Properties

Label 3871.2.a.e.1.4
Level $3871$
Weight $2$
Character 3871.1
Self dual yes
Analytic conductor $30.910$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3871,2,Mod(1,3871)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3871.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3871.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,3,-3,7,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9100906224\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 7x^{6} + 24x^{5} + 6x^{4} - 40x^{3} + 6x^{2} + 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 553)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.174832\) of defining polynomial
Character \(\chi\) \(=\) 3871.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.174832 q^{2} +2.31835 q^{3} -1.96943 q^{4} +1.01700 q^{5} -0.405323 q^{6} +0.693986 q^{8} +2.37476 q^{9} -0.177804 q^{10} -4.96725 q^{11} -4.56584 q^{12} +5.62124 q^{13} +2.35776 q^{15} +3.81754 q^{16} -3.76485 q^{17} -0.415185 q^{18} -3.14061 q^{19} -2.00291 q^{20} +0.868437 q^{22} +4.19183 q^{23} +1.60890 q^{24} -3.96572 q^{25} -0.982775 q^{26} -1.44953 q^{27} -7.96005 q^{29} -0.412213 q^{30} -9.91356 q^{31} -2.05540 q^{32} -11.5158 q^{33} +0.658218 q^{34} -4.67693 q^{36} -0.106445 q^{37} +0.549081 q^{38} +13.0320 q^{39} +0.705782 q^{40} -8.41414 q^{41} +0.0223469 q^{43} +9.78267 q^{44} +2.41512 q^{45} -0.732868 q^{46} -5.74459 q^{47} +8.85039 q^{48} +0.693336 q^{50} -8.72825 q^{51} -11.0707 q^{52} +3.47513 q^{53} +0.253426 q^{54} -5.05168 q^{55} -7.28104 q^{57} +1.39168 q^{58} +10.8960 q^{59} -4.64345 q^{60} +10.6898 q^{61} +1.73321 q^{62} -7.27572 q^{64} +5.71679 q^{65} +2.01334 q^{66} +8.90858 q^{67} +7.41462 q^{68} +9.71814 q^{69} -4.03217 q^{71} +1.64805 q^{72} +12.9662 q^{73} +0.0186101 q^{74} -9.19393 q^{75} +6.18522 q^{76} -2.27842 q^{78} +1.00000 q^{79} +3.88243 q^{80} -10.4848 q^{81} +1.47106 q^{82} -5.20485 q^{83} -3.82884 q^{85} -0.00390697 q^{86} -18.4542 q^{87} -3.44720 q^{88} -9.29307 q^{89} -0.422242 q^{90} -8.25553 q^{92} -22.9831 q^{93} +1.00434 q^{94} -3.19399 q^{95} -4.76514 q^{96} +4.37822 q^{97} -11.7960 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 3 q^{3} + 7 q^{4} - 4 q^{5} - 6 q^{6} + 6 q^{8} - q^{9} - 10 q^{10} + 3 q^{11} - 10 q^{12} - 3 q^{13} + 11 q^{15} + 13 q^{16} - 14 q^{17} + 4 q^{18} - 12 q^{19} - 12 q^{20} - 15 q^{22}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.174832 −0.123625 −0.0618126 0.998088i \(-0.519688\pi\)
−0.0618126 + 0.998088i \(0.519688\pi\)
\(3\) 2.31835 1.33850 0.669251 0.743037i \(-0.266615\pi\)
0.669251 + 0.743037i \(0.266615\pi\)
\(4\) −1.96943 −0.984717
\(5\) 1.01700 0.454815 0.227408 0.973800i \(-0.426975\pi\)
0.227408 + 0.973800i \(0.426975\pi\)
\(6\) −0.405323 −0.165473
\(7\) 0 0
\(8\) 0.693986 0.245361
\(9\) 2.37476 0.791586
\(10\) −0.177804 −0.0562266
\(11\) −4.96725 −1.49768 −0.748841 0.662749i \(-0.769389\pi\)
−0.748841 + 0.662749i \(0.769389\pi\)
\(12\) −4.56584 −1.31804
\(13\) 5.62124 1.55905 0.779526 0.626370i \(-0.215460\pi\)
0.779526 + 0.626370i \(0.215460\pi\)
\(14\) 0 0
\(15\) 2.35776 0.608771
\(16\) 3.81754 0.954384
\(17\) −3.76485 −0.913110 −0.456555 0.889695i \(-0.650917\pi\)
−0.456555 + 0.889695i \(0.650917\pi\)
\(18\) −0.415185 −0.0978599
\(19\) −3.14061 −0.720505 −0.360253 0.932855i \(-0.617310\pi\)
−0.360253 + 0.932855i \(0.617310\pi\)
\(20\) −2.00291 −0.447864
\(21\) 0 0
\(22\) 0.868437 0.185151
\(23\) 4.19183 0.874057 0.437029 0.899448i \(-0.356031\pi\)
0.437029 + 0.899448i \(0.356031\pi\)
\(24\) 1.60890 0.328416
\(25\) −3.96572 −0.793143
\(26\) −0.982775 −0.192738
\(27\) −1.44953 −0.278963
\(28\) 0 0
\(29\) −7.96005 −1.47814 −0.739072 0.673626i \(-0.764736\pi\)
−0.739072 + 0.673626i \(0.764736\pi\)
\(30\) −0.412213 −0.0752594
\(31\) −9.91356 −1.78053 −0.890264 0.455445i \(-0.849480\pi\)
−0.890264 + 0.455445i \(0.849480\pi\)
\(32\) −2.05540 −0.363347
\(33\) −11.5158 −2.00465
\(34\) 0.658218 0.112883
\(35\) 0 0
\(36\) −4.67693 −0.779488
\(37\) −0.106445 −0.0174995 −0.00874976 0.999962i \(-0.502785\pi\)
−0.00874976 + 0.999962i \(0.502785\pi\)
\(38\) 0.549081 0.0890726
\(39\) 13.0320 2.08679
\(40\) 0.705782 0.111594
\(41\) −8.41414 −1.31407 −0.657034 0.753861i \(-0.728189\pi\)
−0.657034 + 0.753861i \(0.728189\pi\)
\(42\) 0 0
\(43\) 0.0223469 0.00340787 0.00170394 0.999999i \(-0.499458\pi\)
0.00170394 + 0.999999i \(0.499458\pi\)
\(44\) 9.78267 1.47479
\(45\) 2.41512 0.360025
\(46\) −0.732868 −0.108055
\(47\) −5.74459 −0.837934 −0.418967 0.908001i \(-0.637608\pi\)
−0.418967 + 0.908001i \(0.637608\pi\)
\(48\) 8.85039 1.27744
\(49\) 0 0
\(50\) 0.693336 0.0980525
\(51\) −8.72825 −1.22220
\(52\) −11.0707 −1.53522
\(53\) 3.47513 0.477346 0.238673 0.971100i \(-0.423288\pi\)
0.238673 + 0.971100i \(0.423288\pi\)
\(54\) 0.253426 0.0344869
\(55\) −5.05168 −0.681169
\(56\) 0 0
\(57\) −7.28104 −0.964397
\(58\) 1.39168 0.182736
\(59\) 10.8960 1.41854 0.709272 0.704935i \(-0.249024\pi\)
0.709272 + 0.704935i \(0.249024\pi\)
\(60\) −4.64345 −0.599467
\(61\) 10.6898 1.36869 0.684343 0.729160i \(-0.260089\pi\)
0.684343 + 0.729160i \(0.260089\pi\)
\(62\) 1.73321 0.220118
\(63\) 0 0
\(64\) −7.27572 −0.909465
\(65\) 5.71679 0.709081
\(66\) 2.01334 0.247825
\(67\) 8.90858 1.08836 0.544178 0.838970i \(-0.316841\pi\)
0.544178 + 0.838970i \(0.316841\pi\)
\(68\) 7.41462 0.899155
\(69\) 9.71814 1.16993
\(70\) 0 0
\(71\) −4.03217 −0.478530 −0.239265 0.970954i \(-0.576906\pi\)
−0.239265 + 0.970954i \(0.576906\pi\)
\(72\) 1.64805 0.194224
\(73\) 12.9662 1.51758 0.758790 0.651335i \(-0.225791\pi\)
0.758790 + 0.651335i \(0.225791\pi\)
\(74\) 0.0186101 0.00216338
\(75\) −9.19393 −1.06162
\(76\) 6.18522 0.709494
\(77\) 0 0
\(78\) −2.27842 −0.257980
\(79\) 1.00000 0.112509
\(80\) 3.88243 0.434068
\(81\) −10.4848 −1.16498
\(82\) 1.47106 0.162452
\(83\) −5.20485 −0.571306 −0.285653 0.958333i \(-0.592211\pi\)
−0.285653 + 0.958333i \(0.592211\pi\)
\(84\) 0 0
\(85\) −3.82884 −0.415296
\(86\) −0.00390697 −0.000421299 0
\(87\) −18.4542 −1.97850
\(88\) −3.44720 −0.367473
\(89\) −9.29307 −0.985064 −0.492532 0.870294i \(-0.663929\pi\)
−0.492532 + 0.870294i \(0.663929\pi\)
\(90\) −0.422242 −0.0445082
\(91\) 0 0
\(92\) −8.25553 −0.860699
\(93\) −22.9831 −2.38324
\(94\) 1.00434 0.103590
\(95\) −3.19399 −0.327697
\(96\) −4.76514 −0.486340
\(97\) 4.37822 0.444541 0.222270 0.974985i \(-0.428653\pi\)
0.222270 + 0.974985i \(0.428653\pi\)
\(98\) 0 0
\(99\) −11.7960 −1.18554
\(100\) 7.81021 0.781021
\(101\) −16.3293 −1.62483 −0.812414 0.583081i \(-0.801847\pi\)
−0.812414 + 0.583081i \(0.801847\pi\)
\(102\) 1.52598 0.151095
\(103\) −5.66701 −0.558387 −0.279193 0.960235i \(-0.590067\pi\)
−0.279193 + 0.960235i \(0.590067\pi\)
\(104\) 3.90106 0.382531
\(105\) 0 0
\(106\) −0.607566 −0.0590120
\(107\) 3.18070 0.307490 0.153745 0.988111i \(-0.450867\pi\)
0.153745 + 0.988111i \(0.450867\pi\)
\(108\) 2.85476 0.274699
\(109\) −12.8742 −1.23312 −0.616560 0.787308i \(-0.711474\pi\)
−0.616560 + 0.787308i \(0.711474\pi\)
\(110\) 0.883198 0.0842096
\(111\) −0.246778 −0.0234231
\(112\) 0 0
\(113\) −7.92079 −0.745125 −0.372562 0.928007i \(-0.621521\pi\)
−0.372562 + 0.928007i \(0.621521\pi\)
\(114\) 1.27296 0.119224
\(115\) 4.26308 0.397534
\(116\) 15.6768 1.45555
\(117\) 13.3491 1.23412
\(118\) −1.90498 −0.175368
\(119\) 0 0
\(120\) 1.63625 0.149369
\(121\) 13.6736 1.24305
\(122\) −1.86892 −0.169204
\(123\) −19.5069 −1.75888
\(124\) 19.5241 1.75332
\(125\) −9.11811 −0.815549
\(126\) 0 0
\(127\) 16.9952 1.50808 0.754040 0.656828i \(-0.228102\pi\)
0.754040 + 0.656828i \(0.228102\pi\)
\(128\) 5.38283 0.475780
\(129\) 0.0518080 0.00456144
\(130\) −0.999480 −0.0876602
\(131\) 3.84363 0.335820 0.167910 0.985802i \(-0.446298\pi\)
0.167910 + 0.985802i \(0.446298\pi\)
\(132\) 22.6797 1.97401
\(133\) 0 0
\(134\) −1.55751 −0.134548
\(135\) −1.47417 −0.126877
\(136\) −2.61275 −0.224042
\(137\) −11.3973 −0.973738 −0.486869 0.873475i \(-0.661861\pi\)
−0.486869 + 0.873475i \(0.661861\pi\)
\(138\) −1.69905 −0.144632
\(139\) −13.7334 −1.16485 −0.582425 0.812884i \(-0.697896\pi\)
−0.582425 + 0.812884i \(0.697896\pi\)
\(140\) 0 0
\(141\) −13.3180 −1.12158
\(142\) 0.704954 0.0591584
\(143\) −27.9221 −2.33496
\(144\) 9.06572 0.755477
\(145\) −8.09536 −0.672283
\(146\) −2.26691 −0.187611
\(147\) 0 0
\(148\) 0.209637 0.0172321
\(149\) 12.1713 0.997111 0.498556 0.866858i \(-0.333864\pi\)
0.498556 + 0.866858i \(0.333864\pi\)
\(150\) 1.60740 0.131243
\(151\) −23.5784 −1.91879 −0.959393 0.282073i \(-0.908978\pi\)
−0.959393 + 0.282073i \(0.908978\pi\)
\(152\) −2.17954 −0.176784
\(153\) −8.94060 −0.722805
\(154\) 0 0
\(155\) −10.0821 −0.809811
\(156\) −25.6657 −2.05490
\(157\) −5.23538 −0.417829 −0.208914 0.977934i \(-0.566993\pi\)
−0.208914 + 0.977934i \(0.566993\pi\)
\(158\) −0.174832 −0.0139089
\(159\) 8.05658 0.638928
\(160\) −2.09034 −0.165256
\(161\) 0 0
\(162\) 1.83308 0.144021
\(163\) 5.74363 0.449876 0.224938 0.974373i \(-0.427782\pi\)
0.224938 + 0.974373i \(0.427782\pi\)
\(164\) 16.5711 1.29398
\(165\) −11.7116 −0.911745
\(166\) 0.909976 0.0706279
\(167\) −15.7035 −1.21517 −0.607587 0.794253i \(-0.707862\pi\)
−0.607587 + 0.794253i \(0.707862\pi\)
\(168\) 0 0
\(169\) 18.5984 1.43064
\(170\) 0.669406 0.0513411
\(171\) −7.45819 −0.570342
\(172\) −0.0440108 −0.00335579
\(173\) −14.5568 −1.10673 −0.553367 0.832937i \(-0.686657\pi\)
−0.553367 + 0.832937i \(0.686657\pi\)
\(174\) 3.22639 0.244592
\(175\) 0 0
\(176\) −18.9627 −1.42936
\(177\) 25.2609 1.89872
\(178\) 1.62473 0.121779
\(179\) 13.5591 1.01345 0.506727 0.862106i \(-0.330855\pi\)
0.506727 + 0.862106i \(0.330855\pi\)
\(180\) −4.75642 −0.354523
\(181\) −14.5676 −1.08280 −0.541400 0.840765i \(-0.682106\pi\)
−0.541400 + 0.840765i \(0.682106\pi\)
\(182\) 0 0
\(183\) 24.7827 1.83199
\(184\) 2.90907 0.214460
\(185\) −0.108255 −0.00795905
\(186\) 4.01820 0.294628
\(187\) 18.7010 1.36755
\(188\) 11.3136 0.825128
\(189\) 0 0
\(190\) 0.558414 0.0405116
\(191\) −11.6478 −0.842803 −0.421401 0.906874i \(-0.638462\pi\)
−0.421401 + 0.906874i \(0.638462\pi\)
\(192\) −16.8677 −1.21732
\(193\) 0.432888 0.0311599 0.0155800 0.999879i \(-0.495041\pi\)
0.0155800 + 0.999879i \(0.495041\pi\)
\(194\) −0.765454 −0.0549564
\(195\) 13.2535 0.949105
\(196\) 0 0
\(197\) 22.7867 1.62349 0.811744 0.584014i \(-0.198519\pi\)
0.811744 + 0.584014i \(0.198519\pi\)
\(198\) 2.06233 0.146563
\(199\) 6.74403 0.478071 0.239036 0.971011i \(-0.423169\pi\)
0.239036 + 0.971011i \(0.423169\pi\)
\(200\) −2.75215 −0.194606
\(201\) 20.6532 1.45677
\(202\) 2.85489 0.200870
\(203\) 0 0
\(204\) 17.1897 1.20352
\(205\) −8.55716 −0.597658
\(206\) 0.990777 0.0690307
\(207\) 9.95458 0.691891
\(208\) 21.4593 1.48793
\(209\) 15.6002 1.07909
\(210\) 0 0
\(211\) −17.8692 −1.23017 −0.615085 0.788461i \(-0.710878\pi\)
−0.615085 + 0.788461i \(0.710878\pi\)
\(212\) −6.84404 −0.470051
\(213\) −9.34798 −0.640513
\(214\) −0.556090 −0.0380135
\(215\) 0.0227268 0.00154995
\(216\) −1.00596 −0.0684466
\(217\) 0 0
\(218\) 2.25082 0.152445
\(219\) 30.0603 2.03128
\(220\) 9.94895 0.670758
\(221\) −21.1631 −1.42359
\(222\) 0.0431448 0.00289569
\(223\) 20.8494 1.39618 0.698091 0.716009i \(-0.254033\pi\)
0.698091 + 0.716009i \(0.254033\pi\)
\(224\) 0 0
\(225\) −9.41761 −0.627841
\(226\) 1.38481 0.0921162
\(227\) −28.1258 −1.86677 −0.933387 0.358872i \(-0.883162\pi\)
−0.933387 + 0.358872i \(0.883162\pi\)
\(228\) 14.3395 0.949658
\(229\) −13.4191 −0.886756 −0.443378 0.896335i \(-0.646220\pi\)
−0.443378 + 0.896335i \(0.646220\pi\)
\(230\) −0.745325 −0.0491453
\(231\) 0 0
\(232\) −5.52416 −0.362679
\(233\) 0.839988 0.0550295 0.0275147 0.999621i \(-0.491241\pi\)
0.0275147 + 0.999621i \(0.491241\pi\)
\(234\) −2.33385 −0.152569
\(235\) −5.84223 −0.381105
\(236\) −21.4590 −1.39686
\(237\) 2.31835 0.150593
\(238\) 0 0
\(239\) 17.2643 1.11673 0.558367 0.829594i \(-0.311428\pi\)
0.558367 + 0.829594i \(0.311428\pi\)
\(240\) 9.00083 0.581001
\(241\) 14.3630 0.925199 0.462600 0.886567i \(-0.346917\pi\)
0.462600 + 0.886567i \(0.346917\pi\)
\(242\) −2.39058 −0.153673
\(243\) −19.9589 −1.28036
\(244\) −21.0528 −1.34777
\(245\) 0 0
\(246\) 3.41045 0.217442
\(247\) −17.6541 −1.12331
\(248\) −6.87987 −0.436872
\(249\) −12.0667 −0.764694
\(250\) 1.59414 0.100822
\(251\) 18.2123 1.14955 0.574774 0.818312i \(-0.305090\pi\)
0.574774 + 0.818312i \(0.305090\pi\)
\(252\) 0 0
\(253\) −20.8219 −1.30906
\(254\) −2.97131 −0.186437
\(255\) −8.87661 −0.555875
\(256\) 13.6103 0.850647
\(257\) −13.7295 −0.856423 −0.428211 0.903679i \(-0.640856\pi\)
−0.428211 + 0.903679i \(0.640856\pi\)
\(258\) −0.00905773 −0.000563909 0
\(259\) 0 0
\(260\) −11.2588 −0.698244
\(261\) −18.9032 −1.17008
\(262\) −0.671992 −0.0415158
\(263\) 20.6349 1.27240 0.636201 0.771523i \(-0.280505\pi\)
0.636201 + 0.771523i \(0.280505\pi\)
\(264\) −7.99183 −0.491863
\(265\) 3.53420 0.217104
\(266\) 0 0
\(267\) −21.5446 −1.31851
\(268\) −17.5449 −1.07172
\(269\) 2.50791 0.152910 0.0764549 0.997073i \(-0.475640\pi\)
0.0764549 + 0.997073i \(0.475640\pi\)
\(270\) 0.257733 0.0156851
\(271\) 15.3358 0.931584 0.465792 0.884894i \(-0.345769\pi\)
0.465792 + 0.884894i \(0.345769\pi\)
\(272\) −14.3724 −0.871458
\(273\) 0 0
\(274\) 1.99262 0.120379
\(275\) 19.6987 1.18788
\(276\) −19.1392 −1.15205
\(277\) −7.92951 −0.476438 −0.238219 0.971211i \(-0.576564\pi\)
−0.238219 + 0.971211i \(0.576564\pi\)
\(278\) 2.40104 0.144005
\(279\) −23.5423 −1.40944
\(280\) 0 0
\(281\) 14.6334 0.872958 0.436479 0.899715i \(-0.356225\pi\)
0.436479 + 0.899715i \(0.356225\pi\)
\(282\) 2.32841 0.138655
\(283\) −9.05580 −0.538311 −0.269156 0.963097i \(-0.586745\pi\)
−0.269156 + 0.963097i \(0.586745\pi\)
\(284\) 7.94108 0.471217
\(285\) −7.40480 −0.438623
\(286\) 4.88169 0.288660
\(287\) 0 0
\(288\) −4.88108 −0.287620
\(289\) −2.82591 −0.166230
\(290\) 1.41533 0.0831111
\(291\) 10.1502 0.595018
\(292\) −25.5361 −1.49439
\(293\) −32.4375 −1.89502 −0.947510 0.319726i \(-0.896409\pi\)
−0.947510 + 0.319726i \(0.896409\pi\)
\(294\) 0 0
\(295\) 11.0812 0.645175
\(296\) −0.0738716 −0.00429370
\(297\) 7.20020 0.417798
\(298\) −2.12794 −0.123268
\(299\) 23.5633 1.36270
\(300\) 18.1068 1.04540
\(301\) 0 0
\(302\) 4.12228 0.237210
\(303\) −37.8571 −2.17483
\(304\) −11.9894 −0.687639
\(305\) 10.8715 0.622499
\(306\) 1.56311 0.0893569
\(307\) 18.9900 1.08382 0.541908 0.840438i \(-0.317702\pi\)
0.541908 + 0.840438i \(0.317702\pi\)
\(308\) 0 0
\(309\) −13.1381 −0.747401
\(310\) 1.76267 0.100113
\(311\) −2.39628 −0.135881 −0.0679403 0.997689i \(-0.521643\pi\)
−0.0679403 + 0.997689i \(0.521643\pi\)
\(312\) 9.04404 0.512018
\(313\) −6.57897 −0.371865 −0.185933 0.982562i \(-0.559531\pi\)
−0.185933 + 0.982562i \(0.559531\pi\)
\(314\) 0.915314 0.0516541
\(315\) 0 0
\(316\) −1.96943 −0.110789
\(317\) −10.5945 −0.595048 −0.297524 0.954714i \(-0.596161\pi\)
−0.297524 + 0.954714i \(0.596161\pi\)
\(318\) −1.40855 −0.0789876
\(319\) 39.5396 2.21379
\(320\) −7.39939 −0.413639
\(321\) 7.37399 0.411576
\(322\) 0 0
\(323\) 11.8239 0.657901
\(324\) 20.6491 1.14717
\(325\) −22.2922 −1.23655
\(326\) −1.00417 −0.0556160
\(327\) −29.8468 −1.65053
\(328\) −5.83929 −0.322421
\(329\) 0 0
\(330\) 2.04756 0.112715
\(331\) −12.1120 −0.665736 −0.332868 0.942973i \(-0.608016\pi\)
−0.332868 + 0.942973i \(0.608016\pi\)
\(332\) 10.2506 0.562575
\(333\) −0.252782 −0.0138524
\(334\) 2.74548 0.150226
\(335\) 9.06001 0.495001
\(336\) 0 0
\(337\) 7.11902 0.387798 0.193899 0.981022i \(-0.437887\pi\)
0.193899 + 0.981022i \(0.437887\pi\)
\(338\) −3.25160 −0.176864
\(339\) −18.3632 −0.997351
\(340\) 7.54065 0.408949
\(341\) 49.2431 2.66667
\(342\) 1.30393 0.0705086
\(343\) 0 0
\(344\) 0.0155084 0.000836159 0
\(345\) 9.88333 0.532100
\(346\) 2.54500 0.136820
\(347\) 10.3178 0.553886 0.276943 0.960886i \(-0.410679\pi\)
0.276943 + 0.960886i \(0.410679\pi\)
\(348\) 36.3443 1.94826
\(349\) −2.74123 −0.146735 −0.0733673 0.997305i \(-0.523375\pi\)
−0.0733673 + 0.997305i \(0.523375\pi\)
\(350\) 0 0
\(351\) −8.14818 −0.434918
\(352\) 10.2097 0.544178
\(353\) −7.72828 −0.411335 −0.205667 0.978622i \(-0.565936\pi\)
−0.205667 + 0.978622i \(0.565936\pi\)
\(354\) −4.41642 −0.234730
\(355\) −4.10070 −0.217643
\(356\) 18.3021 0.970009
\(357\) 0 0
\(358\) −2.37057 −0.125289
\(359\) 9.05392 0.477848 0.238924 0.971038i \(-0.423205\pi\)
0.238924 + 0.971038i \(0.423205\pi\)
\(360\) 1.67606 0.0883362
\(361\) −9.13657 −0.480872
\(362\) 2.54689 0.133861
\(363\) 31.7002 1.66383
\(364\) 0 0
\(365\) 13.1866 0.690219
\(366\) −4.33282 −0.226480
\(367\) −23.4483 −1.22399 −0.611995 0.790861i \(-0.709633\pi\)
−0.611995 + 0.790861i \(0.709633\pi\)
\(368\) 16.0025 0.834186
\(369\) −19.9815 −1.04020
\(370\) 0.0189264 0.000983939 0
\(371\) 0 0
\(372\) 45.2637 2.34682
\(373\) −3.12851 −0.161988 −0.0809941 0.996715i \(-0.525810\pi\)
−0.0809941 + 0.996715i \(0.525810\pi\)
\(374\) −3.26953 −0.169064
\(375\) −21.1390 −1.09161
\(376\) −3.98666 −0.205596
\(377\) −44.7454 −2.30450
\(378\) 0 0
\(379\) 32.4090 1.66474 0.832369 0.554222i \(-0.186984\pi\)
0.832369 + 0.554222i \(0.186984\pi\)
\(380\) 6.29036 0.322689
\(381\) 39.4009 2.01857
\(382\) 2.03641 0.104192
\(383\) 21.9878 1.12352 0.561761 0.827300i \(-0.310124\pi\)
0.561761 + 0.827300i \(0.310124\pi\)
\(384\) 12.4793 0.636832
\(385\) 0 0
\(386\) −0.0756828 −0.00385215
\(387\) 0.0530685 0.00269762
\(388\) −8.62261 −0.437747
\(389\) −27.9765 −1.41847 −0.709233 0.704974i \(-0.750959\pi\)
−0.709233 + 0.704974i \(0.750959\pi\)
\(390\) −2.31715 −0.117333
\(391\) −15.7816 −0.798110
\(392\) 0 0
\(393\) 8.91089 0.449495
\(394\) −3.98386 −0.200704
\(395\) 1.01700 0.0511707
\(396\) 23.2315 1.16742
\(397\) 29.2626 1.46865 0.734323 0.678800i \(-0.237500\pi\)
0.734323 + 0.678800i \(0.237500\pi\)
\(398\) −1.17907 −0.0591017
\(399\) 0 0
\(400\) −15.1393 −0.756963
\(401\) 9.69085 0.483938 0.241969 0.970284i \(-0.422207\pi\)
0.241969 + 0.970284i \(0.422207\pi\)
\(402\) −3.61086 −0.180093
\(403\) −55.7265 −2.77594
\(404\) 32.1595 1.60000
\(405\) −10.6630 −0.529850
\(406\) 0 0
\(407\) 0.528741 0.0262087
\(408\) −6.05728 −0.299880
\(409\) 13.6651 0.675698 0.337849 0.941200i \(-0.390301\pi\)
0.337849 + 0.941200i \(0.390301\pi\)
\(410\) 1.49607 0.0738856
\(411\) −26.4230 −1.30335
\(412\) 11.1608 0.549853
\(413\) 0 0
\(414\) −1.74038 −0.0855352
\(415\) −5.29332 −0.259839
\(416\) −11.5539 −0.566477
\(417\) −31.8388 −1.55915
\(418\) −2.72742 −0.133403
\(419\) 13.7918 0.673772 0.336886 0.941545i \(-0.390626\pi\)
0.336886 + 0.941545i \(0.390626\pi\)
\(420\) 0 0
\(421\) −16.3813 −0.798375 −0.399188 0.916869i \(-0.630708\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(422\) 3.12412 0.152080
\(423\) −13.6420 −0.663297
\(424\) 2.41169 0.117122
\(425\) 14.9303 0.724227
\(426\) 1.63433 0.0791836
\(427\) 0 0
\(428\) −6.26418 −0.302791
\(429\) −64.7333 −3.12535
\(430\) −0.00397338 −0.000191613 0
\(431\) 16.7256 0.805644 0.402822 0.915278i \(-0.368029\pi\)
0.402822 + 0.915278i \(0.368029\pi\)
\(432\) −5.53365 −0.266238
\(433\) 13.9398 0.669905 0.334953 0.942235i \(-0.391280\pi\)
0.334953 + 0.942235i \(0.391280\pi\)
\(434\) 0 0
\(435\) −18.7679 −0.899851
\(436\) 25.3548 1.21427
\(437\) −13.1649 −0.629763
\(438\) −5.25551 −0.251118
\(439\) −24.5976 −1.17398 −0.586990 0.809594i \(-0.699687\pi\)
−0.586990 + 0.809594i \(0.699687\pi\)
\(440\) −3.50580 −0.167132
\(441\) 0 0
\(442\) 3.70000 0.175991
\(443\) 25.4642 1.20984 0.604920 0.796286i \(-0.293205\pi\)
0.604920 + 0.796286i \(0.293205\pi\)
\(444\) 0.486013 0.0230652
\(445\) −9.45104 −0.448022
\(446\) −3.64516 −0.172603
\(447\) 28.2173 1.33463
\(448\) 0 0
\(449\) −6.07943 −0.286906 −0.143453 0.989657i \(-0.545821\pi\)
−0.143453 + 0.989657i \(0.545821\pi\)
\(450\) 1.64650 0.0776169
\(451\) 41.7951 1.96806
\(452\) 15.5995 0.733737
\(453\) −54.6631 −2.56830
\(454\) 4.91730 0.230780
\(455\) 0 0
\(456\) −5.05294 −0.236626
\(457\) 33.8987 1.58571 0.792857 0.609408i \(-0.208593\pi\)
0.792857 + 0.609408i \(0.208593\pi\)
\(458\) 2.34609 0.109625
\(459\) 5.45728 0.254724
\(460\) −8.39586 −0.391459
\(461\) −22.0227 −1.02570 −0.512850 0.858478i \(-0.671410\pi\)
−0.512850 + 0.858478i \(0.671410\pi\)
\(462\) 0 0
\(463\) 16.7218 0.777128 0.388564 0.921422i \(-0.372971\pi\)
0.388564 + 0.921422i \(0.372971\pi\)
\(464\) −30.3878 −1.41072
\(465\) −23.3738 −1.08393
\(466\) −0.146857 −0.00680303
\(467\) −5.20269 −0.240752 −0.120376 0.992728i \(-0.538410\pi\)
−0.120376 + 0.992728i \(0.538410\pi\)
\(468\) −26.2901 −1.21526
\(469\) 0 0
\(470\) 1.02141 0.0471142
\(471\) −12.1374 −0.559264
\(472\) 7.56170 0.348055
\(473\) −0.111003 −0.00510391
\(474\) −0.405323 −0.0186171
\(475\) 12.4548 0.571464
\(476\) 0 0
\(477\) 8.25259 0.377860
\(478\) −3.01836 −0.138057
\(479\) 22.3035 1.01907 0.509536 0.860449i \(-0.329817\pi\)
0.509536 + 0.860449i \(0.329817\pi\)
\(480\) −4.84614 −0.221195
\(481\) −0.598355 −0.0272827
\(482\) −2.51111 −0.114378
\(483\) 0 0
\(484\) −26.9292 −1.22405
\(485\) 4.45264 0.202184
\(486\) 3.48946 0.158285
\(487\) 37.2799 1.68931 0.844657 0.535308i \(-0.179804\pi\)
0.844657 + 0.535308i \(0.179804\pi\)
\(488\) 7.41856 0.335822
\(489\) 13.3158 0.602160
\(490\) 0 0
\(491\) 31.7335 1.43211 0.716056 0.698043i \(-0.245946\pi\)
0.716056 + 0.698043i \(0.245946\pi\)
\(492\) 38.4176 1.73200
\(493\) 29.9684 1.34971
\(494\) 3.08651 0.138869
\(495\) −11.9965 −0.539203
\(496\) −37.8454 −1.69931
\(497\) 0 0
\(498\) 2.10965 0.0945355
\(499\) −38.2680 −1.71311 −0.856556 0.516054i \(-0.827400\pi\)
−0.856556 + 0.516054i \(0.827400\pi\)
\(500\) 17.9575 0.803085
\(501\) −36.4063 −1.62651
\(502\) −3.18409 −0.142113
\(503\) 30.0417 1.33949 0.669747 0.742589i \(-0.266402\pi\)
0.669747 + 0.742589i \(0.266402\pi\)
\(504\) 0 0
\(505\) −16.6069 −0.738996
\(506\) 3.64034 0.161833
\(507\) 43.1175 1.91492
\(508\) −33.4709 −1.48503
\(509\) 2.58556 0.114603 0.0573015 0.998357i \(-0.481750\pi\)
0.0573015 + 0.998357i \(0.481750\pi\)
\(510\) 1.55192 0.0687201
\(511\) 0 0
\(512\) −13.1452 −0.580941
\(513\) 4.55242 0.200994
\(514\) 2.40036 0.105875
\(515\) −5.76333 −0.253963
\(516\) −0.102032 −0.00449173
\(517\) 28.5348 1.25496
\(518\) 0 0
\(519\) −33.7478 −1.48137
\(520\) 3.96737 0.173981
\(521\) 15.2994 0.670277 0.335138 0.942169i \(-0.391217\pi\)
0.335138 + 0.942169i \(0.391217\pi\)
\(522\) 3.30489 0.144651
\(523\) −10.4292 −0.456036 −0.228018 0.973657i \(-0.573224\pi\)
−0.228018 + 0.973657i \(0.573224\pi\)
\(524\) −7.56978 −0.330687
\(525\) 0 0
\(526\) −3.60765 −0.157301
\(527\) 37.3231 1.62582
\(528\) −43.9621 −1.91321
\(529\) −5.42856 −0.236024
\(530\) −0.617893 −0.0268396
\(531\) 25.8754 1.12290
\(532\) 0 0
\(533\) −47.2979 −2.04870
\(534\) 3.76670 0.163001
\(535\) 3.23477 0.139851
\(536\) 6.18243 0.267040
\(537\) 31.4348 1.35651
\(538\) −0.438464 −0.0189035
\(539\) 0 0
\(540\) 2.90329 0.124938
\(541\) 23.2498 0.999588 0.499794 0.866144i \(-0.333409\pi\)
0.499794 + 0.866144i \(0.333409\pi\)
\(542\) −2.68120 −0.115167
\(543\) −33.7728 −1.44933
\(544\) 7.73827 0.331776
\(545\) −13.0930 −0.560842
\(546\) 0 0
\(547\) 32.5034 1.38974 0.694872 0.719134i \(-0.255461\pi\)
0.694872 + 0.719134i \(0.255461\pi\)
\(548\) 22.4463 0.958857
\(549\) 25.3856 1.08343
\(550\) −3.44397 −0.146851
\(551\) 24.9994 1.06501
\(552\) 6.74425 0.287054
\(553\) 0 0
\(554\) 1.38634 0.0588998
\(555\) −0.250973 −0.0106532
\(556\) 27.0470 1.14705
\(557\) −24.7618 −1.04919 −0.524595 0.851352i \(-0.675783\pi\)
−0.524595 + 0.851352i \(0.675783\pi\)
\(558\) 4.11596 0.174242
\(559\) 0.125617 0.00531305
\(560\) 0 0
\(561\) 43.3554 1.83047
\(562\) −2.55840 −0.107920
\(563\) 6.42852 0.270930 0.135465 0.990782i \(-0.456747\pi\)
0.135465 + 0.990782i \(0.456747\pi\)
\(564\) 26.2289 1.10443
\(565\) −8.05542 −0.338894
\(566\) 1.58325 0.0665489
\(567\) 0 0
\(568\) −2.79827 −0.117413
\(569\) −34.4527 −1.44433 −0.722166 0.691720i \(-0.756853\pi\)
−0.722166 + 0.691720i \(0.756853\pi\)
\(570\) 1.29460 0.0542248
\(571\) −4.62310 −0.193471 −0.0967354 0.995310i \(-0.530840\pi\)
−0.0967354 + 0.995310i \(0.530840\pi\)
\(572\) 54.9908 2.29928
\(573\) −27.0036 −1.12809
\(574\) 0 0
\(575\) −16.6236 −0.693252
\(576\) −17.2781 −0.719920
\(577\) −15.8151 −0.658392 −0.329196 0.944262i \(-0.606778\pi\)
−0.329196 + 0.944262i \(0.606778\pi\)
\(578\) 0.494061 0.0205502
\(579\) 1.00359 0.0417076
\(580\) 15.9433 0.662008
\(581\) 0 0
\(582\) −1.77459 −0.0735592
\(583\) −17.2618 −0.714913
\(584\) 8.99837 0.372355
\(585\) 13.5760 0.561298
\(586\) 5.67113 0.234272
\(587\) −5.30042 −0.218772 −0.109386 0.993999i \(-0.534888\pi\)
−0.109386 + 0.993999i \(0.534888\pi\)
\(588\) 0 0
\(589\) 31.1346 1.28288
\(590\) −1.93736 −0.0797599
\(591\) 52.8277 2.17304
\(592\) −0.406359 −0.0167013
\(593\) 14.7983 0.607695 0.303847 0.952721i \(-0.401729\pi\)
0.303847 + 0.952721i \(0.401729\pi\)
\(594\) −1.25883 −0.0516503
\(595\) 0 0
\(596\) −23.9706 −0.981872
\(597\) 15.6350 0.639899
\(598\) −4.11963 −0.168464
\(599\) 3.82550 0.156306 0.0781528 0.996941i \(-0.475098\pi\)
0.0781528 + 0.996941i \(0.475098\pi\)
\(600\) −6.38045 −0.260481
\(601\) 23.3831 0.953816 0.476908 0.878953i \(-0.341757\pi\)
0.476908 + 0.878953i \(0.341757\pi\)
\(602\) 0 0
\(603\) 21.1557 0.861527
\(604\) 46.4362 1.88946
\(605\) 13.9060 0.565359
\(606\) 6.61865 0.268864
\(607\) −41.8519 −1.69872 −0.849358 0.527817i \(-0.823011\pi\)
−0.849358 + 0.527817i \(0.823011\pi\)
\(608\) 6.45521 0.261793
\(609\) 0 0
\(610\) −1.90069 −0.0769566
\(611\) −32.2917 −1.30638
\(612\) 17.6079 0.711758
\(613\) −45.1455 −1.82341 −0.911705 0.410844i \(-0.865234\pi\)
−0.911705 + 0.410844i \(0.865234\pi\)
\(614\) −3.32007 −0.133987
\(615\) −19.8385 −0.799966
\(616\) 0 0
\(617\) −31.2423 −1.25777 −0.628884 0.777499i \(-0.716488\pi\)
−0.628884 + 0.777499i \(0.716488\pi\)
\(618\) 2.29697 0.0923977
\(619\) 21.7576 0.874513 0.437256 0.899337i \(-0.355950\pi\)
0.437256 + 0.899337i \(0.355950\pi\)
\(620\) 19.8560 0.797435
\(621\) −6.07620 −0.243830
\(622\) 0.418948 0.0167983
\(623\) 0 0
\(624\) 49.7502 1.99160
\(625\) 10.5555 0.422219
\(626\) 1.15022 0.0459719
\(627\) 36.1668 1.44436
\(628\) 10.3107 0.411443
\(629\) 0.400751 0.0159790
\(630\) 0 0
\(631\) 41.1685 1.63889 0.819447 0.573156i \(-0.194281\pi\)
0.819447 + 0.573156i \(0.194281\pi\)
\(632\) 0.693986 0.0276053
\(633\) −41.4272 −1.64658
\(634\) 1.85227 0.0735630
\(635\) 17.2841 0.685898
\(636\) −15.8669 −0.629163
\(637\) 0 0
\(638\) −6.91280 −0.273680
\(639\) −9.57541 −0.378798
\(640\) 5.47433 0.216392
\(641\) −1.09084 −0.0430854 −0.0215427 0.999768i \(-0.506858\pi\)
−0.0215427 + 0.999768i \(0.506858\pi\)
\(642\) −1.28921 −0.0508812
\(643\) −1.59788 −0.0630142 −0.0315071 0.999504i \(-0.510031\pi\)
−0.0315071 + 0.999504i \(0.510031\pi\)
\(644\) 0 0
\(645\) 0.0526887 0.00207461
\(646\) −2.06721 −0.0813331
\(647\) −4.74488 −0.186541 −0.0932703 0.995641i \(-0.529732\pi\)
−0.0932703 + 0.995641i \(0.529732\pi\)
\(648\) −7.27630 −0.285840
\(649\) −54.1234 −2.12453
\(650\) 3.89741 0.152869
\(651\) 0 0
\(652\) −11.3117 −0.443001
\(653\) 17.0928 0.668892 0.334446 0.942415i \(-0.391451\pi\)
0.334446 + 0.942415i \(0.391451\pi\)
\(654\) 5.21819 0.204048
\(655\) 3.90897 0.152736
\(656\) −32.1213 −1.25413
\(657\) 30.7916 1.20129
\(658\) 0 0
\(659\) 12.6754 0.493764 0.246882 0.969046i \(-0.420594\pi\)
0.246882 + 0.969046i \(0.420594\pi\)
\(660\) 23.0652 0.897811
\(661\) 1.17036 0.0455218 0.0227609 0.999741i \(-0.492754\pi\)
0.0227609 + 0.999741i \(0.492754\pi\)
\(662\) 2.11757 0.0823018
\(663\) −49.0636 −1.90547
\(664\) −3.61209 −0.140176
\(665\) 0 0
\(666\) 0.0441945 0.00171250
\(667\) −33.3672 −1.29198
\(668\) 30.9270 1.19660
\(669\) 48.3363 1.86879
\(670\) −1.58398 −0.0611946
\(671\) −53.0988 −2.04986
\(672\) 0 0
\(673\) −5.80037 −0.223588 −0.111794 0.993731i \(-0.535660\pi\)
−0.111794 + 0.993731i \(0.535660\pi\)
\(674\) −1.24464 −0.0479416
\(675\) 5.74844 0.221258
\(676\) −36.6282 −1.40878
\(677\) −15.9403 −0.612637 −0.306319 0.951929i \(-0.599097\pi\)
−0.306319 + 0.951929i \(0.599097\pi\)
\(678\) 3.21048 0.123298
\(679\) 0 0
\(680\) −2.65716 −0.101898
\(681\) −65.2055 −2.49868
\(682\) −8.60930 −0.329667
\(683\) 9.94514 0.380540 0.190270 0.981732i \(-0.439064\pi\)
0.190270 + 0.981732i \(0.439064\pi\)
\(684\) 14.6884 0.561625
\(685\) −11.5910 −0.442871
\(686\) 0 0
\(687\) −31.1101 −1.18692
\(688\) 0.0853102 0.00325242
\(689\) 19.5346 0.744207
\(690\) −1.72793 −0.0657810
\(691\) −22.5353 −0.857284 −0.428642 0.903474i \(-0.641008\pi\)
−0.428642 + 0.903474i \(0.641008\pi\)
\(692\) 28.6687 1.08982
\(693\) 0 0
\(694\) −1.80388 −0.0684743
\(695\) −13.9668 −0.529792
\(696\) −12.8070 −0.485446
\(697\) 31.6780 1.19989
\(698\) 0.479256 0.0181401
\(699\) 1.94739 0.0736570
\(700\) 0 0
\(701\) 40.1100 1.51493 0.757466 0.652874i \(-0.226437\pi\)
0.757466 + 0.652874i \(0.226437\pi\)
\(702\) 1.42457 0.0537668
\(703\) 0.334304 0.0126085
\(704\) 36.1403 1.36209
\(705\) −13.5444 −0.510110
\(706\) 1.35115 0.0508513
\(707\) 0 0
\(708\) −49.7496 −1.86970
\(709\) 36.3061 1.36350 0.681752 0.731584i \(-0.261218\pi\)
0.681752 + 0.731584i \(0.261218\pi\)
\(710\) 0.716936 0.0269061
\(711\) 2.37476 0.0890603
\(712\) −6.44926 −0.241696
\(713\) −41.5560 −1.55628
\(714\) 0 0
\(715\) −28.3967 −1.06198
\(716\) −26.7038 −0.997966
\(717\) 40.0247 1.49475
\(718\) −1.58292 −0.0590740
\(719\) 4.17943 0.155867 0.0779333 0.996959i \(-0.475168\pi\)
0.0779333 + 0.996959i \(0.475168\pi\)
\(720\) 9.21982 0.343602
\(721\) 0 0
\(722\) 1.59737 0.0594479
\(723\) 33.2984 1.23838
\(724\) 28.6899 1.06625
\(725\) 31.5673 1.17238
\(726\) −5.54222 −0.205691
\(727\) −14.6673 −0.543979 −0.271989 0.962300i \(-0.587682\pi\)
−0.271989 + 0.962300i \(0.587682\pi\)
\(728\) 0 0
\(729\) −14.8173 −0.548787
\(730\) −2.30545 −0.0853284
\(731\) −0.0841328 −0.00311176
\(732\) −48.8078 −1.80399
\(733\) −3.29672 −0.121767 −0.0608836 0.998145i \(-0.519392\pi\)
−0.0608836 + 0.998145i \(0.519392\pi\)
\(734\) 4.09952 0.151316
\(735\) 0 0
\(736\) −8.61589 −0.317586
\(737\) −44.2512 −1.63001
\(738\) 3.49342 0.128595
\(739\) 16.1740 0.594971 0.297485 0.954726i \(-0.403852\pi\)
0.297485 + 0.954726i \(0.403852\pi\)
\(740\) 0.213201 0.00783741
\(741\) −40.9285 −1.50355
\(742\) 0 0
\(743\) −25.4657 −0.934247 −0.467124 0.884192i \(-0.654710\pi\)
−0.467124 + 0.884192i \(0.654710\pi\)
\(744\) −15.9500 −0.584754
\(745\) 12.3782 0.453501
\(746\) 0.546966 0.0200258
\(747\) −12.3602 −0.452238
\(748\) −36.8303 −1.34665
\(749\) 0 0
\(750\) 3.69578 0.134951
\(751\) −40.1129 −1.46374 −0.731870 0.681445i \(-0.761352\pi\)
−0.731870 + 0.681445i \(0.761352\pi\)
\(752\) −21.9302 −0.799711
\(753\) 42.2224 1.53867
\(754\) 7.82294 0.284895
\(755\) −23.9792 −0.872693
\(756\) 0 0
\(757\) −14.0698 −0.511377 −0.255689 0.966759i \(-0.582302\pi\)
−0.255689 + 0.966759i \(0.582302\pi\)
\(758\) −5.66614 −0.205804
\(759\) −48.2724 −1.75218
\(760\) −2.21659 −0.0804040
\(761\) 19.4976 0.706787 0.353393 0.935475i \(-0.385028\pi\)
0.353393 + 0.935475i \(0.385028\pi\)
\(762\) −6.88855 −0.249546
\(763\) 0 0
\(764\) 22.9395 0.829922
\(765\) −9.09257 −0.328743
\(766\) −3.84417 −0.138896
\(767\) 61.2493 2.21158
\(768\) 31.5536 1.13859
\(769\) −12.5705 −0.453303 −0.226651 0.973976i \(-0.572778\pi\)
−0.226651 + 0.973976i \(0.572778\pi\)
\(770\) 0 0
\(771\) −31.8298 −1.14632
\(772\) −0.852543 −0.0306837
\(773\) −21.7460 −0.782148 −0.391074 0.920359i \(-0.627896\pi\)
−0.391074 + 0.920359i \(0.627896\pi\)
\(774\) −0.00927810 −0.000333494 0
\(775\) 39.3144 1.41221
\(776\) 3.03842 0.109073
\(777\) 0 0
\(778\) 4.89121 0.175358
\(779\) 26.4255 0.946793
\(780\) −26.1020 −0.934600
\(781\) 20.0288 0.716686
\(782\) 2.75914 0.0986666
\(783\) 11.5384 0.412348
\(784\) 0 0
\(785\) −5.32437 −0.190035
\(786\) −1.55791 −0.0555689
\(787\) 18.1082 0.645488 0.322744 0.946486i \(-0.395395\pi\)
0.322744 + 0.946486i \(0.395395\pi\)
\(788\) −44.8770 −1.59868
\(789\) 47.8390 1.70311
\(790\) −0.177804 −0.00632599
\(791\) 0 0
\(792\) −8.18626 −0.290886
\(793\) 60.0898 2.13385
\(794\) −5.11605 −0.181562
\(795\) 8.19352 0.290594
\(796\) −13.2819 −0.470765
\(797\) −33.5694 −1.18909 −0.594544 0.804063i \(-0.702667\pi\)
−0.594544 + 0.804063i \(0.702667\pi\)
\(798\) 0 0
\(799\) 21.6275 0.765126
\(800\) 8.15113 0.288186
\(801\) −22.0688 −0.779762
\(802\) −1.69428 −0.0598269
\(803\) −64.4064 −2.27285
\(804\) −40.6752 −1.43450
\(805\) 0 0
\(806\) 9.74280 0.343176
\(807\) 5.81421 0.204670
\(808\) −11.3323 −0.398669
\(809\) −21.3975 −0.752297 −0.376149 0.926559i \(-0.622752\pi\)
−0.376149 + 0.926559i \(0.622752\pi\)
\(810\) 1.86424 0.0655028
\(811\) −42.6906 −1.49907 −0.749535 0.661965i \(-0.769723\pi\)
−0.749535 + 0.661965i \(0.769723\pi\)
\(812\) 0 0
\(813\) 35.5538 1.24693
\(814\) −0.0924411 −0.00324006
\(815\) 5.84126 0.204611
\(816\) −33.3204 −1.16645
\(817\) −0.0701830 −0.00245539
\(818\) −2.38911 −0.0835333
\(819\) 0 0
\(820\) 16.8528 0.588524
\(821\) −9.68152 −0.337887 −0.168944 0.985626i \(-0.554036\pi\)
−0.168944 + 0.985626i \(0.554036\pi\)
\(822\) 4.61960 0.161127
\(823\) −47.7906 −1.66588 −0.832938 0.553367i \(-0.813343\pi\)
−0.832938 + 0.553367i \(0.813343\pi\)
\(824\) −3.93282 −0.137006
\(825\) 45.6685 1.58997
\(826\) 0 0
\(827\) −28.2883 −0.983682 −0.491841 0.870685i \(-0.663676\pi\)
−0.491841 + 0.870685i \(0.663676\pi\)
\(828\) −19.6049 −0.681317
\(829\) 4.46950 0.155232 0.0776160 0.996983i \(-0.475269\pi\)
0.0776160 + 0.996983i \(0.475269\pi\)
\(830\) 0.925444 0.0321226
\(831\) −18.3834 −0.637713
\(832\) −40.8986 −1.41790
\(833\) 0 0
\(834\) 5.56646 0.192751
\(835\) −15.9704 −0.552679
\(836\) −30.7236 −1.06260
\(837\) 14.3700 0.496701
\(838\) −2.41125 −0.0832953
\(839\) 12.9646 0.447586 0.223793 0.974637i \(-0.428156\pi\)
0.223793 + 0.974637i \(0.428156\pi\)
\(840\) 0 0
\(841\) 34.3624 1.18491
\(842\) 2.86398 0.0986993
\(843\) 33.9255 1.16845
\(844\) 35.1923 1.21137
\(845\) 18.9145 0.650678
\(846\) 2.38506 0.0820002
\(847\) 0 0
\(848\) 13.2664 0.455571
\(849\) −20.9945 −0.720531
\(850\) −2.61030 −0.0895327
\(851\) −0.446201 −0.0152956
\(852\) 18.4102 0.630724
\(853\) 2.98429 0.102180 0.0510901 0.998694i \(-0.483730\pi\)
0.0510901 + 0.998694i \(0.483730\pi\)
\(854\) 0 0
\(855\) −7.58496 −0.259400
\(856\) 2.20736 0.0754461
\(857\) −29.4626 −1.00642 −0.503212 0.864163i \(-0.667848\pi\)
−0.503212 + 0.864163i \(0.667848\pi\)
\(858\) 11.3175 0.386372
\(859\) −16.6382 −0.567688 −0.283844 0.958871i \(-0.591610\pi\)
−0.283844 + 0.958871i \(0.591610\pi\)
\(860\) −0.0447589 −0.00152626
\(861\) 0 0
\(862\) −2.92418 −0.0995979
\(863\) 9.74068 0.331576 0.165788 0.986161i \(-0.446983\pi\)
0.165788 + 0.986161i \(0.446983\pi\)
\(864\) 2.97937 0.101360
\(865\) −14.8043 −0.503360
\(866\) −2.43713 −0.0828172
\(867\) −6.55145 −0.222499
\(868\) 0 0
\(869\) −4.96725 −0.168502
\(870\) 3.28124 0.111244
\(871\) 50.0773 1.69680
\(872\) −8.93448 −0.302560
\(873\) 10.3972 0.351892
\(874\) 2.30165 0.0778546
\(875\) 0 0
\(876\) −59.2017 −2.00024
\(877\) −1.10333 −0.0372567 −0.0186284 0.999826i \(-0.505930\pi\)
−0.0186284 + 0.999826i \(0.505930\pi\)
\(878\) 4.30046 0.145134
\(879\) −75.2016 −2.53649
\(880\) −19.2850 −0.650097
\(881\) −36.7920 −1.23955 −0.619777 0.784778i \(-0.712777\pi\)
−0.619777 + 0.784778i \(0.712777\pi\)
\(882\) 0 0
\(883\) 32.6949 1.10027 0.550135 0.835076i \(-0.314576\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(884\) 41.6794 1.40183
\(885\) 25.6902 0.863568
\(886\) −4.45197 −0.149567
\(887\) 39.4131 1.32336 0.661680 0.749786i \(-0.269844\pi\)
0.661680 + 0.749786i \(0.269844\pi\)
\(888\) −0.171260 −0.00574712
\(889\) 0 0
\(890\) 1.65235 0.0553868
\(891\) 52.0806 1.74477
\(892\) −41.0616 −1.37484
\(893\) 18.0415 0.603736
\(894\) −4.93331 −0.164995
\(895\) 13.7896 0.460935
\(896\) 0 0
\(897\) 54.6280 1.82398
\(898\) 1.06288 0.0354688
\(899\) 78.9125 2.63188
\(900\) 18.5474 0.618245
\(901\) −13.0833 −0.435870
\(902\) −7.30715 −0.243301
\(903\) 0 0
\(904\) −5.49691 −0.182825
\(905\) −14.8152 −0.492474
\(906\) 9.55689 0.317506
\(907\) −45.4742 −1.50995 −0.754974 0.655755i \(-0.772350\pi\)
−0.754974 + 0.655755i \(0.772350\pi\)
\(908\) 55.3919 1.83824
\(909\) −38.7782 −1.28619
\(910\) 0 0
\(911\) −13.9176 −0.461112 −0.230556 0.973059i \(-0.574054\pi\)
−0.230556 + 0.973059i \(0.574054\pi\)
\(912\) −27.7956 −0.920405
\(913\) 25.8538 0.855635
\(914\) −5.92659 −0.196034
\(915\) 25.2039 0.833216
\(916\) 26.4279 0.873204
\(917\) 0 0
\(918\) −0.954109 −0.0314903
\(919\) −0.293717 −0.00968884 −0.00484442 0.999988i \(-0.501542\pi\)
−0.00484442 + 0.999988i \(0.501542\pi\)
\(920\) 2.95852 0.0975395
\(921\) 44.0255 1.45069
\(922\) 3.85029 0.126802
\(923\) −22.6658 −0.746053
\(924\) 0 0
\(925\) 0.422132 0.0138796
\(926\) −2.92351 −0.0960726
\(927\) −13.4578 −0.442011
\(928\) 16.3611 0.537079
\(929\) 12.9353 0.424392 0.212196 0.977227i \(-0.431938\pi\)
0.212196 + 0.977227i \(0.431938\pi\)
\(930\) 4.08650 0.134001
\(931\) 0 0
\(932\) −1.65430 −0.0541884
\(933\) −5.55542 −0.181876
\(934\) 0.909599 0.0297630
\(935\) 19.0188 0.621982
\(936\) 9.26407 0.302806
\(937\) −26.8258 −0.876362 −0.438181 0.898887i \(-0.644377\pi\)
−0.438181 + 0.898887i \(0.644377\pi\)
\(938\) 0 0
\(939\) −15.2524 −0.497742
\(940\) 11.5059 0.375281
\(941\) 34.9829 1.14041 0.570205 0.821503i \(-0.306864\pi\)
0.570205 + 0.821503i \(0.306864\pi\)
\(942\) 2.12202 0.0691391
\(943\) −35.2706 −1.14857
\(944\) 41.5960 1.35384
\(945\) 0 0
\(946\) 0.0194069 0.000630972 0
\(947\) −18.4196 −0.598555 −0.299278 0.954166i \(-0.596746\pi\)
−0.299278 + 0.954166i \(0.596746\pi\)
\(948\) −4.56584 −0.148292
\(949\) 72.8862 2.36599
\(950\) −2.17750 −0.0706473
\(951\) −24.5619 −0.796473
\(952\) 0 0
\(953\) 20.5996 0.667288 0.333644 0.942699i \(-0.391722\pi\)
0.333644 + 0.942699i \(0.391722\pi\)
\(954\) −1.44282 −0.0467131
\(955\) −11.8458 −0.383319
\(956\) −34.0009 −1.09967
\(957\) 91.6667 2.96316
\(958\) −3.89937 −0.125983
\(959\) 0 0
\(960\) −17.1544 −0.553656
\(961\) 67.2787 2.17028
\(962\) 0.104612 0.00337282
\(963\) 7.55339 0.243405
\(964\) −28.2869 −0.911059
\(965\) 0.440246 0.0141720
\(966\) 0 0
\(967\) −16.8801 −0.542827 −0.271414 0.962463i \(-0.587491\pi\)
−0.271414 + 0.962463i \(0.587491\pi\)
\(968\) 9.48927 0.304997
\(969\) 27.4120 0.880601
\(970\) −0.778465 −0.0249950
\(971\) 14.0403 0.450574 0.225287 0.974292i \(-0.427668\pi\)
0.225287 + 0.974292i \(0.427668\pi\)
\(972\) 39.3076 1.26079
\(973\) 0 0
\(974\) −6.51774 −0.208842
\(975\) −51.6813 −1.65513
\(976\) 40.8086 1.30625
\(977\) 57.3649 1.83526 0.917632 0.397431i \(-0.130098\pi\)
0.917632 + 0.397431i \(0.130098\pi\)
\(978\) −2.32803 −0.0744421
\(979\) 46.1610 1.47531
\(980\) 0 0
\(981\) −30.5730 −0.976120
\(982\) −5.54804 −0.177045
\(983\) −50.5584 −1.61256 −0.806282 0.591532i \(-0.798523\pi\)
−0.806282 + 0.591532i \(0.798523\pi\)
\(984\) −13.5375 −0.431561
\(985\) 23.1741 0.738387
\(986\) −5.23945 −0.166858
\(987\) 0 0
\(988\) 34.7686 1.10614
\(989\) 0.0936745 0.00297868
\(990\) 2.09738 0.0666591
\(991\) 4.81875 0.153073 0.0765364 0.997067i \(-0.475614\pi\)
0.0765364 + 0.997067i \(0.475614\pi\)
\(992\) 20.3763 0.646949
\(993\) −28.0799 −0.891089
\(994\) 0 0
\(995\) 6.85866 0.217434
\(996\) 23.7645 0.753007
\(997\) 4.79199 0.151764 0.0758819 0.997117i \(-0.475823\pi\)
0.0758819 + 0.997117i \(0.475823\pi\)
\(998\) 6.69049 0.211784
\(999\) 0.154296 0.00488172
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3871.2.a.e.1.4 8
7.6 odd 2 553.2.a.b.1.4 8
21.20 even 2 4977.2.a.j.1.5 8
28.27 even 2 8848.2.a.s.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
553.2.a.b.1.4 8 7.6 odd 2
3871.2.a.e.1.4 8 1.1 even 1 trivial
4977.2.a.j.1.5 8 21.20 even 2
8848.2.a.s.1.8 8 28.27 even 2