Properties

Label 384.4.k.b.95.22
Level $384$
Weight $4$
Character 384.95
Analytic conductor $22.657$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [384,4,Mod(95,384)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("384.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(384, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.6567334422\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 95.22
Character \(\chi\) \(=\) 384.95
Dual form 384.4.k.b.287.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.19561 - 0.0749974i) q^{3} +(-5.37662 - 5.37662i) q^{5} +14.8575 q^{7} +(26.9888 - 0.779314i) q^{9} +(30.0526 - 30.0526i) q^{11} +(-61.5437 - 61.5437i) q^{13} +(-28.3380 - 27.5316i) q^{15} +48.8426i q^{17} +(-7.45581 + 7.45581i) q^{19} +(77.1939 - 1.11427i) q^{21} +43.0756i q^{23} -67.1840i q^{25} +(140.165 - 6.07310i) q^{27} +(-32.9665 + 32.9665i) q^{29} -173.357i q^{31} +(153.888 - 158.396i) q^{33} +(-79.8832 - 79.8832i) q^{35} +(177.539 - 177.539i) q^{37} +(-324.373 - 315.141i) q^{39} +454.458 q^{41} +(-239.150 - 239.150i) q^{43} +(-149.298 - 140.918i) q^{45} -30.4238 q^{47} -122.254 q^{49} +(3.66306 + 253.767i) q^{51} +(235.743 + 235.743i) q^{53} -323.163 q^{55} +(-38.1783 + 39.2967i) q^{57} +(260.222 - 260.222i) q^{59} +(388.869 + 388.869i) q^{61} +(400.986 - 11.5787i) q^{63} +661.793i q^{65} +(-334.013 + 334.013i) q^{67} +(3.23055 + 223.804i) q^{69} -522.443i q^{71} -689.751i q^{73} +(-5.03862 - 349.062i) q^{75} +(446.508 - 446.508i) q^{77} +692.930i q^{79} +(727.785 - 42.0654i) q^{81} +(-677.176 - 677.176i) q^{83} +(262.608 - 262.608i) q^{85} +(-168.809 + 173.754i) q^{87} -261.949 q^{89} +(-914.386 - 914.386i) q^{91} +(-13.0013 - 900.694i) q^{93} +80.1741 q^{95} -641.755 q^{97} +(787.663 - 834.504i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} - 8 q^{7} + 4 q^{13} - 20 q^{19} + 56 q^{21} + 134 q^{27} - 4 q^{33} + 4 q^{37} + 596 q^{39} + 436 q^{43} + 252 q^{45} + 972 q^{49} + 648 q^{51} + 280 q^{55} + 916 q^{61} + 1636 q^{67} - 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19561 0.0749974i 0.999896 0.0144332i
\(4\) 0 0
\(5\) −5.37662 5.37662i −0.480899 0.480899i 0.424520 0.905419i \(-0.360443\pi\)
−0.905419 + 0.424520i \(0.860443\pi\)
\(6\) 0 0
\(7\) 14.8575 0.802231 0.401115 0.916028i \(-0.368623\pi\)
0.401115 + 0.916028i \(0.368623\pi\)
\(8\) 0 0
\(9\) 26.9888 0.779314i 0.999583 0.0288635i
\(10\) 0 0
\(11\) 30.0526 30.0526i 0.823746 0.823746i −0.162897 0.986643i \(-0.552084\pi\)
0.986643 + 0.162897i \(0.0520837\pi\)
\(12\) 0 0
\(13\) −61.5437 61.5437i −1.31301 1.31301i −0.919185 0.393825i \(-0.871151\pi\)
−0.393825 0.919185i \(-0.628849\pi\)
\(14\) 0 0
\(15\) −28.3380 27.5316i −0.487790 0.473908i
\(16\) 0 0
\(17\) 48.8426i 0.696827i 0.937341 + 0.348414i \(0.113280\pi\)
−0.937341 + 0.348414i \(0.886720\pi\)
\(18\) 0 0
\(19\) −7.45581 + 7.45581i −0.0900253 + 0.0900253i −0.750685 0.660660i \(-0.770277\pi\)
0.660660 + 0.750685i \(0.270277\pi\)
\(20\) 0 0
\(21\) 77.1939 1.11427i 0.802147 0.0115788i
\(22\) 0 0
\(23\) 43.0756i 0.390516i 0.980752 + 0.195258i \(0.0625545\pi\)
−0.980752 + 0.195258i \(0.937446\pi\)
\(24\) 0 0
\(25\) 67.1840i 0.537472i
\(26\) 0 0
\(27\) 140.165 6.07310i 0.999063 0.0432877i
\(28\) 0 0
\(29\) −32.9665 + 32.9665i −0.211094 + 0.211094i −0.804732 0.593638i \(-0.797691\pi\)
0.593638 + 0.804732i \(0.297691\pi\)
\(30\) 0 0
\(31\) 173.357i 1.00438i −0.864757 0.502190i \(-0.832528\pi\)
0.864757 0.502190i \(-0.167472\pi\)
\(32\) 0 0
\(33\) 153.888 158.396i 0.811771 0.835550i
\(34\) 0 0
\(35\) −79.8832 79.8832i −0.385792 0.385792i
\(36\) 0 0
\(37\) 177.539 177.539i 0.788842 0.788842i −0.192462 0.981304i \(-0.561647\pi\)
0.981304 + 0.192462i \(0.0616472\pi\)
\(38\) 0 0
\(39\) −324.373 315.141i −1.33182 1.29392i
\(40\) 0 0
\(41\) 454.458 1.73108 0.865542 0.500837i \(-0.166974\pi\)
0.865542 + 0.500837i \(0.166974\pi\)
\(42\) 0 0
\(43\) −239.150 239.150i −0.848139 0.848139i 0.141762 0.989901i \(-0.454723\pi\)
−0.989901 + 0.141762i \(0.954723\pi\)
\(44\) 0 0
\(45\) −149.298 140.918i −0.494579 0.466818i
\(46\) 0 0
\(47\) −30.4238 −0.0944205 −0.0472102 0.998885i \(-0.515033\pi\)
−0.0472102 + 0.998885i \(0.515033\pi\)
\(48\) 0 0
\(49\) −122.254 −0.356426
\(50\) 0 0
\(51\) 3.66306 + 253.767i 0.0100575 + 0.696755i
\(52\) 0 0
\(53\) 235.743 + 235.743i 0.610976 + 0.610976i 0.943200 0.332224i \(-0.107799\pi\)
−0.332224 + 0.943200i \(0.607799\pi\)
\(54\) 0 0
\(55\) −323.163 −0.792278
\(56\) 0 0
\(57\) −38.1783 + 39.2967i −0.0887166 + 0.0913153i
\(58\) 0 0
\(59\) 260.222 260.222i 0.574204 0.574204i −0.359096 0.933300i \(-0.616915\pi\)
0.933300 + 0.359096i \(0.116915\pi\)
\(60\) 0 0
\(61\) 388.869 + 388.869i 0.816222 + 0.816222i 0.985558 0.169336i \(-0.0541623\pi\)
−0.169336 + 0.985558i \(0.554162\pi\)
\(62\) 0 0
\(63\) 400.986 11.5787i 0.801896 0.0231552i
\(64\) 0 0
\(65\) 661.793i 1.26285i
\(66\) 0 0
\(67\) −334.013 + 334.013i −0.609047 + 0.609047i −0.942697 0.333650i \(-0.891720\pi\)
0.333650 + 0.942697i \(0.391720\pi\)
\(68\) 0 0
\(69\) 3.23055 + 223.804i 0.00563642 + 0.390476i
\(70\) 0 0
\(71\) 522.443i 0.873275i −0.899637 0.436638i \(-0.856169\pi\)
0.899637 0.436638i \(-0.143831\pi\)
\(72\) 0 0
\(73\) 689.751i 1.10588i −0.833221 0.552940i \(-0.813506\pi\)
0.833221 0.552940i \(-0.186494\pi\)
\(74\) 0 0
\(75\) −5.03862 349.062i −0.00775747 0.537416i
\(76\) 0 0
\(77\) 446.508 446.508i 0.660835 0.660835i
\(78\) 0 0
\(79\) 692.930i 0.986844i 0.869790 + 0.493422i \(0.164254\pi\)
−0.869790 + 0.493422i \(0.835746\pi\)
\(80\) 0 0
\(81\) 727.785 42.0654i 0.998334 0.0577029i
\(82\) 0 0
\(83\) −677.176 677.176i −0.895539 0.895539i 0.0994989 0.995038i \(-0.468276\pi\)
−0.995038 + 0.0994989i \(0.968276\pi\)
\(84\) 0 0
\(85\) 262.608 262.608i 0.335104 0.335104i
\(86\) 0 0
\(87\) −168.809 + 173.754i −0.208025 + 0.214119i
\(88\) 0 0
\(89\) −261.949 −0.311983 −0.155992 0.987758i \(-0.549857\pi\)
−0.155992 + 0.987758i \(0.549857\pi\)
\(90\) 0 0
\(91\) −914.386 914.386i −1.05334 1.05334i
\(92\) 0 0
\(93\) −13.0013 900.694i −0.0144965 1.00428i
\(94\) 0 0
\(95\) 80.1741 0.0865862
\(96\) 0 0
\(97\) −641.755 −0.671757 −0.335878 0.941905i \(-0.609033\pi\)
−0.335878 + 0.941905i \(0.609033\pi\)
\(98\) 0 0
\(99\) 787.663 834.504i 0.799627 0.847179i
\(100\) 0 0
\(101\) 962.520 + 962.520i 0.948260 + 0.948260i 0.998726 0.0504657i \(-0.0160705\pi\)
−0.0504657 + 0.998726i \(0.516071\pi\)
\(102\) 0 0
\(103\) 1478.65 1.41452 0.707262 0.706951i \(-0.249930\pi\)
0.707262 + 0.706951i \(0.249930\pi\)
\(104\) 0 0
\(105\) −421.033 409.051i −0.391320 0.380184i
\(106\) 0 0
\(107\) −1484.78 + 1484.78i −1.34149 + 1.34149i −0.446908 + 0.894580i \(0.647475\pi\)
−0.894580 + 0.446908i \(0.852525\pi\)
\(108\) 0 0
\(109\) 103.806 + 103.806i 0.0912181 + 0.0912181i 0.751243 0.660025i \(-0.229454\pi\)
−0.660025 + 0.751243i \(0.729454\pi\)
\(110\) 0 0
\(111\) 909.107 935.736i 0.777375 0.800146i
\(112\) 0 0
\(113\) 54.5390i 0.0454035i 0.999742 + 0.0227017i \(0.00722681\pi\)
−0.999742 + 0.0227017i \(0.992773\pi\)
\(114\) 0 0
\(115\) 231.601 231.601i 0.187799 0.187799i
\(116\) 0 0
\(117\) −1708.95 1613.02i −1.35036 1.27457i
\(118\) 0 0
\(119\) 725.680i 0.559016i
\(120\) 0 0
\(121\) 475.322i 0.357116i
\(122\) 0 0
\(123\) 2361.19 34.0832i 1.73090 0.0249852i
\(124\) 0 0
\(125\) −1033.30 + 1033.30i −0.739369 + 0.739369i
\(126\) 0 0
\(127\) 31.6817i 0.0221362i 0.999939 + 0.0110681i \(0.00352315\pi\)
−0.999939 + 0.0110681i \(0.996477\pi\)
\(128\) 0 0
\(129\) −1260.46 1224.59i −0.860292 0.835810i
\(130\) 0 0
\(131\) 1687.23 + 1687.23i 1.12530 + 1.12530i 0.990932 + 0.134364i \(0.0428990\pi\)
0.134364 + 0.990932i \(0.457101\pi\)
\(132\) 0 0
\(133\) −110.775 + 110.775i −0.0722211 + 0.0722211i
\(134\) 0 0
\(135\) −786.264 720.958i −0.501265 0.459631i
\(136\) 0 0
\(137\) 453.548 0.282841 0.141420 0.989950i \(-0.454833\pi\)
0.141420 + 0.989950i \(0.454833\pi\)
\(138\) 0 0
\(139\) 1392.05 + 1392.05i 0.849439 + 0.849439i 0.990063 0.140624i \(-0.0449110\pi\)
−0.140624 + 0.990063i \(0.544911\pi\)
\(140\) 0 0
\(141\) −158.070 + 2.28170i −0.0944106 + 0.00136279i
\(142\) 0 0
\(143\) −3699.10 −2.16318
\(144\) 0 0
\(145\) 354.497 0.203030
\(146\) 0 0
\(147\) −635.185 + 9.16874i −0.356389 + 0.00514438i
\(148\) 0 0
\(149\) 118.909 + 118.909i 0.0653785 + 0.0653785i 0.739040 0.673662i \(-0.235279\pi\)
−0.673662 + 0.739040i \(0.735279\pi\)
\(150\) 0 0
\(151\) 289.153 0.155834 0.0779170 0.996960i \(-0.475173\pi\)
0.0779170 + 0.996960i \(0.475173\pi\)
\(152\) 0 0
\(153\) 38.0637 + 1318.20i 0.0201129 + 0.696537i
\(154\) 0 0
\(155\) −932.072 + 932.072i −0.483005 + 0.483005i
\(156\) 0 0
\(157\) 683.842 + 683.842i 0.347621 + 0.347621i 0.859223 0.511602i \(-0.170948\pi\)
−0.511602 + 0.859223i \(0.670948\pi\)
\(158\) 0 0
\(159\) 1242.51 + 1207.15i 0.619731 + 0.602094i
\(160\) 0 0
\(161\) 639.996i 0.313284i
\(162\) 0 0
\(163\) −35.4216 + 35.4216i −0.0170210 + 0.0170210i −0.715566 0.698545i \(-0.753831\pi\)
0.698545 + 0.715566i \(0.253831\pi\)
\(164\) 0 0
\(165\) −1679.03 + 24.2364i −0.792195 + 0.0114351i
\(166\) 0 0
\(167\) 2091.54i 0.969150i 0.874750 + 0.484575i \(0.161026\pi\)
−0.874750 + 0.484575i \(0.838974\pi\)
\(168\) 0 0
\(169\) 5378.24i 2.44799i
\(170\) 0 0
\(171\) −195.413 + 207.034i −0.0873894 + 0.0925863i
\(172\) 0 0
\(173\) −2566.01 + 2566.01i −1.12769 + 1.12769i −0.137137 + 0.990552i \(0.543790\pi\)
−0.990552 + 0.137137i \(0.956210\pi\)
\(174\) 0 0
\(175\) 998.188i 0.431177i
\(176\) 0 0
\(177\) 1332.50 1371.53i 0.565857 0.582432i
\(178\) 0 0
\(179\) −1252.13 1252.13i −0.522841 0.522841i 0.395587 0.918429i \(-0.370541\pi\)
−0.918429 + 0.395587i \(0.870541\pi\)
\(180\) 0 0
\(181\) −1732.51 + 1732.51i −0.711474 + 0.711474i −0.966844 0.255370i \(-0.917803\pi\)
0.255370 + 0.966844i \(0.417803\pi\)
\(182\) 0 0
\(183\) 2049.58 + 1991.25i 0.827918 + 0.804357i
\(184\) 0 0
\(185\) −1909.11 −0.758707
\(186\) 0 0
\(187\) 1467.85 + 1467.85i 0.574009 + 0.574009i
\(188\) 0 0
\(189\) 2082.50 90.2312i 0.801479 0.0347267i
\(190\) 0 0
\(191\) −188.463 −0.0713965 −0.0356983 0.999363i \(-0.511366\pi\)
−0.0356983 + 0.999363i \(0.511366\pi\)
\(192\) 0 0
\(193\) −84.5839 −0.0315465 −0.0157733 0.999876i \(-0.505021\pi\)
−0.0157733 + 0.999876i \(0.505021\pi\)
\(194\) 0 0
\(195\) 49.6327 + 3438.42i 0.0182270 + 1.26272i
\(196\) 0 0
\(197\) −780.741 780.741i −0.282363 0.282363i 0.551688 0.834051i \(-0.313984\pi\)
−0.834051 + 0.551688i \(0.813984\pi\)
\(198\) 0 0
\(199\) −1640.08 −0.584233 −0.292116 0.956383i \(-0.594360\pi\)
−0.292116 + 0.956383i \(0.594360\pi\)
\(200\) 0 0
\(201\) −1710.35 + 1760.45i −0.600193 + 0.617774i
\(202\) 0 0
\(203\) −489.801 + 489.801i −0.169346 + 0.169346i
\(204\) 0 0
\(205\) −2443.45 2443.45i −0.832477 0.832477i
\(206\) 0 0
\(207\) 33.5694 + 1162.56i 0.0112717 + 0.390354i
\(208\) 0 0
\(209\) 448.134i 0.148316i
\(210\) 0 0
\(211\) 436.919 436.919i 0.142553 0.142553i −0.632229 0.774782i \(-0.717860\pi\)
0.774782 + 0.632229i \(0.217860\pi\)
\(212\) 0 0
\(213\) −39.1818 2714.41i −0.0126042 0.873185i
\(214\) 0 0
\(215\) 2571.63i 0.815739i
\(216\) 0 0
\(217\) 2575.65i 0.805745i
\(218\) 0 0
\(219\) −51.7295 3583.68i −0.0159614 1.10577i
\(220\) 0 0
\(221\) 3005.95 3005.95i 0.914942 0.914942i
\(222\) 0 0
\(223\) 450.388i 0.135248i 0.997711 + 0.0676239i \(0.0215418\pi\)
−0.997711 + 0.0676239i \(0.978458\pi\)
\(224\) 0 0
\(225\) −52.3575 1813.21i −0.0155133 0.537248i
\(226\) 0 0
\(227\) −1039.61 1039.61i −0.303972 0.303972i 0.538594 0.842566i \(-0.318956\pi\)
−0.842566 + 0.538594i \(0.818956\pi\)
\(228\) 0 0
\(229\) −1142.20 + 1142.20i −0.329601 + 0.329601i −0.852435 0.522834i \(-0.824875\pi\)
0.522834 + 0.852435i \(0.324875\pi\)
\(230\) 0 0
\(231\) 2286.39 2353.37i 0.651228 0.670304i
\(232\) 0 0
\(233\) 3480.39 0.978575 0.489287 0.872123i \(-0.337257\pi\)
0.489287 + 0.872123i \(0.337257\pi\)
\(234\) 0 0
\(235\) 163.577 + 163.577i 0.0454067 + 0.0454067i
\(236\) 0 0
\(237\) 51.9679 + 3600.19i 0.0142434 + 0.986742i
\(238\) 0 0
\(239\) −3195.92 −0.864966 −0.432483 0.901642i \(-0.642363\pi\)
−0.432483 + 0.901642i \(0.642363\pi\)
\(240\) 0 0
\(241\) −255.355 −0.0682525 −0.0341262 0.999418i \(-0.510865\pi\)
−0.0341262 + 0.999418i \(0.510865\pi\)
\(242\) 0 0
\(243\) 3778.13 273.138i 0.997397 0.0721061i
\(244\) 0 0
\(245\) 657.313 + 657.313i 0.171405 + 0.171405i
\(246\) 0 0
\(247\) 917.716 0.236408
\(248\) 0 0
\(249\) −3569.13 3467.56i −0.908371 0.882520i
\(250\) 0 0
\(251\) −3550.34 + 3550.34i −0.892811 + 0.892811i −0.994787 0.101976i \(-0.967484\pi\)
0.101976 + 0.994787i \(0.467484\pi\)
\(252\) 0 0
\(253\) 1294.53 + 1294.53i 0.321686 + 0.321686i
\(254\) 0 0
\(255\) 1344.71 1384.10i 0.330232 0.339905i
\(256\) 0 0
\(257\) 7256.80i 1.76135i 0.473721 + 0.880675i \(0.342911\pi\)
−0.473721 + 0.880675i \(0.657089\pi\)
\(258\) 0 0
\(259\) 2637.78 2637.78i 0.632834 0.632834i
\(260\) 0 0
\(261\) −864.034 + 915.417i −0.204913 + 0.217099i
\(262\) 0 0
\(263\) 2114.79i 0.495832i −0.968782 0.247916i \(-0.920254\pi\)
0.968782 0.247916i \(-0.0797457\pi\)
\(264\) 0 0
\(265\) 2535.00i 0.587636i
\(266\) 0 0
\(267\) −1360.98 + 19.6455i −0.311951 + 0.00450293i
\(268\) 0 0
\(269\) 120.142 120.142i 0.0272312 0.0272312i −0.693360 0.720591i \(-0.743870\pi\)
0.720591 + 0.693360i \(0.243870\pi\)
\(270\) 0 0
\(271\) 924.962i 0.207334i −0.994612 0.103667i \(-0.966942\pi\)
0.994612 0.103667i \(-0.0330576\pi\)
\(272\) 0 0
\(273\) −4819.37 4682.22i −1.06843 1.03802i
\(274\) 0 0
\(275\) −2019.06 2019.06i −0.442741 0.442741i
\(276\) 0 0
\(277\) 3882.29 3882.29i 0.842110 0.842110i −0.147023 0.989133i \(-0.546969\pi\)
0.989133 + 0.147023i \(0.0469692\pi\)
\(278\) 0 0
\(279\) −135.099 4678.68i −0.0289899 1.00396i
\(280\) 0 0
\(281\) 175.744 0.0373097 0.0186548 0.999826i \(-0.494062\pi\)
0.0186548 + 0.999826i \(0.494062\pi\)
\(282\) 0 0
\(283\) 563.080 + 563.080i 0.118274 + 0.118274i 0.763767 0.645492i \(-0.223348\pi\)
−0.645492 + 0.763767i \(0.723348\pi\)
\(284\) 0 0
\(285\) 416.553 6.01285i 0.0865772 0.00124972i
\(286\) 0 0
\(287\) 6752.12 1.38873
\(288\) 0 0
\(289\) 2527.40 0.514432
\(290\) 0 0
\(291\) −3334.31 + 48.1300i −0.671687 + 0.00969563i
\(292\) 0 0
\(293\) 5718.53 + 5718.53i 1.14020 + 1.14020i 0.988412 + 0.151792i \(0.0485045\pi\)
0.151792 + 0.988412i \(0.451496\pi\)
\(294\) 0 0
\(295\) −2798.23 −0.552268
\(296\) 0 0
\(297\) 4029.80 4394.83i 0.787316 0.858632i
\(298\) 0 0
\(299\) 2651.03 2651.03i 0.512752 0.512752i
\(300\) 0 0
\(301\) −3553.17 3553.17i −0.680403 0.680403i
\(302\) 0 0
\(303\) 5073.06 + 4928.69i 0.961848 + 0.934475i
\(304\) 0 0
\(305\) 4181.60i 0.785041i
\(306\) 0 0
\(307\) −1027.09 + 1027.09i −0.190942 + 0.190942i −0.796103 0.605161i \(-0.793109\pi\)
0.605161 + 0.796103i \(0.293109\pi\)
\(308\) 0 0
\(309\) 7682.51 110.895i 1.41438 0.0204162i
\(310\) 0 0
\(311\) 3479.04i 0.634335i −0.948370 0.317168i \(-0.897268\pi\)
0.948370 0.317168i \(-0.102732\pi\)
\(312\) 0 0
\(313\) 3308.25i 0.597424i −0.954343 0.298712i \(-0.903443\pi\)
0.954343 0.298712i \(-0.0965569\pi\)
\(314\) 0 0
\(315\) −2218.20 2093.69i −0.396767 0.374496i
\(316\) 0 0
\(317\) 1297.15 1297.15i 0.229826 0.229826i −0.582794 0.812620i \(-0.698040\pi\)
0.812620 + 0.582794i \(0.198040\pi\)
\(318\) 0 0
\(319\) 1981.46i 0.347776i
\(320\) 0 0
\(321\) −7602.99 + 7825.70i −1.32199 + 1.36071i
\(322\) 0 0
\(323\) −364.161 364.161i −0.0627321 0.0627321i
\(324\) 0 0
\(325\) −4134.75 + 4134.75i −0.705707 + 0.705707i
\(326\) 0 0
\(327\) 547.119 + 531.548i 0.0925252 + 0.0898920i
\(328\) 0 0
\(329\) −452.022 −0.0757470
\(330\) 0 0
\(331\) −4319.83 4319.83i −0.717339 0.717339i 0.250721 0.968059i \(-0.419332\pi\)
−0.968059 + 0.250721i \(0.919332\pi\)
\(332\) 0 0
\(333\) 4653.19 4929.90i 0.765745 0.811282i
\(334\) 0 0
\(335\) 3591.71 0.585780
\(336\) 0 0
\(337\) 9925.19 1.60433 0.802165 0.597102i \(-0.203681\pi\)
0.802165 + 0.597102i \(0.203681\pi\)
\(338\) 0 0
\(339\) 4.09028 + 283.363i 0.000655320 + 0.0453988i
\(340\) 0 0
\(341\) −5209.83 5209.83i −0.827355 0.827355i
\(342\) 0 0
\(343\) −6912.52 −1.08817
\(344\) 0 0
\(345\) 1185.94 1220.68i 0.185069 0.190490i
\(346\) 0 0
\(347\) 6188.11 6188.11i 0.957335 0.957335i −0.0417910 0.999126i \(-0.513306\pi\)
0.999126 + 0.0417910i \(0.0133063\pi\)
\(348\) 0 0
\(349\) 1274.05 + 1274.05i 0.195411 + 0.195411i 0.798030 0.602618i \(-0.205876\pi\)
−0.602618 + 0.798030i \(0.705876\pi\)
\(350\) 0 0
\(351\) −9000.00 8252.48i −1.36862 1.25494i
\(352\) 0 0
\(353\) 1359.26i 0.204947i 0.994736 + 0.102473i \(0.0326756\pi\)
−0.994736 + 0.102473i \(0.967324\pi\)
\(354\) 0 0
\(355\) −2808.97 + 2808.97i −0.419957 + 0.419957i
\(356\) 0 0
\(357\) 54.4241 + 3770.35i 0.00806842 + 0.558958i
\(358\) 0 0
\(359\) 479.331i 0.0704683i 0.999379 + 0.0352342i \(0.0112177\pi\)
−0.999379 + 0.0352342i \(0.988782\pi\)
\(360\) 0 0
\(361\) 6747.82i 0.983791i
\(362\) 0 0
\(363\) −35.6479 2469.59i −0.00515435 0.357079i
\(364\) 0 0
\(365\) −3708.53 + 3708.53i −0.531817 + 0.531817i
\(366\) 0 0
\(367\) 6512.69i 0.926320i −0.886275 0.463160i \(-0.846715\pi\)
0.886275 0.463160i \(-0.153285\pi\)
\(368\) 0 0
\(369\) 12265.3 354.166i 1.73036 0.0499651i
\(370\) 0 0
\(371\) 3502.55 + 3502.55i 0.490144 + 0.490144i
\(372\) 0 0
\(373\) 8069.28 8069.28i 1.12014 1.12014i 0.128418 0.991720i \(-0.459010\pi\)
0.991720 0.128418i \(-0.0409898\pi\)
\(374\) 0 0
\(375\) −5291.13 + 5446.12i −0.728620 + 0.749963i
\(376\) 0 0
\(377\) 4057.76 0.554338
\(378\) 0 0
\(379\) −1799.74 1799.74i −0.243922 0.243922i 0.574548 0.818471i \(-0.305178\pi\)
−0.818471 + 0.574548i \(0.805178\pi\)
\(380\) 0 0
\(381\) 2.37604 + 164.606i 0.000319497 + 0.0221339i
\(382\) 0 0
\(383\) −12267.5 −1.63666 −0.818332 0.574746i \(-0.805101\pi\)
−0.818332 + 0.574746i \(0.805101\pi\)
\(384\) 0 0
\(385\) −4801.40 −0.635590
\(386\) 0 0
\(387\) −6640.73 6267.98i −0.872266 0.823306i
\(388\) 0 0
\(389\) 1661.54 + 1661.54i 0.216564 + 0.216564i 0.807049 0.590485i \(-0.201064\pi\)
−0.590485 + 0.807049i \(0.701064\pi\)
\(390\) 0 0
\(391\) −2103.92 −0.272122
\(392\) 0 0
\(393\) 8892.71 + 8639.64i 1.14142 + 1.10894i
\(394\) 0 0
\(395\) 3725.62 3725.62i 0.474573 0.474573i
\(396\) 0 0
\(397\) 259.031 + 259.031i 0.0327465 + 0.0327465i 0.723290 0.690544i \(-0.242629\pi\)
−0.690544 + 0.723290i \(0.742629\pi\)
\(398\) 0 0
\(399\) −567.236 + 583.851i −0.0711712 + 0.0732559i
\(400\) 0 0
\(401\) 5120.78i 0.637705i −0.947804 0.318852i \(-0.896703\pi\)
0.947804 0.318852i \(-0.103297\pi\)
\(402\) 0 0
\(403\) −10669.0 + 10669.0i −1.31876 + 1.31876i
\(404\) 0 0
\(405\) −4139.19 3686.85i −0.507847 0.452349i
\(406\) 0 0
\(407\) 10671.0i 1.29961i
\(408\) 0 0
\(409\) 4138.32i 0.500311i −0.968206 0.250155i \(-0.919518\pi\)
0.968206 0.250155i \(-0.0804817\pi\)
\(410\) 0 0
\(411\) 2356.46 34.0149i 0.282811 0.00408231i
\(412\) 0 0
\(413\) 3866.26 3866.26i 0.460644 0.460644i
\(414\) 0 0
\(415\) 7281.83i 0.861327i
\(416\) 0 0
\(417\) 7336.94 + 7128.14i 0.861610 + 0.837090i
\(418\) 0 0
\(419\) 2623.85 + 2623.85i 0.305927 + 0.305927i 0.843327 0.537401i \(-0.180594\pi\)
−0.537401 + 0.843327i \(0.680594\pi\)
\(420\) 0 0
\(421\) 207.548 207.548i 0.0240268 0.0240268i −0.694991 0.719018i \(-0.744592\pi\)
0.719018 + 0.694991i \(0.244592\pi\)
\(422\) 0 0
\(423\) −821.099 + 23.7097i −0.0943811 + 0.00272530i
\(424\) 0 0
\(425\) 3281.44 0.374525
\(426\) 0 0
\(427\) 5777.63 + 5777.63i 0.654799 + 0.654799i
\(428\) 0 0
\(429\) −19219.1 + 277.423i −2.16295 + 0.0312217i
\(430\) 0 0
\(431\) 11772.7 1.31571 0.657855 0.753145i \(-0.271464\pi\)
0.657855 + 0.753145i \(0.271464\pi\)
\(432\) 0 0
\(433\) −4268.67 −0.473763 −0.236881 0.971539i \(-0.576125\pi\)
−0.236881 + 0.971539i \(0.576125\pi\)
\(434\) 0 0
\(435\) 1841.83 26.5863i 0.203009 0.00293038i
\(436\) 0 0
\(437\) −321.163 321.163i −0.0351564 0.0351564i
\(438\) 0 0
\(439\) 1006.82 0.109459 0.0547297 0.998501i \(-0.482570\pi\)
0.0547297 + 0.998501i \(0.482570\pi\)
\(440\) 0 0
\(441\) −3299.49 + 95.2744i −0.356277 + 0.0102877i
\(442\) 0 0
\(443\) −3697.94 + 3697.94i −0.396601 + 0.396601i −0.877032 0.480431i \(-0.840480\pi\)
0.480431 + 0.877032i \(0.340480\pi\)
\(444\) 0 0
\(445\) 1408.40 + 1408.40i 0.150032 + 0.150032i
\(446\) 0 0
\(447\) 626.722 + 608.886i 0.0663153 + 0.0644281i
\(448\) 0 0
\(449\) 11582.4i 1.21738i −0.793407 0.608692i \(-0.791695\pi\)
0.793407 0.608692i \(-0.208305\pi\)
\(450\) 0 0
\(451\) 13657.7 13657.7i 1.42597 1.42597i
\(452\) 0 0
\(453\) 1502.33 21.6857i 0.155818 0.00224919i
\(454\) 0 0
\(455\) 9832.60i 1.01310i
\(456\) 0 0
\(457\) 1710.35i 0.175070i 0.996161 + 0.0875349i \(0.0278989\pi\)
−0.996161 + 0.0875349i \(0.972101\pi\)
\(458\) 0 0
\(459\) 296.626 + 6846.00i 0.0301641 + 0.696174i
\(460\) 0 0
\(461\) −4945.52 + 4945.52i −0.499644 + 0.499644i −0.911327 0.411683i \(-0.864941\pi\)
0.411683 + 0.911327i \(0.364941\pi\)
\(462\) 0 0
\(463\) 5550.67i 0.557152i −0.960414 0.278576i \(-0.910138\pi\)
0.960414 0.278576i \(-0.0898624\pi\)
\(464\) 0 0
\(465\) −4772.78 + 4912.59i −0.475984 + 0.489926i
\(466\) 0 0
\(467\) 5335.45 + 5335.45i 0.528683 + 0.528683i 0.920180 0.391497i \(-0.128043\pi\)
−0.391497 + 0.920180i \(0.628043\pi\)
\(468\) 0 0
\(469\) −4962.60 + 4962.60i −0.488596 + 0.488596i
\(470\) 0 0
\(471\) 3604.26 + 3501.69i 0.352602 + 0.342568i
\(472\) 0 0
\(473\) −14374.2 −1.39730
\(474\) 0 0
\(475\) 500.912 + 500.912i 0.0483861 + 0.0483861i
\(476\) 0 0
\(477\) 6546.12 + 6178.68i 0.628357 + 0.593087i
\(478\) 0 0
\(479\) 3196.65 0.304924 0.152462 0.988309i \(-0.451280\pi\)
0.152462 + 0.988309i \(0.451280\pi\)
\(480\) 0 0
\(481\) −21852.7 −2.07152
\(482\) 0 0
\(483\) 47.9980 + 3325.17i 0.00452171 + 0.313251i
\(484\) 0 0
\(485\) 3450.47 + 3450.47i 0.323047 + 0.323047i
\(486\) 0 0
\(487\) 18653.5 1.73567 0.867833 0.496856i \(-0.165512\pi\)
0.867833 + 0.496856i \(0.165512\pi\)
\(488\) 0 0
\(489\) −181.380 + 186.693i −0.0167736 + 0.0172649i
\(490\) 0 0
\(491\) 4162.67 4162.67i 0.382604 0.382604i −0.489436 0.872039i \(-0.662797\pi\)
0.872039 + 0.489436i \(0.162797\pi\)
\(492\) 0 0
\(493\) −1610.17 1610.17i −0.147096 0.147096i
\(494\) 0 0
\(495\) −8721.76 + 251.845i −0.791948 + 0.0228679i
\(496\) 0 0
\(497\) 7762.20i 0.700568i
\(498\) 0 0
\(499\) 7570.74 7570.74i 0.679184 0.679184i −0.280631 0.959816i \(-0.590544\pi\)
0.959816 + 0.280631i \(0.0905439\pi\)
\(500\) 0 0
\(501\) 156.860 + 10866.8i 0.0139880 + 0.969049i
\(502\) 0 0
\(503\) 10216.7i 0.905647i −0.891600 0.452823i \(-0.850417\pi\)
0.891600 0.452823i \(-0.149583\pi\)
\(504\) 0 0
\(505\) 10350.2i 0.912035i
\(506\) 0 0
\(507\) 403.354 + 27943.3i 0.0353325 + 2.44774i
\(508\) 0 0
\(509\) 12175.7 12175.7i 1.06027 1.06027i 0.0622119 0.998063i \(-0.480185\pi\)
0.998063 0.0622119i \(-0.0198155\pi\)
\(510\) 0 0
\(511\) 10248.0i 0.887171i
\(512\) 0 0
\(513\) −999.761 + 1090.32i −0.0860439 + 0.0938379i
\(514\) 0 0
\(515\) −7950.15 7950.15i −0.680244 0.680244i
\(516\) 0 0
\(517\) −914.314 + 914.314i −0.0777785 + 0.0777785i
\(518\) 0 0
\(519\) −13139.5 + 13524.4i −1.11130 + 1.14385i
\(520\) 0 0
\(521\) 734.120 0.0617320 0.0308660 0.999524i \(-0.490173\pi\)
0.0308660 + 0.999524i \(0.490173\pi\)
\(522\) 0 0
\(523\) −4289.83 4289.83i −0.358664 0.358664i 0.504656 0.863320i \(-0.331619\pi\)
−0.863320 + 0.504656i \(0.831619\pi\)
\(524\) 0 0
\(525\) −74.8615 5186.20i −0.00622328 0.431132i
\(526\) 0 0
\(527\) 8467.19 0.699880
\(528\) 0 0
\(529\) 10311.5 0.847497
\(530\) 0 0
\(531\) 6820.27 7225.86i 0.557391 0.590538i
\(532\) 0 0
\(533\) −27969.0 27969.0i −2.27293 2.27293i
\(534\) 0 0
\(535\) 15966.2 1.29024
\(536\) 0 0
\(537\) −6599.49 6411.68i −0.530333 0.515241i
\(538\) 0 0
\(539\) −3674.06 + 3674.06i −0.293605 + 0.293605i
\(540\) 0 0
\(541\) 11785.3 + 11785.3i 0.936583 + 0.936583i 0.998106 0.0615231i \(-0.0195958\pi\)
−0.0615231 + 0.998106i \(0.519596\pi\)
\(542\) 0 0
\(543\) −8871.54 + 9131.41i −0.701131 + 0.721669i
\(544\) 0 0
\(545\) 1116.25i 0.0877334i
\(546\) 0 0
\(547\) −10084.5 + 10084.5i −0.788268 + 0.788268i −0.981210 0.192942i \(-0.938197\pi\)
0.192942 + 0.981210i \(0.438197\pi\)
\(548\) 0 0
\(549\) 10798.1 + 10192.0i 0.839441 + 0.792323i
\(550\) 0 0
\(551\) 491.585i 0.0380076i
\(552\) 0 0
\(553\) 10295.2i 0.791677i
\(554\) 0 0
\(555\) −9919.01 + 143.178i −0.758628 + 0.0109506i
\(556\) 0 0
\(557\) −6502.22 + 6502.22i −0.494628 + 0.494628i −0.909761 0.415133i \(-0.863735\pi\)
0.415133 + 0.909761i \(0.363735\pi\)
\(558\) 0 0
\(559\) 29436.3i 2.22723i
\(560\) 0 0
\(561\) 7736.45 + 7516.28i 0.582234 + 0.565664i
\(562\) 0 0
\(563\) 6184.95 + 6184.95i 0.462992 + 0.462992i 0.899635 0.436643i \(-0.143833\pi\)
−0.436643 + 0.899635i \(0.643833\pi\)
\(564\) 0 0
\(565\) 293.235 293.235i 0.0218345 0.0218345i
\(566\) 0 0
\(567\) 10813.1 624.988i 0.800894 0.0462911i
\(568\) 0 0
\(569\) −25063.0 −1.84657 −0.923284 0.384119i \(-0.874505\pi\)
−0.923284 + 0.384119i \(0.874505\pi\)
\(570\) 0 0
\(571\) −15682.4 15682.4i −1.14937 1.14937i −0.986677 0.162692i \(-0.947982\pi\)
−0.162692 0.986677i \(-0.552018\pi\)
\(572\) 0 0
\(573\) −979.183 + 14.1343i −0.0713891 + 0.00103048i
\(574\) 0 0
\(575\) 2893.99 0.209892
\(576\) 0 0
\(577\) −1972.54 −0.142319 −0.0711593 0.997465i \(-0.522670\pi\)
−0.0711593 + 0.997465i \(0.522670\pi\)
\(578\) 0 0
\(579\) −439.465 + 6.34357i −0.0315432 + 0.000455319i
\(580\) 0 0
\(581\) −10061.2 10061.2i −0.718429 0.718429i
\(582\) 0 0
\(583\) 14169.4 1.00658
\(584\) 0 0
\(585\) 515.745 + 17861.0i 0.0364503 + 1.26233i
\(586\) 0 0
\(587\) 3171.66 3171.66i 0.223013 0.223013i −0.586753 0.809766i \(-0.699594\pi\)
0.809766 + 0.586753i \(0.199594\pi\)
\(588\) 0 0
\(589\) 1292.52 + 1292.52i 0.0904196 + 0.0904196i
\(590\) 0 0
\(591\) −4114.98 3997.87i −0.286409 0.278258i
\(592\) 0 0
\(593\) 2763.19i 0.191350i 0.995413 + 0.0956752i \(0.0305010\pi\)
−0.995413 + 0.0956752i \(0.969499\pi\)
\(594\) 0 0
\(595\) 3901.70 3901.70i 0.268830 0.268830i
\(596\) 0 0
\(597\) −8521.23 + 123.002i −0.584172 + 0.00843238i
\(598\) 0 0
\(599\) 27598.5i 1.88255i 0.337647 + 0.941273i \(0.390369\pi\)
−0.337647 + 0.941273i \(0.609631\pi\)
\(600\) 0 0
\(601\) 12432.1i 0.843789i 0.906645 + 0.421894i \(0.138635\pi\)
−0.906645 + 0.421894i \(0.861365\pi\)
\(602\) 0 0
\(603\) −8754.28 + 9274.88i −0.591214 + 0.626372i
\(604\) 0 0
\(605\) −2555.62 + 2555.62i −0.171737 + 0.171737i
\(606\) 0 0
\(607\) 13691.9i 0.915545i 0.889069 + 0.457772i \(0.151353\pi\)
−0.889069 + 0.457772i \(0.848647\pi\)
\(608\) 0 0
\(609\) −2508.08 + 2581.55i −0.166884 + 0.171773i
\(610\) 0 0
\(611\) 1872.39 + 1872.39i 0.123975 + 0.123975i
\(612\) 0 0
\(613\) −17418.7 + 17418.7i −1.14769 + 1.14769i −0.160686 + 0.987006i \(0.551371\pi\)
−0.987006 + 0.160686i \(0.948629\pi\)
\(614\) 0 0
\(615\) −12878.4 12511.9i −0.844405 0.820375i
\(616\) 0 0
\(617\) 6194.64 0.404193 0.202096 0.979366i \(-0.435225\pi\)
0.202096 + 0.979366i \(0.435225\pi\)
\(618\) 0 0
\(619\) 15342.7 + 15342.7i 0.996247 + 0.996247i 0.999993 0.00374578i \(-0.00119232\pi\)
−0.00374578 + 0.999993i \(0.501192\pi\)
\(620\) 0 0
\(621\) 261.602 + 6037.67i 0.0169046 + 0.390150i
\(622\) 0 0
\(623\) −3891.91 −0.250282
\(624\) 0 0
\(625\) 2713.31 0.173652
\(626\) 0 0
\(627\) 33.6088 + 2328.33i 0.00214068 + 0.148301i
\(628\) 0 0
\(629\) 8671.44 + 8671.44i 0.549687 + 0.549687i
\(630\) 0 0
\(631\) −24841.9 −1.56726 −0.783631 0.621227i \(-0.786635\pi\)
−0.783631 + 0.621227i \(0.786635\pi\)
\(632\) 0 0
\(633\) 2237.30 2302.83i 0.140481 0.144596i
\(634\) 0 0
\(635\) 170.340 170.340i 0.0106453 0.0106453i
\(636\) 0 0
\(637\) 7523.96 + 7523.96i 0.467991 + 0.467991i
\(638\) 0 0
\(639\) −407.147 14100.1i −0.0252058 0.872912i
\(640\) 0 0
\(641\) 13544.6i 0.834600i 0.908769 + 0.417300i \(0.137024\pi\)
−0.908769 + 0.417300i \(0.862976\pi\)
\(642\) 0 0
\(643\) −12655.0 + 12655.0i −0.776152 + 0.776152i −0.979174 0.203022i \(-0.934924\pi\)
0.203022 + 0.979174i \(0.434924\pi\)
\(644\) 0 0
\(645\) 192.866 + 13361.2i 0.0117738 + 0.815654i
\(646\) 0 0
\(647\) 8771.04i 0.532960i 0.963840 + 0.266480i \(0.0858607\pi\)
−0.963840 + 0.266480i \(0.914139\pi\)
\(648\) 0 0
\(649\) 15640.7i 0.945997i
\(650\) 0 0
\(651\) −193.167 13382.1i −0.0116295 0.805661i
\(652\) 0 0
\(653\) 21658.4 21658.4i 1.29794 1.29794i 0.368197 0.929748i \(-0.379975\pi\)
0.929748 0.368197i \(-0.120025\pi\)
\(654\) 0 0
\(655\) 18143.1i 1.08231i
\(656\) 0 0
\(657\) −537.533 18615.5i −0.0319196 1.10542i
\(658\) 0 0
\(659\) −9280.25 9280.25i −0.548569 0.548569i 0.377457 0.926027i \(-0.376798\pi\)
−0.926027 + 0.377457i \(0.876798\pi\)
\(660\) 0 0
\(661\) 13336.7 13336.7i 0.784776 0.784776i −0.195857 0.980632i \(-0.562749\pi\)
0.980632 + 0.195857i \(0.0627488\pi\)
\(662\) 0 0
\(663\) 15392.3 15843.2i 0.901641 0.928052i
\(664\) 0 0
\(665\) 1191.19 0.0694621
\(666\) 0 0
\(667\) −1420.05 1420.05i −0.0824357 0.0824357i
\(668\) 0 0
\(669\) 33.7779 + 2340.04i 0.00195206 + 0.135234i
\(670\) 0 0
\(671\) 23373.1 1.34472
\(672\) 0 0
\(673\) −15820.7 −0.906156 −0.453078 0.891471i \(-0.649674\pi\)
−0.453078 + 0.891471i \(0.649674\pi\)
\(674\) 0 0
\(675\) −408.015 9416.82i −0.0232659 0.536968i
\(676\) 0 0
\(677\) 3185.15 + 3185.15i 0.180820 + 0.180820i 0.791713 0.610893i \(-0.209189\pi\)
−0.610893 + 0.791713i \(0.709189\pi\)
\(678\) 0 0
\(679\) −9534.89 −0.538904
\(680\) 0 0
\(681\) −5479.40 5323.46i −0.308328 0.299553i
\(682\) 0 0
\(683\) −423.850 + 423.850i −0.0237455 + 0.0237455i −0.718880 0.695134i \(-0.755345\pi\)
0.695134 + 0.718880i \(0.255345\pi\)
\(684\) 0 0
\(685\) −2438.55 2438.55i −0.136018 0.136018i
\(686\) 0 0
\(687\) −5848.76 + 6020.08i −0.324810 + 0.334324i
\(688\) 0 0
\(689\) 29016.9i 1.60444i
\(690\) 0 0
\(691\) −5607.03 + 5607.03i −0.308685 + 0.308685i −0.844399 0.535714i \(-0.820042\pi\)
0.535714 + 0.844399i \(0.320042\pi\)
\(692\) 0 0
\(693\) 11702.7 12398.7i 0.641485 0.679633i
\(694\) 0 0
\(695\) 14969.0i 0.816989i
\(696\) 0 0
\(697\) 22196.9i 1.20627i
\(698\) 0 0
\(699\) 18082.7 261.020i 0.978473 0.0141240i
\(700\) 0 0
\(701\) −15985.1 + 15985.1i −0.861267 + 0.861267i −0.991485 0.130218i \(-0.958432\pi\)
0.130218 + 0.991485i \(0.458432\pi\)
\(702\) 0 0
\(703\) 2647.39i 0.142032i
\(704\) 0 0
\(705\) 862.150 + 837.614i 0.0460574 + 0.0447466i
\(706\) 0 0
\(707\) 14300.7 + 14300.7i 0.760723 + 0.760723i
\(708\) 0 0
\(709\) 3590.05 3590.05i 0.190165 0.190165i −0.605602 0.795768i \(-0.707068\pi\)
0.795768 + 0.605602i \(0.207068\pi\)
\(710\) 0 0
\(711\) 540.010 + 18701.3i 0.0284838 + 0.986433i
\(712\) 0 0
\(713\) 7467.44 0.392227
\(714\) 0 0
\(715\) 19888.6 + 19888.6i 1.04027 + 1.04027i
\(716\) 0 0
\(717\) −16604.8 + 239.686i −0.864876 + 0.0124843i
\(718\) 0 0
\(719\) −5996.91 −0.311053 −0.155526 0.987832i \(-0.549707\pi\)
−0.155526 + 0.987832i \(0.549707\pi\)
\(720\) 0 0
\(721\) 21969.1 1.13477
\(722\) 0 0
\(723\) −1326.72 + 19.1509i −0.0682454 + 0.000985105i
\(724\) 0 0
\(725\) 2214.82 + 2214.82i 0.113457 + 0.113457i
\(726\) 0 0
\(727\) −15850.3 −0.808606 −0.404303 0.914625i \(-0.632486\pi\)
−0.404303 + 0.914625i \(0.632486\pi\)
\(728\) 0 0
\(729\) 19609.2 1702.47i 0.996252 0.0864943i
\(730\) 0 0
\(731\) 11680.7 11680.7i 0.591007 0.591007i
\(732\) 0 0
\(733\) −15633.8 15633.8i −0.787784 0.787784i 0.193346 0.981131i \(-0.438066\pi\)
−0.981131 + 0.193346i \(0.938066\pi\)
\(734\) 0 0
\(735\) 3464.44 + 3365.85i 0.173861 + 0.168913i
\(736\) 0 0
\(737\) 20075.9i 1.00340i
\(738\) 0 0
\(739\) 22820.0 22820.0i 1.13592 1.13592i 0.146747 0.989174i \(-0.453120\pi\)
0.989174 0.146747i \(-0.0468805\pi\)
\(740\) 0 0
\(741\) 4768.10 68.8263i 0.236384 0.00341214i
\(742\) 0 0
\(743\) 34196.9i 1.68851i −0.535941 0.844255i \(-0.680043\pi\)
0.535941 0.844255i \(-0.319957\pi\)
\(744\) 0 0
\(745\) 1278.65i 0.0628809i
\(746\) 0 0
\(747\) −18803.9 17748.4i −0.921014 0.869317i
\(748\) 0 0
\(749\) −22060.2 + 22060.2i −1.07618 + 1.07618i
\(750\) 0 0
\(751\) 36702.6i 1.78335i −0.452675 0.891676i \(-0.649530\pi\)
0.452675 0.891676i \(-0.350470\pi\)
\(752\) 0 0
\(753\) −18179.9 + 18712.5i −0.879832 + 0.905604i
\(754\) 0 0
\(755\) −1554.66 1554.66i −0.0749404 0.0749404i
\(756\) 0 0
\(757\) 12194.0 12194.0i 0.585468 0.585468i −0.350933 0.936401i \(-0.614135\pi\)
0.936401 + 0.350933i \(0.114135\pi\)
\(758\) 0 0
\(759\) 6822.98 + 6628.81i 0.326296 + 0.317010i
\(760\) 0 0
\(761\) 33960.5 1.61770 0.808848 0.588018i \(-0.200091\pi\)
0.808848 + 0.588018i \(0.200091\pi\)
\(762\) 0 0
\(763\) 1542.29 + 1542.29i 0.0731780 + 0.0731780i
\(764\) 0 0
\(765\) 6882.80 7292.11i 0.325292 0.344636i
\(766\) 0 0
\(767\) −32030.0 −1.50787
\(768\) 0 0
\(769\) 21884.2 1.02622 0.513112 0.858322i \(-0.328493\pi\)
0.513112 + 0.858322i \(0.328493\pi\)
\(770\) 0 0
\(771\) 544.241 + 37703.5i 0.0254220 + 1.76117i
\(772\) 0 0
\(773\) −2736.24 2736.24i −0.127316 0.127316i 0.640577 0.767894i \(-0.278695\pi\)
−0.767894 + 0.640577i \(0.778695\pi\)
\(774\) 0 0
\(775\) −11646.8 −0.539826
\(776\) 0 0
\(777\) 13507.1 13902.7i 0.623634 0.641901i
\(778\) 0 0
\(779\) −3388.36 + 3388.36i −0.155841 + 0.155841i
\(780\) 0 0
\(781\) −15700.8 15700.8i −0.719358 0.719358i
\(782\) 0 0
\(783\) −4420.53 + 4820.95i −0.201759 + 0.220034i
\(784\) 0 0
\(785\) 7353.51i 0.334341i
\(786\) 0 0
\(787\) −4548.50 + 4548.50i −0.206018 + 0.206018i −0.802573 0.596554i \(-0.796536\pi\)
0.596554 + 0.802573i \(0.296536\pi\)
\(788\) 0 0
\(789\) −158.604 10987.6i −0.00715647 0.495780i
\(790\) 0 0
\(791\) 810.314i 0.0364241i
\(792\) 0 0
\(793\) 47864.8i 2.14342i
\(794\) 0 0
\(795\) −190.118 13170.9i −0.00848150 0.587575i
\(796\) 0 0
\(797\) 10333.6 10333.6i 0.459265 0.459265i −0.439149 0.898414i \(-0.644720\pi\)
0.898414 + 0.439149i \(0.144720\pi\)
\(798\) 0 0
\(799\) 1485.97i 0.0657948i
\(800\) 0 0
\(801\) −7069.67 + 204.140i −0.311853 + 0.00900492i
\(802\) 0 0
\(803\) −20728.8 20728.8i −0.910965 0.910965i
\(804\) 0 0
\(805\) 3441.01 3441.01i 0.150658 0.150658i
\(806\) 0 0
\(807\) 615.202 633.223i 0.0268354 0.0276214i
\(808\) 0 0
\(809\) 12937.6 0.562252 0.281126 0.959671i \(-0.409292\pi\)
0.281126 + 0.959671i \(0.409292\pi\)
\(810\) 0 0
\(811\) −13303.5 13303.5i −0.576015 0.576015i 0.357788 0.933803i \(-0.383531\pi\)
−0.933803 + 0.357788i \(0.883531\pi\)
\(812\) 0 0
\(813\) −69.3697 4805.74i −0.00299250 0.207312i
\(814\) 0 0
\(815\) 380.896 0.0163708
\(816\) 0 0
\(817\) 3566.11 0.152708
\(818\) 0 0
\(819\) −25390.7 23965.5i −1.08330 1.02250i
\(820\) 0 0
\(821\) 23606.7 + 23606.7i 1.00351 + 1.00351i 0.999994 + 0.00351227i \(0.00111799\pi\)
0.00351227 + 0.999994i \(0.498882\pi\)
\(822\) 0 0
\(823\) −13577.6 −0.575071 −0.287536 0.957770i \(-0.592836\pi\)
−0.287536 + 0.957770i \(0.592836\pi\)
\(824\) 0 0
\(825\) −10641.7 10338.8i −0.449085 0.436304i
\(826\) 0 0
\(827\) 28241.2 28241.2i 1.18747 1.18747i 0.209711 0.977763i \(-0.432748\pi\)
0.977763 0.209711i \(-0.0672523\pi\)
\(828\) 0 0
\(829\) −13869.8 13869.8i −0.581082 0.581082i 0.354118 0.935201i \(-0.384781\pi\)
−0.935201 + 0.354118i \(0.884781\pi\)
\(830\) 0 0
\(831\) 19879.7 20462.1i 0.829868 0.854177i
\(832\) 0 0
\(833\) 5971.21i 0.248367i
\(834\) 0 0
\(835\) 11245.4 11245.4i 0.466064 0.466064i
\(836\) 0 0
\(837\) −1052.81 24298.5i −0.0434773 1.00344i
\(838\) 0 0
\(839\) 15874.8i 0.653229i −0.945158 0.326615i \(-0.894092\pi\)
0.945158 0.326615i \(-0.105908\pi\)
\(840\) 0 0
\(841\) 22215.4i 0.910878i
\(842\) 0 0
\(843\) 913.099 13.1804i 0.0373058 0.000538500i
\(844\) 0 0
\(845\) 28916.7 28916.7i 1.17724 1.17724i
\(846\) 0 0
\(847\) 7062.10i 0.286490i
\(848\) 0 0
\(849\) 2967.77 + 2883.31i 0.119969 + 0.116555i
\(850\) 0 0
\(851\) 7647.57 + 7647.57i 0.308056 + 0.308056i
\(852\) 0 0
\(853\) 2526.73 2526.73i 0.101423 0.101423i −0.654575 0.755997i \(-0.727152\pi\)
0.755997 + 0.654575i \(0.227152\pi\)
\(854\) 0 0
\(855\) 2163.80 62.4808i 0.0865501 0.00249918i
\(856\) 0 0
\(857\) −35121.3 −1.39991 −0.699954 0.714188i \(-0.746796\pi\)
−0.699954 + 0.714188i \(0.746796\pi\)
\(858\) 0 0
\(859\) −14337.3 14337.3i −0.569480 0.569480i 0.362503 0.931983i \(-0.381922\pi\)
−0.931983 + 0.362503i \(0.881922\pi\)
\(860\) 0 0
\(861\) 35081.4 506.391i 1.38858 0.0200439i
\(862\) 0 0
\(863\) 4109.05 0.162079 0.0810393 0.996711i \(-0.474176\pi\)
0.0810393 + 0.996711i \(0.474176\pi\)
\(864\) 0 0
\(865\) 27592.9 1.08461
\(866\) 0 0
\(867\) 13131.4 189.549i 0.514378 0.00742492i
\(868\) 0 0
\(869\) 20824.4 + 20824.4i 0.812910 + 0.812910i
\(870\) 0 0
\(871\) 41112.7 1.59937
\(872\) 0 0
\(873\) −17320.2 + 500.129i −0.671477 + 0.0193892i
\(874\) 0 0
\(875\) −15352.3 + 15352.3i −0.593144 + 0.593144i
\(876\) 0 0
\(877\) 2839.24 + 2839.24i 0.109321 + 0.109321i 0.759651 0.650331i \(-0.225370\pi\)
−0.650331 + 0.759651i \(0.725370\pi\)
\(878\) 0 0
\(879\) 30140.1 + 29282.4i 1.15654 + 1.12363i
\(880\) 0 0
\(881\) 25816.2i 0.987254i 0.869674 + 0.493627i \(0.164329\pi\)
−0.869674 + 0.493627i \(0.835671\pi\)
\(882\) 0 0
\(883\) −21733.3 + 21733.3i −0.828294 + 0.828294i −0.987281 0.158986i \(-0.949177\pi\)
0.158986 + 0.987281i \(0.449177\pi\)
\(884\) 0 0
\(885\) −14538.5 + 209.860i −0.552211 + 0.00797103i
\(886\) 0 0
\(887\) 32216.9i 1.21955i 0.792575 + 0.609774i \(0.208740\pi\)
−0.792575 + 0.609774i \(0.791260\pi\)
\(888\) 0 0
\(889\) 470.711i 0.0177583i
\(890\) 0 0
\(891\) 20607.7 23136.0i 0.774841 0.869906i
\(892\) 0 0
\(893\) 226.834 226.834i 0.00850023 0.00850023i
\(894\) 0 0
\(895\) 13464.4i 0.502868i
\(896\) 0 0
\(897\) 13574.9 13972.5i 0.505298 0.520099i
\(898\) 0 0
\(899\) 5714.97 + 5714.97i 0.212019 + 0.212019i
\(900\) 0 0
\(901\) −11514.3 + 11514.3i −0.425745 + 0.425745i
\(902\) 0 0
\(903\) −18727.4 18194.4i −0.690153 0.670512i
\(904\) 0 0
\(905\) 18630.1 0.684294
\(906\) 0 0
\(907\) −6623.37 6623.37i −0.242476 0.242476i 0.575398 0.817874i \(-0.304847\pi\)
−0.817874 + 0.575398i \(0.804847\pi\)
\(908\) 0 0
\(909\) 26727.3 + 25227.1i 0.975235 + 0.920495i
\(910\) 0 0
\(911\) −13826.3 −0.502838 −0.251419 0.967878i \(-0.580897\pi\)
−0.251419 + 0.967878i \(0.580897\pi\)
\(912\) 0 0
\(913\) −40701.8 −1.47539
\(914\) 0 0
\(915\) −313.609 21726.0i −0.0113307 0.784959i
\(916\) 0 0
\(917\) 25068.0 + 25068.0i 0.902747 + 0.902747i
\(918\) 0 0
\(919\) −32283.9 −1.15881 −0.579407 0.815039i \(-0.696716\pi\)
−0.579407 + 0.815039i \(0.696716\pi\)
\(920\) 0 0
\(921\) −5259.35 + 5413.41i −0.188167 + 0.193678i
\(922\) 0 0
\(923\) −32153.0 + 32153.0i −1.14662 + 1.14662i
\(924\) 0 0
\(925\) −11927.8 11927.8i −0.423981 0.423981i
\(926\) 0 0
\(927\) 39907.0 1152.34i 1.41394 0.0408281i
\(928\) 0 0
\(929\) 19418.8i 0.685801i 0.939372 + 0.342901i \(0.111409\pi\)
−0.939372 + 0.342901i \(0.888591\pi\)
\(930\) 0 0
\(931\) 911.504 911.504i 0.0320874 0.0320874i
\(932\) 0 0
\(933\) −260.919 18075.7i −0.00915552 0.634269i
\(934\) 0 0
\(935\) 15784.1i 0.552081i
\(936\) 0 0
\(937\) 13947.1i 0.486266i −0.969993 0.243133i \(-0.921825\pi\)
0.969993 0.243133i \(-0.0781751\pi\)
\(938\) 0 0
\(939\) −248.110 17188.4i −0.00862276 0.597361i
\(940\) 0 0
\(941\) −32438.8 + 32438.8i −1.12378 + 1.12378i −0.132608 + 0.991169i \(0.542335\pi\)
−0.991169 + 0.132608i \(0.957665\pi\)
\(942\) 0 0
\(943\) 19576.0i 0.676016i
\(944\) 0 0
\(945\) −11681.9 10711.7i −0.402130 0.368730i
\(946\) 0 0
\(947\) −14766.0 14766.0i −0.506685 0.506685i 0.406823 0.913507i \(-0.366637\pi\)
−0.913507 + 0.406823i \(0.866637\pi\)
\(948\) 0 0
\(949\) −42449.8 + 42449.8i −1.45203 + 1.45203i
\(950\) 0 0
\(951\) 6642.18 6836.75i 0.226485 0.233120i
\(952\) 0 0
\(953\) 27736.7 0.942791 0.471395 0.881922i \(-0.343750\pi\)
0.471395 + 0.881922i \(0.343750\pi\)
\(954\) 0 0
\(955\) 1013.30 + 1013.30i 0.0343345 + 0.0343345i
\(956\) 0 0
\(957\) 148.604 + 10294.9i 0.00501954 + 0.347740i
\(958\) 0 0
\(959\) 6738.59 0.226904
\(960\) 0 0
\(961\) −261.548 −0.00877942
\(962\) 0 0
\(963\) −38915.3 + 41229.5i −1.30221 + 1.37965i
\(964\) 0 0
\(965\) 454.775 + 454.775i 0.0151707 + 0.0151707i
\(966\) 0 0
\(967\) −38161.5 −1.26907 −0.634535 0.772894i \(-0.718809\pi\)
−0.634535 + 0.772894i \(0.718809\pi\)
\(968\) 0 0
\(969\) −1919.35 1864.73i −0.0636310 0.0618201i
\(970\) 0 0
\(971\) −40351.2 + 40351.2i −1.33361 + 1.33361i −0.431488 + 0.902119i \(0.642011\pi\)
−0.902119 + 0.431488i \(0.857989\pi\)
\(972\) 0 0
\(973\) 20682.4 + 20682.4i 0.681446 + 0.681446i
\(974\) 0 0
\(975\) −21172.5 + 21792.6i −0.695447 + 0.715819i
\(976\) 0 0
\(977\) 37478.8i 1.22728i 0.789586 + 0.613640i \(0.210296\pi\)
−0.789586 + 0.613640i \(0.789704\pi\)
\(978\) 0 0
\(979\) −7872.25 + 7872.25i −0.256995 + 0.256995i
\(980\) 0 0
\(981\) 2882.48 + 2720.69i 0.0938130 + 0.0885472i
\(982\) 0 0
\(983\) 11135.5i 0.361310i −0.983547 0.180655i \(-0.942178\pi\)
0.983547 0.180655i \(-0.0578217\pi\)
\(984\) 0 0
\(985\) 8395.49i 0.271576i
\(986\) 0 0
\(987\) −2348.53 + 33.9004i −0.0757391 + 0.00109328i
\(988\) 0 0
\(989\) 10301.5 10301.5i 0.331212 0.331212i
\(990\) 0 0
\(991\) 39321.0i 1.26042i 0.776427 + 0.630208i \(0.217030\pi\)
−0.776427 + 0.630208i \(0.782970\pi\)
\(992\) 0 0
\(993\) −22768.1 22120.2i −0.727617 0.706910i
\(994\) 0 0
\(995\) 8818.09 + 8818.09i 0.280957 + 0.280957i
\(996\) 0 0
\(997\) 33341.7 33341.7i 1.05912 1.05912i 0.0609797 0.998139i \(-0.480578\pi\)
0.998139 0.0609797i \(-0.0194225\pi\)
\(998\) 0 0
\(999\) 23806.4 25962.8i 0.753956 0.822250i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.4.k.b.95.22 44
3.2 odd 2 inner 384.4.k.b.95.11 44
4.3 odd 2 384.4.k.a.95.1 44
8.3 odd 2 192.4.k.a.47.22 44
8.5 even 2 48.4.k.a.35.6 yes 44
12.11 even 2 384.4.k.a.95.12 44
16.3 odd 4 48.4.k.a.11.17 yes 44
16.5 even 4 384.4.k.a.287.12 44
16.11 odd 4 inner 384.4.k.b.287.11 44
16.13 even 4 192.4.k.a.143.11 44
24.5 odd 2 48.4.k.a.35.17 yes 44
24.11 even 2 192.4.k.a.47.11 44
48.5 odd 4 384.4.k.a.287.1 44
48.11 even 4 inner 384.4.k.b.287.22 44
48.29 odd 4 192.4.k.a.143.22 44
48.35 even 4 48.4.k.a.11.6 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.6 44 48.35 even 4
48.4.k.a.11.17 yes 44 16.3 odd 4
48.4.k.a.35.6 yes 44 8.5 even 2
48.4.k.a.35.17 yes 44 24.5 odd 2
192.4.k.a.47.11 44 24.11 even 2
192.4.k.a.47.22 44 8.3 odd 2
192.4.k.a.143.11 44 16.13 even 4
192.4.k.a.143.22 44 48.29 odd 4
384.4.k.a.95.1 44 4.3 odd 2
384.4.k.a.95.12 44 12.11 even 2
384.4.k.a.287.1 44 48.5 odd 4
384.4.k.a.287.12 44 16.5 even 4
384.4.k.b.95.11 44 3.2 odd 2 inner
384.4.k.b.95.22 44 1.1 even 1 trivial
384.4.k.b.287.11 44 16.11 odd 4 inner
384.4.k.b.287.22 44 48.11 even 4 inner