Properties

Label 2-3871-1.1-c1-0-226
Degree $2$
Conductor $3871$
Sign $-1$
Analytic cond. $30.9100$
Root an. cond. $5.55968$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.174·2-s + 2.31·3-s − 1.96·4-s + 1.01·5-s − 0.405·6-s + 0.693·8-s + 2.37·9-s − 0.177·10-s − 4.96·11-s − 4.56·12-s + 5.62·13-s + 2.35·15-s + 3.81·16-s − 3.76·17-s − 0.415·18-s − 3.14·19-s − 2.00·20-s + 0.868·22-s + 4.19·23-s + 1.60·24-s − 3.96·25-s − 0.982·26-s − 1.44·27-s − 7.96·29-s − 0.412·30-s − 9.91·31-s − 2.05·32-s + ⋯
L(s)  = 1  − 0.123·2-s + 1.33·3-s − 0.984·4-s + 0.454·5-s − 0.165·6-s + 0.245·8-s + 0.791·9-s − 0.0562·10-s − 1.49·11-s − 1.31·12-s + 1.55·13-s + 0.608·15-s + 0.954·16-s − 0.913·17-s − 0.0978·18-s − 0.720·19-s − 0.447·20-s + 0.185·22-s + 0.874·23-s + 0.328·24-s − 0.793·25-s − 0.192·26-s − 0.278·27-s − 1.47·29-s − 0.0752·30-s − 1.78·31-s − 0.363·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3871\)    =    \(7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(30.9100\)
Root analytic conductor: \(5.55968\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3871,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
79 \( 1 - T \)
good2 \( 1 + 0.174T + 2T^{2} \)
3 \( 1 - 2.31T + 3T^{2} \)
5 \( 1 - 1.01T + 5T^{2} \)
11 \( 1 + 4.96T + 11T^{2} \)
13 \( 1 - 5.62T + 13T^{2} \)
17 \( 1 + 3.76T + 17T^{2} \)
19 \( 1 + 3.14T + 19T^{2} \)
23 \( 1 - 4.19T + 23T^{2} \)
29 \( 1 + 7.96T + 29T^{2} \)
31 \( 1 + 9.91T + 31T^{2} \)
37 \( 1 + 0.106T + 37T^{2} \)
41 \( 1 + 8.41T + 41T^{2} \)
43 \( 1 - 0.0223T + 43T^{2} \)
47 \( 1 + 5.74T + 47T^{2} \)
53 \( 1 - 3.47T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 - 10.6T + 61T^{2} \)
67 \( 1 - 8.90T + 67T^{2} \)
71 \( 1 + 4.03T + 71T^{2} \)
73 \( 1 - 12.9T + 73T^{2} \)
83 \( 1 + 5.20T + 83T^{2} \)
89 \( 1 + 9.29T + 89T^{2} \)
97 \( 1 - 4.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.452174230152540825341999068933, −7.70078370458092110465717826951, −6.81473549529262749572727631478, −5.63555868091334088192011524789, −5.19622751601370339061620264951, −3.91376451340783790419875958698, −3.59784599214468311319449063491, −2.45167386927747753276206620739, −1.67925901702707451122548160848, 0, 1.67925901702707451122548160848, 2.45167386927747753276206620739, 3.59784599214468311319449063491, 3.91376451340783790419875958698, 5.19622751601370339061620264951, 5.63555868091334088192011524789, 6.81473549529262749572727631478, 7.70078370458092110465717826951, 8.452174230152540825341999068933

Graph of the $Z$-function along the critical line