Properties

Label 385.1.q.c
Level $385$
Weight $1$
Character orbit 385.q
Analytic conductor $0.192$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [385,1,Mod(109,385)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("385.109"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(385, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 385 = 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 385.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.192140029864\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.79893275.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{5} - \zeta_{12}^{3}) q^{2} + ( - \zeta_{12}^{4} - \zeta_{12}^{2} - 1) q^{4} - \zeta_{12}^{4} q^{5} + \zeta_{12}^{3} q^{7} + (\zeta_{12}^{5} - \zeta_{12}) q^{8} + \zeta_{12}^{4} q^{9} + \cdots - q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 2 q^{5} - 2 q^{9} + 2 q^{11} + 6 q^{14} - 2 q^{16} - 8 q^{20} - 2 q^{25} - 6 q^{26} - 2 q^{31} + 8 q^{36} + 4 q^{44} + 2 q^{45} - 4 q^{49} + 4 q^{55} + 2 q^{59} - 4 q^{64} + 6 q^{70} - 4 q^{71}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/385\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(232\) \(276\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{12}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 1.50000i 0 −1.00000 + 1.73205i 0.500000 + 0.866025i 0 1.00000i 1.73205 −0.500000 0.866025i 0.866025 1.50000i
109.2 0.866025 + 1.50000i 0 −1.00000 + 1.73205i 0.500000 + 0.866025i 0 1.00000i −1.73205 −0.500000 0.866025i −0.866025 + 1.50000i
219.1 −0.866025 + 1.50000i 0 −1.00000 1.73205i 0.500000 0.866025i 0 1.00000i 1.73205 −0.500000 + 0.866025i 0.866025 + 1.50000i
219.2 0.866025 1.50000i 0 −1.00000 1.73205i 0.500000 0.866025i 0 1.00000i −1.73205 −0.500000 + 0.866025i −0.866025 1.50000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
5.b even 2 1 inner
7.c even 3 1 inner
11.b odd 2 1 inner
35.j even 6 1 inner
77.h odd 6 1 inner
385.q odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 385.1.q.c 4
3.b odd 2 1 3465.1.cd.c 4
5.b even 2 1 inner 385.1.q.c 4
5.c odd 4 1 1925.1.w.a 2
5.c odd 4 1 1925.1.w.b 2
7.b odd 2 1 2695.1.q.e 4
7.c even 3 1 inner 385.1.q.c 4
7.c even 3 1 2695.1.g.g 2
7.d odd 6 1 2695.1.g.h 2
7.d odd 6 1 2695.1.q.e 4
11.b odd 2 1 inner 385.1.q.c 4
15.d odd 2 1 3465.1.cd.c 4
21.h odd 6 1 3465.1.cd.c 4
33.d even 2 1 3465.1.cd.c 4
35.c odd 2 1 2695.1.q.e 4
35.i odd 6 1 2695.1.g.h 2
35.i odd 6 1 2695.1.q.e 4
35.j even 6 1 inner 385.1.q.c 4
35.j even 6 1 2695.1.g.g 2
35.l odd 12 1 1925.1.w.a 2
35.l odd 12 1 1925.1.w.b 2
55.d odd 2 1 CM 385.1.q.c 4
55.e even 4 1 1925.1.w.a 2
55.e even 4 1 1925.1.w.b 2
77.b even 2 1 2695.1.q.e 4
77.h odd 6 1 inner 385.1.q.c 4
77.h odd 6 1 2695.1.g.g 2
77.i even 6 1 2695.1.g.h 2
77.i even 6 1 2695.1.q.e 4
105.o odd 6 1 3465.1.cd.c 4
165.d even 2 1 3465.1.cd.c 4
231.l even 6 1 3465.1.cd.c 4
385.h even 2 1 2695.1.q.e 4
385.o even 6 1 2695.1.g.h 2
385.o even 6 1 2695.1.q.e 4
385.q odd 6 1 inner 385.1.q.c 4
385.q odd 6 1 2695.1.g.g 2
385.bc even 12 1 1925.1.w.a 2
385.bc even 12 1 1925.1.w.b 2
1155.bo even 6 1 3465.1.cd.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
385.1.q.c 4 1.a even 1 1 trivial
385.1.q.c 4 5.b even 2 1 inner
385.1.q.c 4 7.c even 3 1 inner
385.1.q.c 4 11.b odd 2 1 inner
385.1.q.c 4 35.j even 6 1 inner
385.1.q.c 4 55.d odd 2 1 CM
385.1.q.c 4 77.h odd 6 1 inner
385.1.q.c 4 385.q odd 6 1 inner
1925.1.w.a 2 5.c odd 4 1
1925.1.w.a 2 35.l odd 12 1
1925.1.w.a 2 55.e even 4 1
1925.1.w.a 2 385.bc even 12 1
1925.1.w.b 2 5.c odd 4 1
1925.1.w.b 2 35.l odd 12 1
1925.1.w.b 2 55.e even 4 1
1925.1.w.b 2 385.bc even 12 1
2695.1.g.g 2 7.c even 3 1
2695.1.g.g 2 35.j even 6 1
2695.1.g.g 2 77.h odd 6 1
2695.1.g.g 2 385.q odd 6 1
2695.1.g.h 2 7.d odd 6 1
2695.1.g.h 2 35.i odd 6 1
2695.1.g.h 2 77.i even 6 1
2695.1.g.h 2 385.o even 6 1
2695.1.q.e 4 7.b odd 2 1
2695.1.q.e 4 7.d odd 6 1
2695.1.q.e 4 35.c odd 2 1
2695.1.q.e 4 35.i odd 6 1
2695.1.q.e 4 77.b even 2 1
2695.1.q.e 4 77.i even 6 1
2695.1.q.e 4 385.h even 2 1
2695.1.q.e 4 385.o even 6 1
3465.1.cd.c 4 3.b odd 2 1
3465.1.cd.c 4 15.d odd 2 1
3465.1.cd.c 4 21.h odd 6 1
3465.1.cd.c 4 33.d even 2 1
3465.1.cd.c 4 105.o odd 6 1
3465.1.cd.c 4 165.d even 2 1
3465.1.cd.c 4 231.l even 6 1
3465.1.cd.c 4 1155.bo even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 3T_{2}^{2} + 9 \) acting on \(S_{1}^{\mathrm{new}}(385, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T + 1)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less