21635
\(340\) −29.3853 −1.59364
\(341\) −2.24298 −0.121464
\(342\) −0.933557 −0.0504810
\(343\) 0 0
\(344\) −16.9333 −0.912983
\(345\) −9.59003 −0.516310
\(346\) 9.93480 0.534098
\(347\) −13.7814 −0.739824 −0.369912 0.929067i \(-0.620612\pi\)
−0.369912 + 0.929067i \(0.620612\pi\)
\(348\) 7.89565 0.423251
\(349\) 6.94330 0.371666 0.185833 0.982581i \(-0.440502\pi\)
0.185833 + 0.982581i \(0.440502\pi\)
\(350\) 0 0
\(351\) 38.6686 2.06398
\(352\) 1.61554 0.0861084
\(353\) 26.3457 1.40224 0.701119 0.713045i \(-0.252684\pi\)
0.701119 + 0.713045i \(0.252684\pi\)
\(354\) 2.70391 0.143711
\(355\) −6.71654 −0.356477
\(356\) −21.2013 −1.12366
\(357\) 0 0
\(358\) −6.54809 −0.346077
\(359\) −4.26829 −0.225272 −0.112636 0.993636i \(-0.535929\pi\)
−0.112636 + 0.993636i \(0.535929\pi\)
\(360\) 2.08259 0.109762
\(361\) 24.0423 1.26538
\(362\) 1.82834 0.0960953
\(363\) −17.5768 −0.922540
\(364\) 0 0
\(365\) −54.4148 −2.84820
\(366\) 3.57804 0.187027
\(367\) −31.3359 −1.63572 −0.817860 0.575417i \(-0.804840\pi\)
−0.817860 + 0.575417i \(0.804840\pi\)
\(368\) 4.91639 0.256285
\(369\) 0.501919 0.0261288
\(370\) 5.98494 0.311142
\(371\) 0 0
\(372\) −17.2434 −0.894026
\(373\) −11.7044 −0.606029 −0.303014 0.952986i \(-0.597993\pi\)
−0.303014 + 0.952986i \(0.597993\pi\)
\(374\) −0.620385 −0.0320794
\(375\) −27.1293 −1.40095
\(376\) −8.14507 −0.420050
\(377\) 18.5725 0.956533
\(378\) 0 0
\(379\) −8.15168 −0.418724 −0.209362 0.977838i \(-0.567139\pi\)
−0.209362 + 0.977838i \(0.567139\pi\)
\(380\) −46.2093 −2.37049
\(381\) −8.59463 −0.440316
\(382\) 2.99634 0.153306
\(383\) −4.84769 −0.247705 −0.123853 0.992301i \(-0.539525\pi\)
−0.123853 + 0.992301i \(0.539525\pi\)
\(384\) 16.3056 0.832092
\(385\) 0 0
\(386\) −5.39632 −0.274665
\(387\) 4.32302 0.219752
\(388\) 8.70775 0.442069
\(389\) 8.27923 0.419773 0.209887 0.977726i \(-0.432690\pi\)
0.209887 + 0.977726i \(0.432690\pi\)
\(390\) −16.5408 −0.837576
\(391\) −6.50435 −0.328939
\(392\) 0 0
\(393\) 23.6676 1.19387
\(394\) −6.29077 −0.316924
\(395\) 3.79610 0.191002
\(396\) −0.271567 −0.0136468
\(397\) −18.1149 −0.909161 −0.454581 0.890706i \(-0.650211\pi\)
−0.454581 + 0.890706i \(0.650211\pi\)
\(398\) −2.87396 −0.144059
\(399\) 0 0
\(400\) 29.6754 1.48377
\(401\) 3.69872 0.184705 0.0923526 0.995726i \(-0.470561\pi\)
0.0923526 + 0.995726i \(0.470561\pi\)
\(402\) −1.53799 −0.0767079
\(403\) −40.5606 −2.02047
\(404\) −13.7922 −0.686188
\(405\) 29.3712 1.45947
\(406\) 0 0
\(407\) −1.62166 −0.0803829
\(408\) −9.91027 −0.490631
\(409\) −36.0056 −1.78036 −0.890181 0.455608i \(-0.849422\pi\)
−0.890181 + 0.455608i \(0.849422\pi\)
\(410\) −1.93576 −0.0956004
\(411\) −18.5166 −0.913357
\(412\) 9.65999 0.475914
\(413\) 0 0
\(414\) 0.221845 0.0109031
\(415\) 10.9018 0.535148
\(416\) 29.2143 1.43235
\(417\) 25.6102 1.25413
\(418\) −0.975575 −0.0477170
\(419\) −12.6697 −0.618955 −0.309478 0.950907i \(-0.600154\pi\)
−0.309478 + 0.950907i \(0.600154\pi\)
\(420\) 0 0
\(421\) 28.7588 1.40162 0.700809 0.713349i \(-0.252823\pi\)
0.700809 + 0.713349i \(0.252823\pi\)
\(422\) 2.21093 0.107626
\(423\) 2.07941 0.101105
\(424\) 11.1433 0.541168
\(425\) −39.2603 −1.90441
\(426\) −1.09012 −0.0528163
\(427\) 0 0
\(428\) 32.5450 1.57312
\(429\) 4.48185 0.216386
\(430\) −16.6727 −0.804030
\(431\) −25.7829 −1.24192 −0.620958 0.783844i \(-0.713256\pi\)
−0.620958 + 0.783844i \(0.713256\pi\)
\(432\) −17.2423 −0.829570
\(433\) 4.70806 0.226255 0.113127 0.993580i \(-0.463913\pi\)
0.113127 + 0.993580i \(0.463913\pi\)
\(434\) 0 0
\(435\) 16.1540 0.774525
\(436\) −10.1480 −0.486001
\(437\) −10.2283 −0.489286
\(438\) −8.83170 −0.421995
\(439\) 14.0326 0.669739 0.334870 0.942264i \(-0.391308\pi\)
0.334870 + 0.942264i \(0.391308\pi\)
\(440\) 2.17632 0.103752
\(441\) 0 0
\(442\) −11.2186 −0.533616
\(443\) 21.7044 1.03121 0.515603 0.856827i \(-0.327568\pi\)
0.515603 + 0.856827i \(0.327568\pi\)
\(444\) −12.4669 −0.591651
\(445\) −43.3765 −2.05624
\(446\) 4.92952 0.233420
\(447\) −16.9868 −0.803446
\(448\) 0 0
\(449\) 11.9975 0.566198 0.283099 0.959091i \(-0.408637\pi\)
0.283099 + 0.959091i \(0.408637\pi\)
\(450\) 1.33906 0.0631238
\(451\) 0.524509 0.0246982
\(452\) −25.6435 −1.20617
\(453\) −25.2898 −1.18822
\(454\) 9.51905 0.446751
\(455\) 0 0
\(456\) −15.5842 −0.729798
\(457\) −19.1804 −0.897222 −0.448611 0.893727i \(-0.648081\pi\)
−0.448611 + 0.893727i \(0.648081\pi\)
\(458\) 3.19585 0.149332
\(459\) 22.8114 1.06474
\(460\) 10.9809 0.511987
\(461\) 1.24178 0.0578355 0.0289177 0.999582i \(-0.490794\pi\)
0.0289177 + 0.999582i \(0.490794\pi\)
\(462\) 0 0
\(463\) 12.7019 0.590307 0.295153 0.955450i \(-0.404629\pi\)
0.295153 + 0.955450i \(0.404629\pi\)
\(464\) −8.28146 −0.384457
\(465\) −35.2788 −1.63602
\(466\) 0.0247597 0.00114697
\(467\) −12.1596 −0.562681 −0.281340 0.959608i \(-0.590779\pi\)
−0.281340 + 0.959608i \(0.590779\pi\)
\(468\) −4.91084 −0.227004
\(469\) 0 0
\(470\) −8.01972 −0.369922
\(471\) −22.5143 −1.03740
\(472\) −6.43336 −0.296119
\(473\) 4.51760 0.207719
\(474\) 0.616119 0.0282993
\(475\) −61.7381 −2.83274
\(476\) 0 0
\(477\) −2.84486 −0.130257
\(478\) 2.67536 0.122368
\(479\) −21.1681 −0.967197 −0.483598 0.875290i \(-0.660670\pi\)
−0.483598 + 0.875290i \(0.660670\pi\)
\(480\) 25.4100 1.15980
\(481\) −29.3251 −1.33711
\(482\) −1.93721 −0.0882376
\(483\) 0 0
\(484\) 20.1260 0.914816
\(485\) 17.8155 0.808961
\(486\) −1.46977 −0.0666701
\(487\) −31.3358 −1.41996 −0.709981 0.704221i \(-0.751296\pi\)
−0.709981 + 0.704221i \(0.751296\pi\)
\(488\) −8.51315 −0.385372
\(489\) 40.6872 1.83994
\(490\) 0 0
\(491\) −14.7254 −0.664548 −0.332274 0.943183i \(-0.607816\pi\)
−0.332274 + 0.943183i \(0.607816\pi\)
\(492\) 4.03226 0.181789
\(493\) 10.9563 0.493447
\(494\) −17.6417 −0.793736
\(495\) −0.555609 −0.0249728
\(496\) 18.0859 0.812082
\(497\) 0 0
\(498\) 1.76940 0.0792886
\(499\) −20.4261 −0.914396 −0.457198 0.889365i \(-0.651147\pi\)
−0.457198 + 0.889365i \(0.651147\pi\)
\(500\) 31.0639 1.38922
\(501\) 13.7352 0.613641
\(502\) −0.237644 −0.0106066
\(503\) 30.9877 1.38168 0.690838 0.723010i \(-0.257242\pi\)
0.690838 + 0.723010i \(0.257242\pi\)
\(504\) 0 0
\(505\) −28.2180 −1.25568
\(506\) 0.231830 0.0103061
\(507\) 59.9815 2.66387
\(508\) 9.84113 0.436630
\(509\) −39.2483 −1.73965 −0.869824 0.493361i \(-0.835768\pi\)
−0.869824 + 0.493361i \(0.835768\pi\)
\(510\) −9.75775 −0.432081
\(511\) 0 0
\(512\) −22.2722 −0.984299
\(513\) 35.8716 1.58377
\(514\) −9.85824 −0.434829
\(515\) 19.7637 0.870895
\(516\) 34.7299 1.52890
\(517\) 2.17300 0.0955686
\(518\) 0 0
\(519\) −42.3398 −1.85851
\(520\) 39.3552 1.72584
\(521\) 18.9383 0.829703 0.414851 0.909889i \(-0.363834\pi\)
0.414851 + 0.909889i \(0.363834\pi\)
\(522\) −0.373688 −0.0163559
\(523\) 13.0537 0.570797 0.285399 0.958409i \(-0.407874\pi\)
0.285399 + 0.958409i \(0.407874\pi\)
\(524\) −27.1001 −1.18388
\(525\) 0 0
\(526\) −4.19020 −0.182701
\(527\) −23.9275 −1.04230
\(528\) −1.99845 −0.0869715
\(529\) −20.5694 −0.894322
\(530\) 10.9718 0.476587
\(531\) 1.64242 0.0712749
\(532\) 0 0
\(533\) 9.48488 0.410836
\(534\) −7.04014 −0.304657
\(535\) 66.5851 2.87873
\(536\) 3.65931 0.158058
\(537\) 27.9064 1.20425
\(538\) −8.14087 −0.350978
\(539\) 0 0
\(540\) −38.5111 −1.65725
\(541\) −14.7251 −0.633083 −0.316541 0.948579i \(-0.602522\pi\)
−0.316541 + 0.948579i \(0.602522\pi\)
\(542\) −3.39137 −0.145672
\(543\) −7.79195 −0.334384
\(544\) 17.2341 0.738907
\(545\) −20.7622 −0.889353
\(546\) 0 0
\(547\) 19.0904 0.816245 0.408123 0.912927i \(-0.366184\pi\)
0.408123 + 0.912927i \(0.366184\pi\)
\(548\) 21.2021 0.905710
\(549\) 2.17338 0.0927577
\(550\) 1.39933 0.0596675
\(551\) 17.2291 0.733985
\(552\) 3.70334 0.157624
\(553\) 0 0
\(554\) 6.30651 0.267938
\(555\) −25.5064 −1.08269
\(556\) −29.3245 −1.24363
\(557\) −8.88689 −0.376550 −0.188275 0.982116i \(-0.560290\pi\)
−0.188275 + 0.982116i \(0.560290\pi\)
\(558\) 0.816100 0.0345483
\(559\) 81.6933 3.45526
\(560\) 0 0
\(561\) 2.64394 0.111627
\(562\) −5.57893 −0.235333
\(563\) 42.8327 1.80518 0.902591 0.430500i \(-0.141663\pi\)
0.902591 + 0.430500i \(0.141663\pi\)
\(564\) 16.7054 0.703424
\(565\) −52.4651 −2.20722
\(566\) −0.836336 −0.0351538
\(567\) 0 0
\(568\) 2.59369 0.108829
\(569\) −30.4631 −1.27708 −0.638539 0.769589i \(-0.720461\pi\)
−0.638539 + 0.769589i \(0.720461\pi\)
\(570\) −15.3444 −0.642705
\(571\) −21.0691 −0.881712 −0.440856 0.897578i \(-0.645325\pi\)
−0.440856 + 0.897578i \(0.645325\pi\)
\(572\) −5.13187 −0.214574
\(573\) −12.7697 −0.533461
\(574\) 0 0
\(575\) 14.6711 0.611826
\(576\) 1.77255 0.0738561
\(577\) 36.6032 1.52381 0.761905 0.647689i \(-0.224264\pi\)
0.761905 + 0.647689i \(0.224264\pi\)
\(578\) −0.154327 −0.00641914
\(579\) 22.9979 0.955758
\(580\) −18.4969 −0.768040
\(581\) 0 0
\(582\) 2.89152 0.119857
\(583\) −2.97290 −0.123125
\(584\) 21.0131 0.869528
\(585\) −10.0473 −0.415404
\(586\) 10.3771 0.428673
\(587\) 0.730785 0.0301627 0.0150814 0.999886i \(-0.495199\pi\)
0.0150814 + 0.999886i \(0.495199\pi\)
\(588\) 0 0
\(589\) −37.6268 −1.55039
\(590\) −6.33435 −0.260781
\(591\) 26.8098 1.10281
\(592\) 13.0760 0.537422
\(593\) 22.6253 0.929110 0.464555 0.885544i \(-0.346214\pi\)
0.464555 + 0.885544i \(0.346214\pi\)
\(594\) −0.813050 −0.0333598
\(595\) 0 0
\(596\) 19.4504 0.796719
\(597\) 12.2481 0.501283
\(598\) 4.19226 0.171434
\(599\) −20.3335 −0.830803 −0.415402 0.909638i \(-0.636359\pi\)
−0.415402 + 0.909638i \(0.636359\pi\)
\(600\) 22.3534 0.912573
\(601\) −0.591631 −0.0241331 −0.0120666 0.999927i \(-0.503841\pi\)
−0.0120666 + 0.999927i \(0.503841\pi\)
\(602\) 0 0
\(603\) −0.934211 −0.0380440
\(604\) 28.9576 1.17827
\(605\) 41.1765 1.67406
\(606\) −4.57987 −0.186045
\(607\) −2.76989 −0.112427 −0.0562133 0.998419i \(-0.517903\pi\)
−0.0562133 + 0.998419i \(0.517903\pi\)
\(608\) 27.1012 1.09910
\(609\) 0 0
\(610\) −8.38214 −0.339383
\(611\) 39.2952 1.58971
\(612\) −2.89700 −0.117104
\(613\) −44.4642 −1.79589 −0.897945 0.440107i \(-0.854941\pi\)
−0.897945 + 0.440107i \(0.854941\pi\)
\(614\) 5.63624 0.227460
\(615\) 8.24976 0.332663
\(616\) 0 0
\(617\) 25.7855 1.03809 0.519043 0.854748i \(-0.326288\pi\)
0.519043 + 0.854748i \(0.326288\pi\)
\(618\) 3.20772 0.129033
\(619\) −23.0573 −0.926753 −0.463376 0.886162i \(-0.653362\pi\)
−0.463376 + 0.886162i \(0.653362\pi\)
\(620\) 40.3954 1.62232
\(621\) −8.52431 −0.342069
\(622\) −7.52199 −0.301604
\(623\) 0 0
\(624\) −36.1387 −1.44671
\(625\) 16.5030 0.660120
\(626\) 6.19089 0.247438
\(627\) 4.15768 0.166042
\(628\) 25.7796 1.02872
\(629\) −17.2995 −0.689776
\(630\) 0 0
\(631\) 2.22752 0.0886762 0.0443381 0.999017i \(-0.485882\pi\)
0.0443381 + 0.999017i \(0.485882\pi\)
\(632\) −1.46592 −0.0583112
\(633\) −9.42245 −0.374509
\(634\) −7.87739 −0.312851
\(635\) 20.1344 0.799007
\(636\) −22.8548 −0.906251
\(637\) 0 0
\(638\) −0.390507 −0.0154603
\(639\) −0.662162 −0.0261947
\(640\) −38.1986 −1.50993
\(641\) 31.7248 1.25305 0.626527 0.779400i \(-0.284476\pi\)
0.626527 + 0.779400i \(0.284476\pi\)
\(642\) 10.8070 0.426518
\(643\) −26.5663 −1.04767 −0.523836 0.851819i \(-0.675499\pi\)
−0.523836 + 0.851819i \(0.675499\pi\)
\(644\) 0 0
\(645\) 71.0552 2.79780
\(646\) −10.4072 −0.409465
\(647\) 27.0631 1.06396 0.531981 0.846756i \(-0.321448\pi\)
0.531981 + 0.846756i \(0.321448\pi\)
\(648\) −11.3421 −0.445561
\(649\) 1.71634 0.0673723
\(650\) 25.3045 0.992525
\(651\) 0 0
\(652\) −46.5882 −1.82453
\(653\) −13.2000 −0.516557 −0.258279 0.966070i \(-0.583155\pi\)
−0.258279 + 0.966070i \(0.583155\pi\)
\(654\) −3.36977 −0.131768
\(655\) −55.4452 −2.16642
\(656\) −4.22930 −0.165126
\(657\) −5.36458 −0.209292
\(658\) 0 0
\(659\) 45.3253 1.76562 0.882811 0.469728i \(-0.155648\pi\)
0.882811 + 0.469728i \(0.155648\pi\)
\(660\) −4.46360 −0.173745
\(661\) 34.6598 1.34811 0.674055 0.738682i \(-0.264551\pi\)
0.674055 + 0.738682i \(0.264551\pi\)
\(662\) −5.21371 −0.202637
\(663\) 47.8112 1.85683
\(664\) −4.20989 −0.163376
\(665\) 0 0
\(666\) 0.590036 0.0228634
\(667\) −4.09422 −0.158529
\(668\) −15.7272 −0.608503
\(669\) −21.0085 −0.812234
\(670\) 3.60299 0.139196
\(671\) 2.27120 0.0876789
\(672\) 0 0
\(673\) −40.7052 −1.56907 −0.784535 0.620084i \(-0.787098\pi\)
−0.784535 + 0.620084i \(0.787098\pi\)
\(674\) 7.12381 0.274399
\(675\) −51.4529 −1.98042
\(676\) −68.6807 −2.64157
\(677\) −42.1098 −1.61841 −0.809206 0.587525i \(-0.800102\pi\)
−0.809206 + 0.587525i \(0.800102\pi\)
\(678\) −8.51525 −0.327026
\(679\) 0 0
\(680\) 23.2164 0.890310
\(681\) −40.5680 −1.55457
\(682\) 0.852831 0.0326566
\(683\) 24.4829 0.936813 0.468407 0.883513i \(-0.344828\pi\)
0.468407 + 0.883513i \(0.344828\pi\)
\(684\) −4.55563 −0.174189
\(685\) 43.3782 1.65740
\(686\) 0 0
\(687\) −13.6200 −0.519634
\(688\) −36.4269 −1.38876
\(689\) −53.7601 −2.04809
\(690\) 3.64634 0.138814
\(691\) −20.6837 −0.786845 −0.393422 0.919358i \(-0.628709\pi\)
−0.393422 + 0.919358i \(0.628709\pi\)
\(692\) 48.4804 1.84295
\(693\) 0 0
\(694\) 5.23999 0.198907
\(695\) −59.9960 −2.27578
\(696\) −6.23811 −0.236455
\(697\) 5.59532 0.211938
\(698\) −2.64000 −0.0999253
\(699\) −0.105520 −0.00399113
\(700\) 0 0
\(701\) 38.4860 1.45360 0.726799 0.686850i \(-0.241007\pi\)
0.726799 + 0.686850i \(0.241007\pi\)
\(702\) −14.7027 −0.554916
\(703\) −27.2040 −1.02602
\(704\) 1.85233 0.0698122
\(705\) 34.1782 1.28723
\(706\) −10.0172 −0.377002
\(707\) 0 0
\(708\) 13.1947 0.495887
\(709\) −38.0519 −1.42907 −0.714535 0.699600i \(-0.753362\pi\)
−0.714535 + 0.699600i \(0.753362\pi\)
\(710\) 2.55378 0.0958416
\(711\) 0.374245 0.0140353
\(712\) 16.7505 0.627751
\(713\) 8.94140 0.334858
\(714\) 0 0
\(715\) −10.4995 −0.392658
\(716\) −31.9538 −1.19417
\(717\) −11.4017 −0.425806
\(718\) 1.62290 0.0605661
\(719\) −22.7535 −0.848562 −0.424281 0.905531i \(-0.639473\pi\)
−0.424281 + 0.905531i \(0.639473\pi\)
\(720\) 4.48007 0.166962
\(721\) 0 0
\(722\) −9.14140 −0.340208
\(723\) 8.25595 0.307042
\(724\) 8.92203 0.331585
\(725\) −24.7128 −0.917810
\(726\) 6.68307 0.248032
\(727\) 14.9856 0.555783 0.277892 0.960612i \(-0.410364\pi\)
0.277892 + 0.960612i \(0.410364\pi\)
\(728\) 0 0
\(729\) 29.4754 1.09168
\(730\) 20.6897 0.765761
\(731\) 48.1925 1.78246
\(732\) 17.4603 0.645352
\(733\) −18.8867 −0.697595 −0.348797 0.937198i \(-0.613410\pi\)
−0.348797 + 0.937198i \(0.613410\pi\)
\(734\) 11.9146 0.439776
\(735\) 0 0
\(736\) −6.44016 −0.237388
\(737\) −0.976258 −0.0359609
\(738\) −0.190841 −0.00702494
\(739\) 50.5809 1.86065 0.930325 0.366736i \(-0.119525\pi\)
0.930325 + 0.366736i \(0.119525\pi\)
\(740\) 29.2057 1.07362
\(741\) 75.1847 2.76198
\(742\) 0 0
\(743\) −34.9627 −1.28266 −0.641329 0.767266i \(-0.721617\pi\)
−0.641329 + 0.767266i \(0.721617\pi\)
\(744\) 13.6235 0.499460
\(745\) 39.7943 1.45795
\(746\) 4.45026 0.162935
\(747\) 1.07477 0.0393239
\(748\) −3.02739 −0.110692
\(749\) 0 0
\(750\) 10.3151 0.376656
\(751\) −2.98091 −0.108775 −0.0543875 0.998520i \(-0.517321\pi\)
−0.0543875 + 0.998520i \(0.517321\pi\)
\(752\) −17.5217 −0.638950
\(753\) 1.01278 0.0369079
\(754\) −7.06168 −0.257171
\(755\) 59.2454 2.15616
\(756\) 0 0
\(757\) 6.83336 0.248363 0.124181 0.992260i \(-0.460370\pi\)
0.124181 + 0.992260i \(0.460370\pi\)
\(758\) 3.09945 0.112577
\(759\) −0.988004 −0.0358623
\(760\) 36.5086 1.32431
\(761\) −3.91753 −0.142010 −0.0710052 0.997476i \(-0.522621\pi\)
−0.0710052 + 0.997476i \(0.522621\pi\)
\(762\) 3.26787 0.118382
\(763\) 0 0
\(764\) 14.6217 0.528995
\(765\) −5.92709 −0.214294
\(766\) 1.84320 0.0665975
\(767\) 31.0372 1.12069
\(768\) 9.14991 0.330169
\(769\) 13.9269 0.502218 0.251109 0.967959i \(-0.419205\pi\)
0.251109 + 0.967959i \(0.419205\pi\)
\(770\) 0 0
\(771\) 42.0135 1.51308
\(772\) −26.3333 −0.947756
\(773\) −7.79151 −0.280241 −0.140121 0.990134i \(-0.544749\pi\)
−0.140121 + 0.990134i \(0.544749\pi\)
\(774\) −1.64371 −0.0590819
\(775\) 53.9704 1.93867
\(776\) −6.87973 −0.246968
\(777\) 0 0
\(778\) −3.14794 −0.112859
\(779\) 8.79882 0.315251
\(780\) −80.7168 −2.89013
\(781\) −0.691965 −0.0247605
\(782\) 2.47310 0.0884378
\(783\) 14.3588 0.513143
\(784\) 0 0
\(785\) 52.7435 1.88250
\(786\) −8.99894 −0.320982
\(787\) 46.9568 1.67383 0.836914 0.547334i \(-0.184357\pi\)
0.836914 + 0.547334i \(0.184357\pi\)
\(788\) −30.6981 −1.09357
\(789\) 17.8577 0.635749
\(790\) −1.44336 −0.0513524
\(791\) 0 0
\(792\) 0.214557 0.00762395
\(793\) 41.0710 1.45847
\(794\) 6.88769 0.244435
\(795\) −46.7595 −1.65839
\(796\) −14.0245 −0.497086
\(797\) 39.3199 1.39278 0.696391 0.717663i \(-0.254788\pi\)
0.696391 + 0.717663i \(0.254788\pi\)
\(798\) 0 0
\(799\) 23.1810 0.820086
\(800\) −38.8729 −1.37437
\(801\) −4.27635 −0.151097
\(802\) −1.40633 −0.0496594
\(803\) −5.60603 −0.197833
\(804\) −7.50517 −0.264687
\(805\) 0 0
\(806\) 15.4220 0.543218
\(807\) 34.6945 1.22130
\(808\) 10.8968 0.383348
\(809\) −28.9552 −1.01801 −0.509005 0.860764i \(-0.669986\pi\)
−0.509005 + 0.860764i \(0.669986\pi\)
\(810\) −11.1676 −0.392389
\(811\) 9.62380 0.337937 0.168969 0.985621i \(-0.445956\pi\)
0.168969 + 0.985621i \(0.445956\pi\)
\(812\) 0 0
\(813\) 14.4532 0.506897
\(814\) 0.616593 0.0216116
\(815\) −95.3165 −3.33879
\(816\) −21.3190 −0.746313
\(817\) 75.7843 2.65136
\(818\) 13.6901 0.478664
\(819\) 0 0
\(820\) −9.44625 −0.329877
\(821\) 16.5062 0.576071 0.288035 0.957620i \(-0.406998\pi\)
0.288035 + 0.957620i \(0.406998\pi\)
\(822\) 7.04043 0.245563
\(823\) 37.0563 1.29170 0.645850 0.763464i \(-0.276503\pi\)
0.645850 + 0.763464i \(0.276503\pi\)
\(824\) −7.63207 −0.265876
\(825\) −5.96361 −0.207626
\(826\) 0 0
\(827\) −48.0080 −1.66940 −0.834702 0.550703i \(-0.814360\pi\)
−0.834702 + 0.550703i \(0.814360\pi\)
\(828\) 1.08257 0.0376220
\(829\) −26.6163 −0.924421 −0.462210 0.886770i \(-0.652944\pi\)
−0.462210 + 0.886770i \(0.652944\pi\)
\(830\) −4.14511 −0.143879
\(831\) −26.8769 −0.932349
\(832\) 33.4963 1.16127
\(833\) 0 0
\(834\) −9.73755 −0.337184
\(835\) −32.1769 −1.11353
\(836\) −4.76067 −0.164651
\(837\) −31.3584 −1.08390
\(838\) 4.81730 0.166411
\(839\) 10.2678 0.354485 0.177242 0.984167i \(-0.443282\pi\)
0.177242 + 0.984167i \(0.443282\pi\)
\(840\) 0 0
\(841\) −22.1035 −0.762188
\(842\) −10.9347 −0.376836
\(843\) 23.7761 0.818893
\(844\) 10.7890 0.371373
\(845\) −140.517 −4.83391
\(846\) −0.790639 −0.0271827
\(847\) 0 0
\(848\) 23.9715 0.823186
\(849\) 3.56427 0.122325
\(850\) 14.9276 0.512014
\(851\) 6.46459 0.221603
\(852\) −5.31962 −0.182247
\(853\) −50.0631 −1.71413 −0.857064 0.515211i \(-0.827714\pi\)
−0.857064 + 0.515211i \(0.827714\pi\)
\(854\) 0 0
\(855\) −9.32054 −0.318756
\(856\) −25.7129 −0.878847
\(857\) 0.635163 0.0216967 0.0108484 0.999941i \(-0.496547\pi\)
0.0108484 + 0.999941i \(0.496547\pi\)
\(858\) −1.70410 −0.0581770
\(859\) −52.1857 −1.78055 −0.890276 0.455422i \(-0.849488\pi\)
−0.890276 + 0.455422i \(0.849488\pi\)
\(860\) −81.3605 −2.77437
\(861\) 0 0
\(862\) 9.80321 0.333899
\(863\) −44.1620 −1.50329 −0.751646 0.659567i \(-0.770740\pi\)
−0.751646 + 0.659567i \(0.770740\pi\)
\(864\) 22.5863 0.768401
\(865\) 99.1880 3.37249
\(866\) −1.79011 −0.0608303
\(867\) 0.657704 0.0223368
\(868\) 0 0
\(869\) 0.391089 0.0132668
\(870\) −6.14211 −0.208237
\(871\) −17.6540 −0.598184
\(872\) 8.01762 0.271511
\(873\) 1.75638 0.0594443
\(874\) 3.88902 0.131548
\(875\) 0 0
\(876\) −43.0975 −1.45613
\(877\) −27.3287 −0.922825 −0.461413 0.887186i \(-0.652657\pi\)
−0.461413 + 0.887186i \(0.652657\pi\)
\(878\) −5.33550 −0.180065
\(879\) −44.2246 −1.49166
\(880\) 4.68171 0.157820
\(881\) 23.8567 0.803752 0.401876 0.915694i \(-0.368358\pi\)
0.401876 + 0.915694i \(0.368358\pi\)
\(882\) 0 0
\(883\) 28.9826 0.975342 0.487671 0.873028i \(-0.337847\pi\)
0.487671 + 0.873028i \(0.337847\pi\)
\(884\) −54.7454 −1.84129
\(885\) 26.9955 0.907445
\(886\) −8.25249 −0.277248
\(887\) 54.4751 1.82910 0.914548 0.404478i \(-0.132547\pi\)
0.914548 + 0.404478i \(0.132547\pi\)
\(888\) 9.84969 0.330534
\(889\) 0 0
\(890\) 16.4927 0.552836
\(891\) 3.02594 0.101373
\(892\) 24.0554 0.805434
\(893\) 36.4529 1.21985
\(894\) 6.45874 0.216013
\(895\) −65.3754 −2.18526
\(896\) 0 0
\(897\) −17.8664 −0.596542
\(898\) −4.56172 −0.152227
\(899\) −15.0614 −0.502326
\(900\) 6.53442 0.217814
\(901\) −31.7142 −1.05655
\(902\) −0.199430 −0.00664029
\(903\) 0 0
\(904\) 20.2602 0.673843
\(905\) 18.2539 0.606781
\(906\) 9.61572 0.319461
\(907\) −38.1878 −1.26801 −0.634003 0.773330i \(-0.718589\pi\)
−0.634003 + 0.773330i \(0.718589\pi\)
\(908\) 46.4516 1.54155
\(909\) −2.78192 −0.0922705
\(910\) 0 0
\(911\) 46.8766 1.55309 0.776546 0.630061i \(-0.216970\pi\)
0.776546 + 0.630061i \(0.216970\pi\)
\(912\) −33.5248 −1.11012
\(913\) 1.12315 0.0371708
\(914\) 7.29282 0.241225
\(915\) 35.7227 1.18096
\(916\) 15.5953 0.515283
\(917\) 0 0
\(918\) −8.67340 −0.286265
\(919\) 51.8106 1.70907 0.854537 0.519390i \(-0.173841\pi\)
0.854537 + 0.519390i \(0.173841\pi\)
\(920\) −8.67568 −0.286029
\(921\) −24.0203 −0.791497
\(922\) −0.472152 −0.0155495
\(923\) −12.5130 −0.411872
\(924\) 0 0
\(925\) 39.0203 1.28298
\(926\) −4.82954 −0.158708
\(927\) 1.94845 0.0639953
\(928\) 10.8482 0.356109
\(929\) −18.9454 −0.621578 −0.310789 0.950479i \(-0.600593\pi\)
−0.310789 + 0.950479i \(0.600593\pi\)
\(930\) 13.4138 0.439856
\(931\) 0 0
\(932\) 0.120824 0.00395771
\(933\) 32.0570 1.04950
\(934\) 4.62336 0.151281
\(935\) −6.19386 −0.202561
\(936\) 3.87991 0.126819
\(937\) 2.37869 0.0777084 0.0388542 0.999245i \(-0.487629\pi\)
0.0388542 + 0.999245i \(0.487629\pi\)
\(938\) 0 0
\(939\) −26.3841 −0.861014
\(940\) −39.1351 −1.27645
\(941\) −3.05212 −0.0994961 −0.0497481 0.998762i \(-0.515842\pi\)
−0.0497481 + 0.998762i \(0.515842\pi\)
\(942\) 8.56044 0.278914
\(943\) −2.09090 −0.0680890
\(944\) −13.8394 −0.450435
\(945\) 0 0
\(946\) −1.71769 −0.0558469
\(947\) 15.0764 0.489918 0.244959 0.969533i \(-0.421226\pi\)
0.244959 + 0.969533i \(0.421226\pi\)
\(948\) 3.00657 0.0976490
\(949\) −101.376 −3.29080
\(950\) 23.4742 0.761604
\(951\) 33.5716 1.08863
\(952\) 0 0
\(953\) −38.2968 −1.24056 −0.620278 0.784382i \(-0.712980\pi\)
−0.620278 + 0.784382i \(0.712980\pi\)
\(954\) 1.08168 0.0350207
\(955\) 29.9151 0.968030
\(956\) 13.0554 0.422241
\(957\) 1.66425 0.0537976
\(958\) 8.04859 0.260038
\(959\) 0 0
\(960\) 29.1344 0.940309
\(961\) 1.89270 0.0610548
\(962\) 11.1501 0.359492
\(963\) 6.56442 0.211535
\(964\) −9.45333 −0.304471
\(965\) −53.8763 −1.73434
\(966\) 0 0
\(967\) −0.529044 −0.0170129 −0.00850645 0.999964i \(-0.502708\pi\)
−0.00850645 + 0.999964i \(0.502708\pi\)
\(968\) −15.9009 −0.511075
\(969\) 44.3530 1.42482
\(970\) −6.77385 −0.217495
\(971\) −21.9726 −0.705133 −0.352567 0.935787i \(-0.614691\pi\)
−0.352567 + 0.935787i \(0.614691\pi\)
\(972\) −7.17227 −0.230051
\(973\) 0 0
\(974\) 11.9146 0.381767
\(975\) −107.842 −3.45371
\(976\) −18.3135 −0.586201
\(977\) 41.7059 1.33429 0.667144 0.744928i \(-0.267516\pi\)
0.667144 + 0.744928i \(0.267516\pi\)
\(978\) −15.4702 −0.494682
\(979\) −4.46882 −0.142824
\(980\) 0 0
\(981\) −2.04688 −0.0653517
\(982\) 5.59892 0.178669
\(983\) −47.3252 −1.50944 −0.754719 0.656048i \(-0.772227\pi\)
−0.754719 + 0.656048i \(0.772227\pi\)
\(984\) −3.18577 −0.101559
\(985\) −62.8063 −2.00118
\(986\) −4.16583 −0.132667
\(987\) 0 0
\(988\) −86.0889 −2.73885
\(989\) −18.0089 −0.572650
\(990\) 0.211255 0.00671412
\(991\) −52.1478 −1.65653 −0.828265 0.560337i \(-0.810672\pi\)
−0.828265 + 0.560337i \(0.810672\pi\)
\(992\) −23.6914 −0.752203
\(993\) 22.2196 0.705119
\(994\) 0 0
\(995\) −28.6933 −0.909639
\(996\) 8.63441 0.273592
\(997\) −6.73292 −0.213234 −0.106617 0.994300i \(-0.534002\pi\)
−0.106617 + 0.994300i \(0.534002\pi\)
\(998\) 7.76644 0.245842
\(999\) −22.6719 −0.717309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3871.2.a.i.1.10 yes 24
7.6 odd 2 inner 3871.2.a.i.1.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3871.2.a.i.1.9 24 7.6 odd 2 inner
3871.2.a.i.1.10 yes 24 1.1 even 1 trivial