Properties

Label 1925.1.w.b
Level $1925$
Weight $1$
Character orbit 1925.w
Analytic conductor $0.961$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,1,Mod(1451,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.1451"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1925.w (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.960700149319\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 385)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.79893275.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{6}^{2} + 1) q^{2} + ( - \zeta_{6}^{2} - \zeta_{6} + 1) q^{4} - q^{7} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{8} + \zeta_{6} q^{9} - \zeta_{6}^{2} q^{11} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{13} + \cdots + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 2 q^{4} - 2 q^{7} + q^{9} + q^{11} - 3 q^{14} - q^{16} + 3 q^{18} - 3 q^{26} - 2 q^{28} - q^{31} + 4 q^{36} - 2 q^{44} + 2 q^{49} - 6 q^{52} - q^{59} - q^{63} + 2 q^{64} - 2 q^{71}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1925\mathbb{Z}\right)^\times\).

\(n\) \(276\) \(1002\) \(1751\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1451.1
0.500000 0.866025i
0.500000 + 0.866025i
1.50000 + 0.866025i 0 1.00000 + 1.73205i 0 0 −1.00000 1.73205i 0.500000 0.866025i 0
1726.1 1.50000 0.866025i 0 1.00000 1.73205i 0 0 −1.00000 1.73205i 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
35.j even 6 1 inner
77.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1925.1.w.b 2
5.b even 2 1 1925.1.w.a 2
5.c odd 4 2 385.1.q.c 4
7.c even 3 1 1925.1.w.a 2
11.b odd 2 1 1925.1.w.a 2
15.e even 4 2 3465.1.cd.c 4
35.f even 4 2 2695.1.q.e 4
35.j even 6 1 inner 1925.1.w.b 2
35.k even 12 2 2695.1.g.h 2
35.k even 12 2 2695.1.q.e 4
35.l odd 12 2 385.1.q.c 4
35.l odd 12 2 2695.1.g.g 2
55.d odd 2 1 CM 1925.1.w.b 2
55.e even 4 2 385.1.q.c 4
77.h odd 6 1 inner 1925.1.w.b 2
105.x even 12 2 3465.1.cd.c 4
165.l odd 4 2 3465.1.cd.c 4
385.l odd 4 2 2695.1.q.e 4
385.q odd 6 1 1925.1.w.a 2
385.bc even 12 2 385.1.q.c 4
385.bc even 12 2 2695.1.g.g 2
385.bf odd 12 2 2695.1.g.h 2
385.bf odd 12 2 2695.1.q.e 4
1155.cg odd 12 2 3465.1.cd.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
385.1.q.c 4 5.c odd 4 2
385.1.q.c 4 35.l odd 12 2
385.1.q.c 4 55.e even 4 2
385.1.q.c 4 385.bc even 12 2
1925.1.w.a 2 5.b even 2 1
1925.1.w.a 2 7.c even 3 1
1925.1.w.a 2 11.b odd 2 1
1925.1.w.a 2 385.q odd 6 1
1925.1.w.b 2 1.a even 1 1 trivial
1925.1.w.b 2 35.j even 6 1 inner
1925.1.w.b 2 55.d odd 2 1 CM
1925.1.w.b 2 77.h odd 6 1 inner
2695.1.g.g 2 35.l odd 12 2
2695.1.g.g 2 385.bc even 12 2
2695.1.g.h 2 35.k even 12 2
2695.1.g.h 2 385.bf odd 12 2
2695.1.q.e 4 35.f even 4 2
2695.1.q.e 4 35.k even 12 2
2695.1.q.e 4 385.l odd 4 2
2695.1.q.e 4 385.bf odd 12 2
3465.1.cd.c 4 15.e even 4 2
3465.1.cd.c 4 105.x even 12 2
3465.1.cd.c 4 165.l odd 4 2
3465.1.cd.c 4 1155.cg odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 3T_{2} + 3 \) acting on \(S_{1}^{\mathrm{new}}(1925, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( T^{2} + 3 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 3 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 3 \) Copy content Toggle raw display
$89$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less