# Properties

 Label 3840.2.k.r Level $3840$ Weight $2$ Character orbit 3840.k Analytic conductor $30.663$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3840,2,Mod(1921,3840)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3840, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3840.1921");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3840 = 2^{8} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3840.k (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N # Warning: the index may be different

gp: f = lf \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$30.6625543762$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 15) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{3} - i q^{5} - q^{9} +O(q^{10})$$ q + i * q^3 - i * q^5 - q^9 $$q + i q^{3} - i q^{5} - q^{9} - 4 i q^{11} - 2 i q^{13} + q^{15} + 2 q^{17} - 4 i q^{19} - q^{25} - i q^{27} - 2 i q^{29} + 4 q^{33} + 10 i q^{37} + 2 q^{39} - 10 q^{41} + 4 i q^{43} + i q^{45} - 8 q^{47} - 7 q^{49} + 2 i q^{51} + 10 i q^{53} - 4 q^{55} + 4 q^{57} - 4 i q^{59} - 2 i q^{61} - 2 q^{65} - 12 i q^{67} - 8 q^{71} - 10 q^{73} - i q^{75} + q^{81} - 12 i q^{83} - 2 i q^{85} + 2 q^{87} + 6 q^{89} - 4 q^{95} + 2 q^{97} + 4 i q^{99} +O(q^{100})$$ q + i * q^3 - i * q^5 - q^9 - 4*i * q^11 - 2*i * q^13 + q^15 + 2 * q^17 - 4*i * q^19 - q^25 - i * q^27 - 2*i * q^29 + 4 * q^33 + 10*i * q^37 + 2 * q^39 - 10 * q^41 + 4*i * q^43 + i * q^45 - 8 * q^47 - 7 * q^49 + 2*i * q^51 + 10*i * q^53 - 4 * q^55 + 4 * q^57 - 4*i * q^59 - 2*i * q^61 - 2 * q^65 - 12*i * q^67 - 8 * q^71 - 10 * q^73 - i * q^75 + q^81 - 12*i * q^83 - 2*i * q^85 + 2 * q^87 + 6 * q^89 - 4 * q^95 + 2 * q^97 + 4*i * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^9 $$2 q - 2 q^{9} + 2 q^{15} + 4 q^{17} - 2 q^{25} + 8 q^{33} + 4 q^{39} - 20 q^{41} - 16 q^{47} - 14 q^{49} - 8 q^{55} + 8 q^{57} - 4 q^{65} - 16 q^{71} - 20 q^{73} + 2 q^{81} + 4 q^{87} + 12 q^{89} - 8 q^{95} + 4 q^{97}+O(q^{100})$$ 2 * q - 2 * q^9 + 2 * q^15 + 4 * q^17 - 2 * q^25 + 8 * q^33 + 4 * q^39 - 20 * q^41 - 16 * q^47 - 14 * q^49 - 8 * q^55 + 8 * q^57 - 4 * q^65 - 16 * q^71 - 20 * q^73 + 2 * q^81 + 4 * q^87 + 12 * q^89 - 8 * q^95 + 4 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times$$.

 $$n$$ $$511$$ $$1537$$ $$2561$$ $$2821$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1921.1
 − 1.00000i 1.00000i
0 1.00000i 0 1.00000i 0 0 0 −1.00000 0
1921.2 0 1.00000i 0 1.00000i 0 0 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3840.2.k.r 2
4.b odd 2 1 3840.2.k.m 2
8.b even 2 1 inner 3840.2.k.r 2
8.d odd 2 1 3840.2.k.m 2
16.e even 4 1 240.2.a.d 1
16.e even 4 1 960.2.a.a 1
16.f odd 4 1 15.2.a.a 1
16.f odd 4 1 960.2.a.l 1
48.i odd 4 1 720.2.a.c 1
48.i odd 4 1 2880.2.a.bc 1
48.k even 4 1 45.2.a.a 1
48.k even 4 1 2880.2.a.y 1
80.i odd 4 1 1200.2.f.h 2
80.i odd 4 1 4800.2.f.c 2
80.j even 4 1 75.2.b.b 2
80.j even 4 1 4800.2.f.bf 2
80.k odd 4 1 75.2.a.b 1
80.k odd 4 1 4800.2.a.t 1
80.q even 4 1 1200.2.a.e 1
80.q even 4 1 4800.2.a.bz 1
80.s even 4 1 75.2.b.b 2
80.s even 4 1 4800.2.f.bf 2
80.t odd 4 1 1200.2.f.h 2
80.t odd 4 1 4800.2.f.c 2
112.j even 4 1 735.2.a.c 1
112.u odd 12 2 735.2.i.e 2
112.v even 12 2 735.2.i.d 2
144.u even 12 2 405.2.e.c 2
144.v odd 12 2 405.2.e.f 2
176.i even 4 1 1815.2.a.d 1
208.o odd 4 1 2535.2.a.j 1
240.t even 4 1 225.2.a.b 1
240.z odd 4 1 225.2.b.b 2
240.bb even 4 1 3600.2.f.e 2
240.bd odd 4 1 225.2.b.b 2
240.bf even 4 1 3600.2.f.e 2
240.bm odd 4 1 3600.2.a.u 1
272.k odd 4 1 4335.2.a.c 1
304.m even 4 1 5415.2.a.j 1
336.v odd 4 1 2205.2.a.i 1
368.i even 4 1 7935.2.a.d 1
528.s odd 4 1 5445.2.a.c 1
560.be even 4 1 3675.2.a.j 1
624.v even 4 1 7605.2.a.g 1
880.bi even 4 1 9075.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 16.f odd 4 1
45.2.a.a 1 48.k even 4 1
75.2.a.b 1 80.k odd 4 1
75.2.b.b 2 80.j even 4 1
75.2.b.b 2 80.s even 4 1
225.2.a.b 1 240.t even 4 1
225.2.b.b 2 240.z odd 4 1
225.2.b.b 2 240.bd odd 4 1
240.2.a.d 1 16.e even 4 1
405.2.e.c 2 144.u even 12 2
405.2.e.f 2 144.v odd 12 2
720.2.a.c 1 48.i odd 4 1
735.2.a.c 1 112.j even 4 1
735.2.i.d 2 112.v even 12 2
735.2.i.e 2 112.u odd 12 2
960.2.a.a 1 16.e even 4 1
960.2.a.l 1 16.f odd 4 1
1200.2.a.e 1 80.q even 4 1
1200.2.f.h 2 80.i odd 4 1
1200.2.f.h 2 80.t odd 4 1
1815.2.a.d 1 176.i even 4 1
2205.2.a.i 1 336.v odd 4 1
2535.2.a.j 1 208.o odd 4 1
2880.2.a.y 1 48.k even 4 1
2880.2.a.bc 1 48.i odd 4 1
3600.2.a.u 1 240.bm odd 4 1
3600.2.f.e 2 240.bb even 4 1
3600.2.f.e 2 240.bf even 4 1
3675.2.a.j 1 560.be even 4 1
3840.2.k.m 2 4.b odd 2 1
3840.2.k.m 2 8.d odd 2 1
3840.2.k.r 2 1.a even 1 1 trivial
3840.2.k.r 2 8.b even 2 1 inner
4335.2.a.c 1 272.k odd 4 1
4800.2.a.t 1 80.k odd 4 1
4800.2.a.bz 1 80.q even 4 1
4800.2.f.c 2 80.i odd 4 1
4800.2.f.c 2 80.t odd 4 1
4800.2.f.bf 2 80.j even 4 1
4800.2.f.bf 2 80.s even 4 1
5415.2.a.j 1 304.m even 4 1
5445.2.a.c 1 528.s odd 4 1
7605.2.a.g 1 624.v even 4 1
7935.2.a.d 1 368.i even 4 1
9075.2.a.g 1 880.bi even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3840, [\chi])$$:

 $$T_{7}$$ T7 $$T_{11}^{2} + 16$$ T11^2 + 16 $$T_{13}^{2} + 4$$ T13^2 + 4 $$T_{17} - 2$$ T17 - 2 $$T_{23}$$ T23 $$T_{31}$$ T31 $$T_{47} + 8$$ T47 + 8

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2} + 1$$
$7$ $$T^{2}$$
$11$ $$T^{2} + 16$$
$13$ $$T^{2} + 4$$
$17$ $$(T - 2)^{2}$$
$19$ $$T^{2} + 16$$
$23$ $$T^{2}$$
$29$ $$T^{2} + 4$$
$31$ $$T^{2}$$
$37$ $$T^{2} + 100$$
$41$ $$(T + 10)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$(T + 8)^{2}$$
$53$ $$T^{2} + 100$$
$59$ $$T^{2} + 16$$
$61$ $$T^{2} + 4$$
$67$ $$T^{2} + 144$$
$71$ $$(T + 8)^{2}$$
$73$ $$(T + 10)^{2}$$
$79$ $$T^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$(T - 6)^{2}$$
$97$ $$(T - 2)^{2}$$