Properties

Label 192.4.k.a.143.11
Level $192$
Weight $4$
Character 192.143
Analytic conductor $11.328$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(47,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.11
Character \(\chi\) \(=\) 192.143
Dual form 192.4.k.a.47.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0749974 + 5.19561i) q^{3} +(-5.37662 + 5.37662i) q^{5} -14.8575 q^{7} +(-26.9888 + 0.779314i) q^{9} +(-30.0526 - 30.0526i) q^{11} +(61.5437 - 61.5437i) q^{13} +(-28.3380 - 27.5316i) q^{15} +48.8426i q^{17} +(-7.45581 - 7.45581i) q^{19} +(-1.11427 - 77.1939i) q^{21} -43.0756i q^{23} +67.1840i q^{25} +(-6.07310 - 140.165i) q^{27} +(-32.9665 - 32.9665i) q^{29} -173.357i q^{31} +(153.888 - 158.396i) q^{33} +(79.8832 - 79.8832i) q^{35} +(-177.539 - 177.539i) q^{37} +(324.373 + 315.141i) q^{39} -454.458 q^{41} +(-239.150 + 239.150i) q^{43} +(140.918 - 149.298i) q^{45} -30.4238 q^{47} -122.254 q^{49} +(-253.767 + 3.66306i) q^{51} +(235.743 - 235.743i) q^{53} +323.163 q^{55} +(38.1783 - 39.2967i) q^{57} +(-260.222 - 260.222i) q^{59} +(-388.869 + 388.869i) q^{61} +(400.986 - 11.5787i) q^{63} +661.793i q^{65} +(-334.013 - 334.013i) q^{67} +(223.804 - 3.23055i) q^{69} +522.443i q^{71} +689.751i q^{73} +(-349.062 + 5.03862i) q^{75} +(446.508 + 446.508i) q^{77} +692.930i q^{79} +(727.785 - 42.0654i) q^{81} +(677.176 - 677.176i) q^{83} +(-262.608 - 262.608i) q^{85} +(168.809 - 173.754i) q^{87} +261.949 q^{89} +(-914.386 + 914.386i) q^{91} +(900.694 - 13.0013i) q^{93} +80.1741 q^{95} -641.755 q^{97} +(834.504 + 787.663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} + 8 q^{7} - 4 q^{13} - 20 q^{19} - 56 q^{21} + 134 q^{27} - 4 q^{33} - 4 q^{37} - 596 q^{39} + 436 q^{43} - 252 q^{45} + 972 q^{49} + 648 q^{51} - 280 q^{55} - 916 q^{61} + 1636 q^{67} + 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0749974 + 5.19561i 0.0144332 + 0.999896i
\(4\) 0 0
\(5\) −5.37662 + 5.37662i −0.480899 + 0.480899i −0.905419 0.424520i \(-0.860443\pi\)
0.424520 + 0.905419i \(0.360443\pi\)
\(6\) 0 0
\(7\) −14.8575 −0.802231 −0.401115 0.916028i \(-0.631377\pi\)
−0.401115 + 0.916028i \(0.631377\pi\)
\(8\) 0 0
\(9\) −26.9888 + 0.779314i −0.999583 + 0.0288635i
\(10\) 0 0
\(11\) −30.0526 30.0526i −0.823746 0.823746i 0.162897 0.986643i \(-0.447916\pi\)
−0.986643 + 0.162897i \(0.947916\pi\)
\(12\) 0 0
\(13\) 61.5437 61.5437i 1.31301 1.31301i 0.393825 0.919185i \(-0.371151\pi\)
0.919185 0.393825i \(-0.128849\pi\)
\(14\) 0 0
\(15\) −28.3380 27.5316i −0.487790 0.473908i
\(16\) 0 0
\(17\) 48.8426i 0.696827i 0.937341 + 0.348414i \(0.113280\pi\)
−0.937341 + 0.348414i \(0.886720\pi\)
\(18\) 0 0
\(19\) −7.45581 7.45581i −0.0900253 0.0900253i 0.660660 0.750685i \(-0.270277\pi\)
−0.750685 + 0.660660i \(0.770277\pi\)
\(20\) 0 0
\(21\) −1.11427 77.1939i −0.0115788 0.802147i
\(22\) 0 0
\(23\) 43.0756i 0.390516i −0.980752 0.195258i \(-0.937446\pi\)
0.980752 0.195258i \(-0.0625545\pi\)
\(24\) 0 0
\(25\) 67.1840i 0.537472i
\(26\) 0 0
\(27\) −6.07310 140.165i −0.0432877 0.999063i
\(28\) 0 0
\(29\) −32.9665 32.9665i −0.211094 0.211094i 0.593638 0.804732i \(-0.297691\pi\)
−0.804732 + 0.593638i \(0.797691\pi\)
\(30\) 0 0
\(31\) 173.357i 1.00438i −0.864757 0.502190i \(-0.832528\pi\)
0.864757 0.502190i \(-0.167472\pi\)
\(32\) 0 0
\(33\) 153.888 158.396i 0.811771 0.835550i
\(34\) 0 0
\(35\) 79.8832 79.8832i 0.385792 0.385792i
\(36\) 0 0
\(37\) −177.539 177.539i −0.788842 0.788842i 0.192462 0.981304i \(-0.438353\pi\)
−0.981304 + 0.192462i \(0.938353\pi\)
\(38\) 0 0
\(39\) 324.373 + 315.141i 1.33182 + 1.29392i
\(40\) 0 0
\(41\) −454.458 −1.73108 −0.865542 0.500837i \(-0.833026\pi\)
−0.865542 + 0.500837i \(0.833026\pi\)
\(42\) 0 0
\(43\) −239.150 + 239.150i −0.848139 + 0.848139i −0.989901 0.141762i \(-0.954723\pi\)
0.141762 + 0.989901i \(0.454723\pi\)
\(44\) 0 0
\(45\) 140.918 149.298i 0.466818 0.494579i
\(46\) 0 0
\(47\) −30.4238 −0.0944205 −0.0472102 0.998885i \(-0.515033\pi\)
−0.0472102 + 0.998885i \(0.515033\pi\)
\(48\) 0 0
\(49\) −122.254 −0.356426
\(50\) 0 0
\(51\) −253.767 + 3.66306i −0.696755 + 0.0100575i
\(52\) 0 0
\(53\) 235.743 235.743i 0.610976 0.610976i −0.332224 0.943200i \(-0.607799\pi\)
0.943200 + 0.332224i \(0.107799\pi\)
\(54\) 0 0
\(55\) 323.163 0.792278
\(56\) 0 0
\(57\) 38.1783 39.2967i 0.0887166 0.0913153i
\(58\) 0 0
\(59\) −260.222 260.222i −0.574204 0.574204i 0.359096 0.933300i \(-0.383085\pi\)
−0.933300 + 0.359096i \(0.883085\pi\)
\(60\) 0 0
\(61\) −388.869 + 388.869i −0.816222 + 0.816222i −0.985558 0.169336i \(-0.945838\pi\)
0.169336 + 0.985558i \(0.445838\pi\)
\(62\) 0 0
\(63\) 400.986 11.5787i 0.801896 0.0231552i
\(64\) 0 0
\(65\) 661.793i 1.26285i
\(66\) 0 0
\(67\) −334.013 334.013i −0.609047 0.609047i 0.333650 0.942697i \(-0.391720\pi\)
−0.942697 + 0.333650i \(0.891720\pi\)
\(68\) 0 0
\(69\) 223.804 3.23055i 0.390476 0.00563642i
\(70\) 0 0
\(71\) 522.443i 0.873275i 0.899637 + 0.436638i \(0.143831\pi\)
−0.899637 + 0.436638i \(0.856169\pi\)
\(72\) 0 0
\(73\) 689.751i 1.10588i 0.833221 + 0.552940i \(0.186494\pi\)
−0.833221 + 0.552940i \(0.813506\pi\)
\(74\) 0 0
\(75\) −349.062 + 5.03862i −0.537416 + 0.00775747i
\(76\) 0 0
\(77\) 446.508 + 446.508i 0.660835 + 0.660835i
\(78\) 0 0
\(79\) 692.930i 0.986844i 0.869790 + 0.493422i \(0.164254\pi\)
−0.869790 + 0.493422i \(0.835746\pi\)
\(80\) 0 0
\(81\) 727.785 42.0654i 0.998334 0.0577029i
\(82\) 0 0
\(83\) 677.176 677.176i 0.895539 0.895539i −0.0994989 0.995038i \(-0.531724\pi\)
0.995038 + 0.0994989i \(0.0317240\pi\)
\(84\) 0 0
\(85\) −262.608 262.608i −0.335104 0.335104i
\(86\) 0 0
\(87\) 168.809 173.754i 0.208025 0.214119i
\(88\) 0 0
\(89\) 261.949 0.311983 0.155992 0.987758i \(-0.450143\pi\)
0.155992 + 0.987758i \(0.450143\pi\)
\(90\) 0 0
\(91\) −914.386 + 914.386i −1.05334 + 1.05334i
\(92\) 0 0
\(93\) 900.694 13.0013i 1.00428 0.0144965i
\(94\) 0 0
\(95\) 80.1741 0.0865862
\(96\) 0 0
\(97\) −641.755 −0.671757 −0.335878 0.941905i \(-0.609033\pi\)
−0.335878 + 0.941905i \(0.609033\pi\)
\(98\) 0 0
\(99\) 834.504 + 787.663i 0.847179 + 0.799627i
\(100\) 0 0
\(101\) 962.520 962.520i 0.948260 0.948260i −0.0504657 0.998726i \(-0.516071\pi\)
0.998726 + 0.0504657i \(0.0160705\pi\)
\(102\) 0 0
\(103\) −1478.65 −1.41452 −0.707262 0.706951i \(-0.750070\pi\)
−0.707262 + 0.706951i \(0.750070\pi\)
\(104\) 0 0
\(105\) 421.033 + 409.051i 0.391320 + 0.380184i
\(106\) 0 0
\(107\) 1484.78 + 1484.78i 1.34149 + 1.34149i 0.894580 + 0.446908i \(0.147475\pi\)
0.446908 + 0.894580i \(0.352525\pi\)
\(108\) 0 0
\(109\) −103.806 + 103.806i −0.0912181 + 0.0912181i −0.751243 0.660025i \(-0.770546\pi\)
0.660025 + 0.751243i \(0.270546\pi\)
\(110\) 0 0
\(111\) 909.107 935.736i 0.777375 0.800146i
\(112\) 0 0
\(113\) 54.5390i 0.0454035i 0.999742 + 0.0227017i \(0.00722681\pi\)
−0.999742 + 0.0227017i \(0.992773\pi\)
\(114\) 0 0
\(115\) 231.601 + 231.601i 0.187799 + 0.187799i
\(116\) 0 0
\(117\) −1613.02 + 1708.95i −1.27457 + 1.35036i
\(118\) 0 0
\(119\) 725.680i 0.559016i
\(120\) 0 0
\(121\) 475.322i 0.357116i
\(122\) 0 0
\(123\) −34.0832 2361.19i −0.0249852 1.73090i
\(124\) 0 0
\(125\) −1033.30 1033.30i −0.739369 0.739369i
\(126\) 0 0
\(127\) 31.6817i 0.0221362i 0.999939 + 0.0110681i \(0.00352315\pi\)
−0.999939 + 0.0110681i \(0.996477\pi\)
\(128\) 0 0
\(129\) −1260.46 1224.59i −0.860292 0.835810i
\(130\) 0 0
\(131\) −1687.23 + 1687.23i −1.12530 + 1.12530i −0.134364 + 0.990932i \(0.542899\pi\)
−0.990932 + 0.134364i \(0.957101\pi\)
\(132\) 0 0
\(133\) 110.775 + 110.775i 0.0722211 + 0.0722211i
\(134\) 0 0
\(135\) 786.264 + 720.958i 0.501265 + 0.459631i
\(136\) 0 0
\(137\) −453.548 −0.282841 −0.141420 0.989950i \(-0.545167\pi\)
−0.141420 + 0.989950i \(0.545167\pi\)
\(138\) 0 0
\(139\) 1392.05 1392.05i 0.849439 0.849439i −0.140624 0.990063i \(-0.544911\pi\)
0.990063 + 0.140624i \(0.0449110\pi\)
\(140\) 0 0
\(141\) −2.28170 158.070i −0.00136279 0.0944106i
\(142\) 0 0
\(143\) −3699.10 −2.16318
\(144\) 0 0
\(145\) 354.497 0.203030
\(146\) 0 0
\(147\) −9.16874 635.185i −0.00514438 0.356389i
\(148\) 0 0
\(149\) 118.909 118.909i 0.0653785 0.0653785i −0.673662 0.739040i \(-0.735279\pi\)
0.739040 + 0.673662i \(0.235279\pi\)
\(150\) 0 0
\(151\) −289.153 −0.155834 −0.0779170 0.996960i \(-0.524827\pi\)
−0.0779170 + 0.996960i \(0.524827\pi\)
\(152\) 0 0
\(153\) −38.0637 1318.20i −0.0201129 0.696537i
\(154\) 0 0
\(155\) 932.072 + 932.072i 0.483005 + 0.483005i
\(156\) 0 0
\(157\) −683.842 + 683.842i −0.347621 + 0.347621i −0.859223 0.511602i \(-0.829052\pi\)
0.511602 + 0.859223i \(0.329052\pi\)
\(158\) 0 0
\(159\) 1242.51 + 1207.15i 0.619731 + 0.602094i
\(160\) 0 0
\(161\) 639.996i 0.313284i
\(162\) 0 0
\(163\) −35.4216 35.4216i −0.0170210 0.0170210i 0.698545 0.715566i \(-0.253831\pi\)
−0.715566 + 0.698545i \(0.753831\pi\)
\(164\) 0 0
\(165\) 24.2364 + 1679.03i 0.0114351 + 0.792195i
\(166\) 0 0
\(167\) 2091.54i 0.969150i −0.874750 0.484575i \(-0.838974\pi\)
0.874750 0.484575i \(-0.161026\pi\)
\(168\) 0 0
\(169\) 5378.24i 2.44799i
\(170\) 0 0
\(171\) 207.034 + 195.413i 0.0925863 + 0.0873894i
\(172\) 0 0
\(173\) −2566.01 2566.01i −1.12769 1.12769i −0.990552 0.137137i \(-0.956210\pi\)
−0.137137 0.990552i \(-0.543790\pi\)
\(174\) 0 0
\(175\) 998.188i 0.431177i
\(176\) 0 0
\(177\) 1332.50 1371.53i 0.565857 0.582432i
\(178\) 0 0
\(179\) 1252.13 1252.13i 0.522841 0.522841i −0.395587 0.918429i \(-0.629459\pi\)
0.918429 + 0.395587i \(0.129459\pi\)
\(180\) 0 0
\(181\) 1732.51 + 1732.51i 0.711474 + 0.711474i 0.966844 0.255370i \(-0.0821971\pi\)
−0.255370 + 0.966844i \(0.582197\pi\)
\(182\) 0 0
\(183\) −2049.58 1991.25i −0.827918 0.804357i
\(184\) 0 0
\(185\) 1909.11 0.758707
\(186\) 0 0
\(187\) 1467.85 1467.85i 0.574009 0.574009i
\(188\) 0 0
\(189\) 90.2312 + 2082.50i 0.0347267 + 0.801479i
\(190\) 0 0
\(191\) −188.463 −0.0713965 −0.0356983 0.999363i \(-0.511366\pi\)
−0.0356983 + 0.999363i \(0.511366\pi\)
\(192\) 0 0
\(193\) −84.5839 −0.0315465 −0.0157733 0.999876i \(-0.505021\pi\)
−0.0157733 + 0.999876i \(0.505021\pi\)
\(194\) 0 0
\(195\) −3438.42 + 49.6327i −1.26272 + 0.0182270i
\(196\) 0 0
\(197\) −780.741 + 780.741i −0.282363 + 0.282363i −0.834051 0.551688i \(-0.813984\pi\)
0.551688 + 0.834051i \(0.313984\pi\)
\(198\) 0 0
\(199\) 1640.08 0.584233 0.292116 0.956383i \(-0.405640\pi\)
0.292116 + 0.956383i \(0.405640\pi\)
\(200\) 0 0
\(201\) 1710.35 1760.45i 0.600193 0.617774i
\(202\) 0 0
\(203\) 489.801 + 489.801i 0.169346 + 0.169346i
\(204\) 0 0
\(205\) 2443.45 2443.45i 0.832477 0.832477i
\(206\) 0 0
\(207\) 33.5694 + 1162.56i 0.0112717 + 0.390354i
\(208\) 0 0
\(209\) 448.134i 0.148316i
\(210\) 0 0
\(211\) 436.919 + 436.919i 0.142553 + 0.142553i 0.774782 0.632229i \(-0.217860\pi\)
−0.632229 + 0.774782i \(0.717860\pi\)
\(212\) 0 0
\(213\) −2714.41 + 39.1818i −0.873185 + 0.0126042i
\(214\) 0 0
\(215\) 2571.63i 0.815739i
\(216\) 0 0
\(217\) 2575.65i 0.805745i
\(218\) 0 0
\(219\) −3583.68 + 51.7295i −1.10577 + 0.0159614i
\(220\) 0 0
\(221\) 3005.95 + 3005.95i 0.914942 + 0.914942i
\(222\) 0 0
\(223\) 450.388i 0.135248i 0.997711 + 0.0676239i \(0.0215418\pi\)
−0.997711 + 0.0676239i \(0.978458\pi\)
\(224\) 0 0
\(225\) −52.3575 1813.21i −0.0155133 0.537248i
\(226\) 0 0
\(227\) 1039.61 1039.61i 0.303972 0.303972i −0.538594 0.842566i \(-0.681044\pi\)
0.842566 + 0.538594i \(0.181044\pi\)
\(228\) 0 0
\(229\) 1142.20 + 1142.20i 0.329601 + 0.329601i 0.852435 0.522834i \(-0.175125\pi\)
−0.522834 + 0.852435i \(0.675125\pi\)
\(230\) 0 0
\(231\) −2286.39 + 2353.37i −0.651228 + 0.670304i
\(232\) 0 0
\(233\) −3480.39 −0.978575 −0.489287 0.872123i \(-0.662743\pi\)
−0.489287 + 0.872123i \(0.662743\pi\)
\(234\) 0 0
\(235\) 163.577 163.577i 0.0454067 0.0454067i
\(236\) 0 0
\(237\) −3600.19 + 51.9679i −0.986742 + 0.0142434i
\(238\) 0 0
\(239\) −3195.92 −0.864966 −0.432483 0.901642i \(-0.642363\pi\)
−0.432483 + 0.901642i \(0.642363\pi\)
\(240\) 0 0
\(241\) −255.355 −0.0682525 −0.0341262 0.999418i \(-0.510865\pi\)
−0.0341262 + 0.999418i \(0.510865\pi\)
\(242\) 0 0
\(243\) 273.138 + 3778.13i 0.0721061 + 0.997397i
\(244\) 0 0
\(245\) 657.313 657.313i 0.171405 0.171405i
\(246\) 0 0
\(247\) −917.716 −0.236408
\(248\) 0 0
\(249\) 3569.13 + 3467.56i 0.908371 + 0.882520i
\(250\) 0 0
\(251\) 3550.34 + 3550.34i 0.892811 + 0.892811i 0.994787 0.101976i \(-0.0325164\pi\)
−0.101976 + 0.994787i \(0.532516\pi\)
\(252\) 0 0
\(253\) −1294.53 + 1294.53i −0.321686 + 0.321686i
\(254\) 0 0
\(255\) 1344.71 1384.10i 0.330232 0.339905i
\(256\) 0 0
\(257\) 7256.80i 1.76135i 0.473721 + 0.880675i \(0.342911\pi\)
−0.473721 + 0.880675i \(0.657089\pi\)
\(258\) 0 0
\(259\) 2637.78 + 2637.78i 0.632834 + 0.632834i
\(260\) 0 0
\(261\) 915.417 + 864.034i 0.217099 + 0.204913i
\(262\) 0 0
\(263\) 2114.79i 0.495832i 0.968782 + 0.247916i \(0.0797457\pi\)
−0.968782 + 0.247916i \(0.920254\pi\)
\(264\) 0 0
\(265\) 2535.00i 0.587636i
\(266\) 0 0
\(267\) 19.6455 + 1360.98i 0.00450293 + 0.311951i
\(268\) 0 0
\(269\) 120.142 + 120.142i 0.0272312 + 0.0272312i 0.720591 0.693360i \(-0.243870\pi\)
−0.693360 + 0.720591i \(0.743870\pi\)
\(270\) 0 0
\(271\) 924.962i 0.207334i −0.994612 0.103667i \(-0.966942\pi\)
0.994612 0.103667i \(-0.0330576\pi\)
\(272\) 0 0
\(273\) −4819.37 4682.22i −1.06843 1.03802i
\(274\) 0 0
\(275\) 2019.06 2019.06i 0.442741 0.442741i
\(276\) 0 0
\(277\) −3882.29 3882.29i −0.842110 0.842110i 0.147023 0.989133i \(-0.453031\pi\)
−0.989133 + 0.147023i \(0.953031\pi\)
\(278\) 0 0
\(279\) 135.099 + 4678.68i 0.0289899 + 1.00396i
\(280\) 0 0
\(281\) −175.744 −0.0373097 −0.0186548 0.999826i \(-0.505938\pi\)
−0.0186548 + 0.999826i \(0.505938\pi\)
\(282\) 0 0
\(283\) 563.080 563.080i 0.118274 0.118274i −0.645492 0.763767i \(-0.723348\pi\)
0.763767 + 0.645492i \(0.223348\pi\)
\(284\) 0 0
\(285\) 6.01285 + 416.553i 0.00124972 + 0.0865772i
\(286\) 0 0
\(287\) 6752.12 1.38873
\(288\) 0 0
\(289\) 2527.40 0.514432
\(290\) 0 0
\(291\) −48.1300 3334.31i −0.00969563 0.671687i
\(292\) 0 0
\(293\) 5718.53 5718.53i 1.14020 1.14020i 0.151792 0.988412i \(-0.451496\pi\)
0.988412 0.151792i \(-0.0485045\pi\)
\(294\) 0 0
\(295\) 2798.23 0.552268
\(296\) 0 0
\(297\) −4029.80 + 4394.83i −0.787316 + 0.858632i
\(298\) 0 0
\(299\) −2651.03 2651.03i −0.512752 0.512752i
\(300\) 0 0
\(301\) 3553.17 3553.17i 0.680403 0.680403i
\(302\) 0 0
\(303\) 5073.06 + 4928.69i 0.961848 + 0.934475i
\(304\) 0 0
\(305\) 4181.60i 0.785041i
\(306\) 0 0
\(307\) −1027.09 1027.09i −0.190942 0.190942i 0.605161 0.796103i \(-0.293109\pi\)
−0.796103 + 0.605161i \(0.793109\pi\)
\(308\) 0 0
\(309\) −110.895 7682.51i −0.0204162 1.41438i
\(310\) 0 0
\(311\) 3479.04i 0.634335i 0.948370 + 0.317168i \(0.102732\pi\)
−0.948370 + 0.317168i \(0.897268\pi\)
\(312\) 0 0
\(313\) 3308.25i 0.597424i 0.954343 + 0.298712i \(0.0965569\pi\)
−0.954343 + 0.298712i \(0.903443\pi\)
\(314\) 0 0
\(315\) −2093.69 + 2218.20i −0.374496 + 0.396767i
\(316\) 0 0
\(317\) 1297.15 + 1297.15i 0.229826 + 0.229826i 0.812620 0.582794i \(-0.198040\pi\)
−0.582794 + 0.812620i \(0.698040\pi\)
\(318\) 0 0
\(319\) 1981.46i 0.347776i
\(320\) 0 0
\(321\) −7602.99 + 7825.70i −1.32199 + 1.36071i
\(322\) 0 0
\(323\) 364.161 364.161i 0.0627321 0.0627321i
\(324\) 0 0
\(325\) 4134.75 + 4134.75i 0.705707 + 0.705707i
\(326\) 0 0
\(327\) −547.119 531.548i −0.0925252 0.0898920i
\(328\) 0 0
\(329\) 452.022 0.0757470
\(330\) 0 0
\(331\) −4319.83 + 4319.83i −0.717339 + 0.717339i −0.968059 0.250721i \(-0.919332\pi\)
0.250721 + 0.968059i \(0.419332\pi\)
\(332\) 0 0
\(333\) 4929.90 + 4653.19i 0.811282 + 0.765745i
\(334\) 0 0
\(335\) 3591.71 0.585780
\(336\) 0 0
\(337\) 9925.19 1.60433 0.802165 0.597102i \(-0.203681\pi\)
0.802165 + 0.597102i \(0.203681\pi\)
\(338\) 0 0
\(339\) −283.363 + 4.09028i −0.0453988 + 0.000655320i
\(340\) 0 0
\(341\) −5209.83 + 5209.83i −0.827355 + 0.827355i
\(342\) 0 0
\(343\) 6912.52 1.08817
\(344\) 0 0
\(345\) −1185.94 + 1220.68i −0.185069 + 0.190490i
\(346\) 0 0
\(347\) −6188.11 6188.11i −0.957335 0.957335i 0.0417910 0.999126i \(-0.486694\pi\)
−0.999126 + 0.0417910i \(0.986694\pi\)
\(348\) 0 0
\(349\) −1274.05 + 1274.05i −0.195411 + 0.195411i −0.798030 0.602618i \(-0.794124\pi\)
0.602618 + 0.798030i \(0.294124\pi\)
\(350\) 0 0
\(351\) −9000.00 8252.48i −1.36862 1.25494i
\(352\) 0 0
\(353\) 1359.26i 0.204947i 0.994736 + 0.102473i \(0.0326756\pi\)
−0.994736 + 0.102473i \(0.967324\pi\)
\(354\) 0 0
\(355\) −2808.97 2808.97i −0.419957 0.419957i
\(356\) 0 0
\(357\) 3770.35 54.4241i 0.558958 0.00806842i
\(358\) 0 0
\(359\) 479.331i 0.0704683i −0.999379 0.0352342i \(-0.988782\pi\)
0.999379 0.0352342i \(-0.0112177\pi\)
\(360\) 0 0
\(361\) 6747.82i 0.983791i
\(362\) 0 0
\(363\) −2469.59 + 35.6479i −0.357079 + 0.00515435i
\(364\) 0 0
\(365\) −3708.53 3708.53i −0.531817 0.531817i
\(366\) 0 0
\(367\) 6512.69i 0.926320i −0.886275 0.463160i \(-0.846715\pi\)
0.886275 0.463160i \(-0.153285\pi\)
\(368\) 0 0
\(369\) 12265.3 354.166i 1.73036 0.0499651i
\(370\) 0 0
\(371\) −3502.55 + 3502.55i −0.490144 + 0.490144i
\(372\) 0 0
\(373\) −8069.28 8069.28i −1.12014 1.12014i −0.991720 0.128418i \(-0.959010\pi\)
−0.128418 0.991720i \(-0.540990\pi\)
\(374\) 0 0
\(375\) 5291.13 5446.12i 0.728620 0.749963i
\(376\) 0 0
\(377\) −4057.76 −0.554338
\(378\) 0 0
\(379\) −1799.74 + 1799.74i −0.243922 + 0.243922i −0.818471 0.574548i \(-0.805178\pi\)
0.574548 + 0.818471i \(0.305178\pi\)
\(380\) 0 0
\(381\) −164.606 + 2.37604i −0.0221339 + 0.000319497i
\(382\) 0 0
\(383\) −12267.5 −1.63666 −0.818332 0.574746i \(-0.805101\pi\)
−0.818332 + 0.574746i \(0.805101\pi\)
\(384\) 0 0
\(385\) −4801.40 −0.635590
\(386\) 0 0
\(387\) 6267.98 6640.73i 0.823306 0.872266i
\(388\) 0 0
\(389\) 1661.54 1661.54i 0.216564 0.216564i −0.590485 0.807049i \(-0.701064\pi\)
0.807049 + 0.590485i \(0.201064\pi\)
\(390\) 0 0
\(391\) 2103.92 0.272122
\(392\) 0 0
\(393\) −8892.71 8639.64i −1.14142 1.10894i
\(394\) 0 0
\(395\) −3725.62 3725.62i −0.474573 0.474573i
\(396\) 0 0
\(397\) −259.031 + 259.031i −0.0327465 + 0.0327465i −0.723290 0.690544i \(-0.757371\pi\)
0.690544 + 0.723290i \(0.257371\pi\)
\(398\) 0 0
\(399\) −567.236 + 583.851i −0.0711712 + 0.0732559i
\(400\) 0 0
\(401\) 5120.78i 0.637705i −0.947804 0.318852i \(-0.896703\pi\)
0.947804 0.318852i \(-0.103297\pi\)
\(402\) 0 0
\(403\) −10669.0 10669.0i −1.31876 1.31876i
\(404\) 0 0
\(405\) −3686.85 + 4139.19i −0.452349 + 0.507847i
\(406\) 0 0
\(407\) 10671.0i 1.29961i
\(408\) 0 0
\(409\) 4138.32i 0.500311i 0.968206 + 0.250155i \(0.0804817\pi\)
−0.968206 + 0.250155i \(0.919518\pi\)
\(410\) 0 0
\(411\) −34.0149 2356.46i −0.00408231 0.282811i
\(412\) 0 0
\(413\) 3866.26 + 3866.26i 0.460644 + 0.460644i
\(414\) 0 0
\(415\) 7281.83i 0.861327i
\(416\) 0 0
\(417\) 7336.94 + 7128.14i 0.861610 + 0.837090i
\(418\) 0 0
\(419\) −2623.85 + 2623.85i −0.305927 + 0.305927i −0.843327 0.537401i \(-0.819406\pi\)
0.537401 + 0.843327i \(0.319406\pi\)
\(420\) 0 0
\(421\) −207.548 207.548i −0.0240268 0.0240268i 0.694991 0.719018i \(-0.255408\pi\)
−0.719018 + 0.694991i \(0.755408\pi\)
\(422\) 0 0
\(423\) 821.099 23.7097i 0.0943811 0.00272530i
\(424\) 0 0
\(425\) −3281.44 −0.374525
\(426\) 0 0
\(427\) 5777.63 5777.63i 0.654799 0.654799i
\(428\) 0 0
\(429\) −277.423 19219.1i −0.0312217 2.16295i
\(430\) 0 0
\(431\) 11772.7 1.31571 0.657855 0.753145i \(-0.271464\pi\)
0.657855 + 0.753145i \(0.271464\pi\)
\(432\) 0 0
\(433\) −4268.67 −0.473763 −0.236881 0.971539i \(-0.576125\pi\)
−0.236881 + 0.971539i \(0.576125\pi\)
\(434\) 0 0
\(435\) 26.5863 + 1841.83i 0.00293038 + 0.203009i
\(436\) 0 0
\(437\) −321.163 + 321.163i −0.0351564 + 0.0351564i
\(438\) 0 0
\(439\) −1006.82 −0.109459 −0.0547297 0.998501i \(-0.517430\pi\)
−0.0547297 + 0.998501i \(0.517430\pi\)
\(440\) 0 0
\(441\) 3299.49 95.2744i 0.356277 0.0102877i
\(442\) 0 0
\(443\) 3697.94 + 3697.94i 0.396601 + 0.396601i 0.877032 0.480431i \(-0.159520\pi\)
−0.480431 + 0.877032i \(0.659520\pi\)
\(444\) 0 0
\(445\) −1408.40 + 1408.40i −0.150032 + 0.150032i
\(446\) 0 0
\(447\) 626.722 + 608.886i 0.0663153 + 0.0644281i
\(448\) 0 0
\(449\) 11582.4i 1.21738i −0.793407 0.608692i \(-0.791695\pi\)
0.793407 0.608692i \(-0.208305\pi\)
\(450\) 0 0
\(451\) 13657.7 + 13657.7i 1.42597 + 1.42597i
\(452\) 0 0
\(453\) −21.6857 1502.33i −0.00224919 0.155818i
\(454\) 0 0
\(455\) 9832.60i 1.01310i
\(456\) 0 0
\(457\) 1710.35i 0.175070i −0.996161 0.0875349i \(-0.972101\pi\)
0.996161 0.0875349i \(-0.0278989\pi\)
\(458\) 0 0
\(459\) 6846.00 296.626i 0.696174 0.0301641i
\(460\) 0 0
\(461\) −4945.52 4945.52i −0.499644 0.499644i 0.411683 0.911327i \(-0.364941\pi\)
−0.911327 + 0.411683i \(0.864941\pi\)
\(462\) 0 0
\(463\) 5550.67i 0.557152i −0.960414 0.278576i \(-0.910138\pi\)
0.960414 0.278576i \(-0.0898624\pi\)
\(464\) 0 0
\(465\) −4772.78 + 4912.59i −0.475984 + 0.489926i
\(466\) 0 0
\(467\) −5335.45 + 5335.45i −0.528683 + 0.528683i −0.920180 0.391497i \(-0.871957\pi\)
0.391497 + 0.920180i \(0.371957\pi\)
\(468\) 0 0
\(469\) 4962.60 + 4962.60i 0.488596 + 0.488596i
\(470\) 0 0
\(471\) −3604.26 3501.69i −0.352602 0.342568i
\(472\) 0 0
\(473\) 14374.2 1.39730
\(474\) 0 0
\(475\) 500.912 500.912i 0.0483861 0.0483861i
\(476\) 0 0
\(477\) −6178.68 + 6546.12i −0.593087 + 0.628357i
\(478\) 0 0
\(479\) 3196.65 0.304924 0.152462 0.988309i \(-0.451280\pi\)
0.152462 + 0.988309i \(0.451280\pi\)
\(480\) 0 0
\(481\) −21852.7 −2.07152
\(482\) 0 0
\(483\) −3325.17 + 47.9980i −0.313251 + 0.00452171i
\(484\) 0 0
\(485\) 3450.47 3450.47i 0.323047 0.323047i
\(486\) 0 0
\(487\) −18653.5 −1.73567 −0.867833 0.496856i \(-0.834488\pi\)
−0.867833 + 0.496856i \(0.834488\pi\)
\(488\) 0 0
\(489\) 181.380 186.693i 0.0167736 0.0172649i
\(490\) 0 0
\(491\) −4162.67 4162.67i −0.382604 0.382604i 0.489436 0.872039i \(-0.337203\pi\)
−0.872039 + 0.489436i \(0.837203\pi\)
\(492\) 0 0
\(493\) 1610.17 1610.17i 0.147096 0.147096i
\(494\) 0 0
\(495\) −8721.76 + 251.845i −0.791948 + 0.0228679i
\(496\) 0 0
\(497\) 7762.20i 0.700568i
\(498\) 0 0
\(499\) 7570.74 + 7570.74i 0.679184 + 0.679184i 0.959816 0.280631i \(-0.0905439\pi\)
−0.280631 + 0.959816i \(0.590544\pi\)
\(500\) 0 0
\(501\) 10866.8 156.860i 0.969049 0.0139880i
\(502\) 0 0
\(503\) 10216.7i 0.905647i 0.891600 + 0.452823i \(0.149583\pi\)
−0.891600 + 0.452823i \(0.850417\pi\)
\(504\) 0 0
\(505\) 10350.2i 0.912035i
\(506\) 0 0
\(507\) 27943.3 403.354i 2.44774 0.0353325i
\(508\) 0 0
\(509\) 12175.7 + 12175.7i 1.06027 + 1.06027i 0.998063 + 0.0622119i \(0.0198155\pi\)
0.0622119 + 0.998063i \(0.480185\pi\)
\(510\) 0 0
\(511\) 10248.0i 0.887171i
\(512\) 0 0
\(513\) −999.761 + 1090.32i −0.0860439 + 0.0938379i
\(514\) 0 0
\(515\) 7950.15 7950.15i 0.680244 0.680244i
\(516\) 0 0
\(517\) 914.314 + 914.314i 0.0777785 + 0.0777785i
\(518\) 0 0
\(519\) 13139.5 13524.4i 1.11130 1.14385i
\(520\) 0 0
\(521\) −734.120 −0.0617320 −0.0308660 0.999524i \(-0.509827\pi\)
−0.0308660 + 0.999524i \(0.509827\pi\)
\(522\) 0 0
\(523\) −4289.83 + 4289.83i −0.358664 + 0.358664i −0.863320 0.504656i \(-0.831619\pi\)
0.504656 + 0.863320i \(0.331619\pi\)
\(524\) 0 0
\(525\) 5186.20 74.8615i 0.431132 0.00622328i
\(526\) 0 0
\(527\) 8467.19 0.699880
\(528\) 0 0
\(529\) 10311.5 0.847497
\(530\) 0 0
\(531\) 7225.86 + 6820.27i 0.590538 + 0.557391i
\(532\) 0 0
\(533\) −27969.0 + 27969.0i −2.27293 + 2.27293i
\(534\) 0 0
\(535\) −15966.2 −1.29024
\(536\) 0 0
\(537\) 6599.49 + 6411.68i 0.530333 + 0.515241i
\(538\) 0 0
\(539\) 3674.06 + 3674.06i 0.293605 + 0.293605i
\(540\) 0 0
\(541\) −11785.3 + 11785.3i −0.936583 + 0.936583i −0.998106 0.0615231i \(-0.980404\pi\)
0.0615231 + 0.998106i \(0.480404\pi\)
\(542\) 0 0
\(543\) −8871.54 + 9131.41i −0.701131 + 0.721669i
\(544\) 0 0
\(545\) 1116.25i 0.0877334i
\(546\) 0 0
\(547\) −10084.5 10084.5i −0.788268 0.788268i 0.192942 0.981210i \(-0.438197\pi\)
−0.981210 + 0.192942i \(0.938197\pi\)
\(548\) 0 0
\(549\) 10192.0 10798.1i 0.792323 0.839441i
\(550\) 0 0
\(551\) 491.585i 0.0380076i
\(552\) 0 0
\(553\) 10295.2i 0.791677i
\(554\) 0 0
\(555\) 143.178 + 9919.01i 0.0109506 + 0.758628i
\(556\) 0 0
\(557\) −6502.22 6502.22i −0.494628 0.494628i 0.415133 0.909761i \(-0.363735\pi\)
−0.909761 + 0.415133i \(0.863735\pi\)
\(558\) 0 0
\(559\) 29436.3i 2.22723i
\(560\) 0 0
\(561\) 7736.45 + 7516.28i 0.582234 + 0.565664i
\(562\) 0 0
\(563\) −6184.95 + 6184.95i −0.462992 + 0.462992i −0.899635 0.436643i \(-0.856167\pi\)
0.436643 + 0.899635i \(0.356167\pi\)
\(564\) 0 0
\(565\) −293.235 293.235i −0.0218345 0.0218345i
\(566\) 0 0
\(567\) −10813.1 + 624.988i −0.800894 + 0.0462911i
\(568\) 0 0
\(569\) 25063.0 1.84657 0.923284 0.384119i \(-0.125495\pi\)
0.923284 + 0.384119i \(0.125495\pi\)
\(570\) 0 0
\(571\) −15682.4 + 15682.4i −1.14937 + 1.14937i −0.162692 + 0.986677i \(0.552018\pi\)
−0.986677 + 0.162692i \(0.947982\pi\)
\(572\) 0 0
\(573\) −14.1343 979.183i −0.00103048 0.0713891i
\(574\) 0 0
\(575\) 2893.99 0.209892
\(576\) 0 0
\(577\) −1972.54 −0.142319 −0.0711593 0.997465i \(-0.522670\pi\)
−0.0711593 + 0.997465i \(0.522670\pi\)
\(578\) 0 0
\(579\) −6.34357 439.465i −0.000455319 0.0315432i
\(580\) 0 0
\(581\) −10061.2 + 10061.2i −0.718429 + 0.718429i
\(582\) 0 0
\(583\) −14169.4 −1.00658
\(584\) 0 0
\(585\) −515.745 17861.0i −0.0364503 1.26233i
\(586\) 0 0
\(587\) −3171.66 3171.66i −0.223013 0.223013i 0.586753 0.809766i \(-0.300406\pi\)
−0.809766 + 0.586753i \(0.800406\pi\)
\(588\) 0 0
\(589\) −1292.52 + 1292.52i −0.0904196 + 0.0904196i
\(590\) 0 0
\(591\) −4114.98 3997.87i −0.286409 0.278258i
\(592\) 0 0
\(593\) 2763.19i 0.191350i 0.995413 + 0.0956752i \(0.0305010\pi\)
−0.995413 + 0.0956752i \(0.969499\pi\)
\(594\) 0 0
\(595\) 3901.70 + 3901.70i 0.268830 + 0.268830i
\(596\) 0 0
\(597\) 123.002 + 8521.23i 0.00843238 + 0.584172i
\(598\) 0 0
\(599\) 27598.5i 1.88255i −0.337647 0.941273i \(-0.609631\pi\)
0.337647 0.941273i \(-0.390369\pi\)
\(600\) 0 0
\(601\) 12432.1i 0.843789i −0.906645 0.421894i \(-0.861365\pi\)
0.906645 0.421894i \(-0.138635\pi\)
\(602\) 0 0
\(603\) 9274.88 + 8754.28i 0.626372 + 0.591214i
\(604\) 0 0
\(605\) −2555.62 2555.62i −0.171737 0.171737i
\(606\) 0 0
\(607\) 13691.9i 0.915545i 0.889069 + 0.457772i \(0.151353\pi\)
−0.889069 + 0.457772i \(0.848647\pi\)
\(608\) 0 0
\(609\) −2508.08 + 2581.55i −0.166884 + 0.171773i
\(610\) 0 0
\(611\) −1872.39 + 1872.39i −0.123975 + 0.123975i
\(612\) 0 0
\(613\) 17418.7 + 17418.7i 1.14769 + 1.14769i 0.987006 + 0.160686i \(0.0513706\pi\)
0.160686 + 0.987006i \(0.448629\pi\)
\(614\) 0 0
\(615\) 12878.4 + 12511.9i 0.844405 + 0.820375i
\(616\) 0 0
\(617\) −6194.64 −0.404193 −0.202096 0.979366i \(-0.564775\pi\)
−0.202096 + 0.979366i \(0.564775\pi\)
\(618\) 0 0
\(619\) 15342.7 15342.7i 0.996247 0.996247i −0.00374578 0.999993i \(-0.501192\pi\)
0.999993 + 0.00374578i \(0.00119232\pi\)
\(620\) 0 0
\(621\) −6037.67 + 261.602i −0.390150 + 0.0169046i
\(622\) 0 0
\(623\) −3891.91 −0.250282
\(624\) 0 0
\(625\) 2713.31 0.173652
\(626\) 0 0
\(627\) −2328.33 + 33.6088i −0.148301 + 0.00214068i
\(628\) 0 0
\(629\) 8671.44 8671.44i 0.549687 0.549687i
\(630\) 0 0
\(631\) 24841.9 1.56726 0.783631 0.621227i \(-0.213365\pi\)
0.783631 + 0.621227i \(0.213365\pi\)
\(632\) 0 0
\(633\) −2237.30 + 2302.83i −0.140481 + 0.144596i
\(634\) 0 0
\(635\) −170.340 170.340i −0.0106453 0.0106453i
\(636\) 0 0
\(637\) −7523.96 + 7523.96i −0.467991 + 0.467991i
\(638\) 0 0
\(639\) −407.147 14100.1i −0.0252058 0.872912i
\(640\) 0 0
\(641\) 13544.6i 0.834600i 0.908769 + 0.417300i \(0.137024\pi\)
−0.908769 + 0.417300i \(0.862976\pi\)
\(642\) 0 0
\(643\) −12655.0 12655.0i −0.776152 0.776152i 0.203022 0.979174i \(-0.434924\pi\)
−0.979174 + 0.203022i \(0.934924\pi\)
\(644\) 0 0
\(645\) 13361.2 192.866i 0.815654 0.0117738i
\(646\) 0 0
\(647\) 8771.04i 0.532960i −0.963840 0.266480i \(-0.914139\pi\)
0.963840 0.266480i \(-0.0858607\pi\)
\(648\) 0 0
\(649\) 15640.7i 0.945997i
\(650\) 0 0
\(651\) −13382.1 + 193.167i −0.805661 + 0.0116295i
\(652\) 0 0
\(653\) 21658.4 + 21658.4i 1.29794 + 1.29794i 0.929748 + 0.368197i \(0.120025\pi\)
0.368197 + 0.929748i \(0.379975\pi\)
\(654\) 0 0
\(655\) 18143.1i 1.08231i
\(656\) 0 0
\(657\) −537.533 18615.5i −0.0319196 1.10542i
\(658\) 0 0
\(659\) 9280.25 9280.25i 0.548569 0.548569i −0.377457 0.926027i \(-0.623202\pi\)
0.926027 + 0.377457i \(0.123202\pi\)
\(660\) 0 0
\(661\) −13336.7 13336.7i −0.784776 0.784776i 0.195857 0.980632i \(-0.437251\pi\)
−0.980632 + 0.195857i \(0.937251\pi\)
\(662\) 0 0
\(663\) −15392.3 + 15843.2i −0.901641 + 0.928052i
\(664\) 0 0
\(665\) −1191.19 −0.0694621
\(666\) 0 0
\(667\) −1420.05 + 1420.05i −0.0824357 + 0.0824357i
\(668\) 0 0
\(669\) −2340.04 + 33.7779i −0.135234 + 0.00195206i
\(670\) 0 0
\(671\) 23373.1 1.34472
\(672\) 0 0
\(673\) −15820.7 −0.906156 −0.453078 0.891471i \(-0.649674\pi\)
−0.453078 + 0.891471i \(0.649674\pi\)
\(674\) 0 0
\(675\) 9416.82 408.015i 0.536968 0.0232659i
\(676\) 0 0
\(677\) 3185.15 3185.15i 0.180820 0.180820i −0.610893 0.791713i \(-0.709189\pi\)
0.791713 + 0.610893i \(0.209189\pi\)
\(678\) 0 0
\(679\) 9534.89 0.538904
\(680\) 0 0
\(681\) 5479.40 + 5323.46i 0.308328 + 0.299553i
\(682\) 0 0
\(683\) 423.850 + 423.850i 0.0237455 + 0.0237455i 0.718880 0.695134i \(-0.244655\pi\)
−0.695134 + 0.718880i \(0.744655\pi\)
\(684\) 0 0
\(685\) 2438.55 2438.55i 0.136018 0.136018i
\(686\) 0 0
\(687\) −5848.76 + 6020.08i −0.324810 + 0.334324i
\(688\) 0 0
\(689\) 29016.9i 1.60444i
\(690\) 0 0
\(691\) −5607.03 5607.03i −0.308685 0.308685i 0.535714 0.844399i \(-0.320042\pi\)
−0.844399 + 0.535714i \(0.820042\pi\)
\(692\) 0 0
\(693\) −12398.7 11702.7i −0.679633 0.641485i
\(694\) 0 0
\(695\) 14969.0i 0.816989i
\(696\) 0 0
\(697\) 22196.9i 1.20627i
\(698\) 0 0
\(699\) −261.020 18082.7i −0.0141240 0.978473i
\(700\) 0 0
\(701\) −15985.1 15985.1i −0.861267 0.861267i 0.130218 0.991485i \(-0.458432\pi\)
−0.991485 + 0.130218i \(0.958432\pi\)
\(702\) 0 0
\(703\) 2647.39i 0.142032i
\(704\) 0 0
\(705\) 862.150 + 837.614i 0.0460574 + 0.0447466i
\(706\) 0 0
\(707\) −14300.7 + 14300.7i −0.760723 + 0.760723i
\(708\) 0 0
\(709\) −3590.05 3590.05i −0.190165 0.190165i 0.605602 0.795768i \(-0.292932\pi\)
−0.795768 + 0.605602i \(0.792932\pi\)
\(710\) 0 0
\(711\) −540.010 18701.3i −0.0284838 0.986433i
\(712\) 0 0
\(713\) −7467.44 −0.392227
\(714\) 0 0
\(715\) 19888.6 19888.6i 1.04027 1.04027i
\(716\) 0 0
\(717\) −239.686 16604.8i −0.0124843 0.864876i
\(718\) 0 0
\(719\) −5996.91 −0.311053 −0.155526 0.987832i \(-0.549707\pi\)
−0.155526 + 0.987832i \(0.549707\pi\)
\(720\) 0 0
\(721\) 21969.1 1.13477
\(722\) 0 0
\(723\) −19.1509 1326.72i −0.000985105 0.0682454i
\(724\) 0 0
\(725\) 2214.82 2214.82i 0.113457 0.113457i
\(726\) 0 0
\(727\) 15850.3 0.808606 0.404303 0.914625i \(-0.367514\pi\)
0.404303 + 0.914625i \(0.367514\pi\)
\(728\) 0 0
\(729\) −19609.2 + 1702.47i −0.996252 + 0.0864943i
\(730\) 0 0
\(731\) −11680.7 11680.7i −0.591007 0.591007i
\(732\) 0 0
\(733\) 15633.8 15633.8i 0.787784 0.787784i −0.193346 0.981131i \(-0.561934\pi\)
0.981131 + 0.193346i \(0.0619341\pi\)
\(734\) 0 0
\(735\) 3464.44 + 3365.85i 0.173861 + 0.168913i
\(736\) 0 0
\(737\) 20075.9i 1.00340i
\(738\) 0 0
\(739\) 22820.0 + 22820.0i 1.13592 + 1.13592i 0.989174 + 0.146747i \(0.0468805\pi\)
0.146747 + 0.989174i \(0.453120\pi\)
\(740\) 0 0
\(741\) −68.8263 4768.10i −0.00341214 0.236384i
\(742\) 0 0
\(743\) 34196.9i 1.68851i 0.535941 + 0.844255i \(0.319957\pi\)
−0.535941 + 0.844255i \(0.680043\pi\)
\(744\) 0 0
\(745\) 1278.65i 0.0628809i
\(746\) 0 0
\(747\) −17748.4 + 18803.9i −0.869317 + 0.921014i
\(748\) 0 0
\(749\) −22060.2 22060.2i −1.07618 1.07618i
\(750\) 0 0
\(751\) 36702.6i 1.78335i −0.452675 0.891676i \(-0.649530\pi\)
0.452675 0.891676i \(-0.350470\pi\)
\(752\) 0 0
\(753\) −18179.9 + 18712.5i −0.879832 + 0.905604i
\(754\) 0 0
\(755\) 1554.66 1554.66i 0.0749404 0.0749404i
\(756\) 0 0
\(757\) −12194.0 12194.0i −0.585468 0.585468i 0.350933 0.936401i \(-0.385865\pi\)
−0.936401 + 0.350933i \(0.885865\pi\)
\(758\) 0 0
\(759\) −6822.98 6628.81i −0.326296 0.317010i
\(760\) 0 0
\(761\) −33960.5 −1.61770 −0.808848 0.588018i \(-0.799909\pi\)
−0.808848 + 0.588018i \(0.799909\pi\)
\(762\) 0 0
\(763\) 1542.29 1542.29i 0.0731780 0.0731780i
\(764\) 0 0
\(765\) 7292.11 + 6882.80i 0.344636 + 0.325292i
\(766\) 0 0
\(767\) −32030.0 −1.50787
\(768\) 0 0
\(769\) 21884.2 1.02622 0.513112 0.858322i \(-0.328493\pi\)
0.513112 + 0.858322i \(0.328493\pi\)
\(770\) 0 0
\(771\) −37703.5 + 544.241i −1.76117 + 0.0254220i
\(772\) 0 0
\(773\) −2736.24 + 2736.24i −0.127316 + 0.127316i −0.767894 0.640577i \(-0.778695\pi\)
0.640577 + 0.767894i \(0.278695\pi\)
\(774\) 0 0
\(775\) 11646.8 0.539826
\(776\) 0 0
\(777\) −13507.1 + 13902.7i −0.623634 + 0.641901i
\(778\) 0 0
\(779\) 3388.36 + 3388.36i 0.155841 + 0.155841i
\(780\) 0 0
\(781\) 15700.8 15700.8i 0.719358 0.719358i
\(782\) 0 0
\(783\) −4420.53 + 4820.95i −0.201759 + 0.220034i
\(784\) 0 0
\(785\) 7353.51i 0.334341i
\(786\) 0 0
\(787\) −4548.50 4548.50i −0.206018 0.206018i 0.596554 0.802573i \(-0.296536\pi\)
−0.802573 + 0.596554i \(0.796536\pi\)
\(788\) 0 0
\(789\) −10987.6 + 158.604i −0.495780 + 0.00715647i
\(790\) 0 0
\(791\) 810.314i 0.0364241i
\(792\) 0 0
\(793\) 47864.8i 2.14342i
\(794\) 0 0
\(795\) −13170.9 + 190.118i −0.587575 + 0.00848150i
\(796\) 0 0
\(797\) 10333.6 + 10333.6i 0.459265 + 0.459265i 0.898414 0.439149i \(-0.144720\pi\)
−0.439149 + 0.898414i \(0.644720\pi\)
\(798\) 0 0
\(799\) 1485.97i 0.0657948i
\(800\) 0 0
\(801\) −7069.67 + 204.140i −0.311853 + 0.00900492i
\(802\) 0 0
\(803\) 20728.8 20728.8i 0.910965 0.910965i
\(804\) 0 0
\(805\) −3441.01 3441.01i −0.150658 0.150658i
\(806\) 0 0
\(807\) −615.202 + 633.223i −0.0268354 + 0.0276214i
\(808\) 0 0
\(809\) −12937.6 −0.562252 −0.281126 0.959671i \(-0.590708\pi\)
−0.281126 + 0.959671i \(0.590708\pi\)
\(810\) 0 0
\(811\) −13303.5 + 13303.5i −0.576015 + 0.576015i −0.933803 0.357788i \(-0.883531\pi\)
0.357788 + 0.933803i \(0.383531\pi\)
\(812\) 0 0
\(813\) 4805.74 69.3697i 0.207312 0.00299250i
\(814\) 0 0
\(815\) 380.896 0.0163708
\(816\) 0 0
\(817\) 3566.11 0.152708
\(818\) 0 0
\(819\) 23965.5 25390.7i 1.02250 1.08330i
\(820\) 0 0
\(821\) 23606.7 23606.7i 1.00351 1.00351i 0.00351227 0.999994i \(-0.498882\pi\)
0.999994 0.00351227i \(-0.00111799\pi\)
\(822\) 0 0
\(823\) 13577.6 0.575071 0.287536 0.957770i \(-0.407164\pi\)
0.287536 + 0.957770i \(0.407164\pi\)
\(824\) 0 0
\(825\) 10641.7 + 10338.8i 0.449085 + 0.436304i
\(826\) 0 0
\(827\) −28241.2 28241.2i −1.18747 1.18747i −0.977763 0.209711i \(-0.932748\pi\)
−0.209711 0.977763i \(-0.567252\pi\)
\(828\) 0 0
\(829\) 13869.8 13869.8i 0.581082 0.581082i −0.354118 0.935201i \(-0.615219\pi\)
0.935201 + 0.354118i \(0.115219\pi\)
\(830\) 0 0
\(831\) 19879.7 20462.1i 0.829868 0.854177i
\(832\) 0 0
\(833\) 5971.21i 0.248367i
\(834\) 0 0
\(835\) 11245.4 + 11245.4i 0.466064 + 0.466064i
\(836\) 0 0
\(837\) −24298.5 + 1052.81i −1.00344 + 0.0434773i
\(838\) 0 0
\(839\) 15874.8i 0.653229i 0.945158 + 0.326615i \(0.105908\pi\)
−0.945158 + 0.326615i \(0.894092\pi\)
\(840\) 0 0
\(841\) 22215.4i 0.910878i
\(842\) 0 0
\(843\) −13.1804 913.099i −0.000538500 0.0373058i
\(844\) 0 0
\(845\) 28916.7 + 28916.7i 1.17724 + 1.17724i
\(846\) 0 0
\(847\) 7062.10i 0.286490i
\(848\) 0 0
\(849\) 2967.77 + 2883.31i 0.119969 + 0.116555i
\(850\) 0 0
\(851\) −7647.57 + 7647.57i −0.308056 + 0.308056i
\(852\) 0 0
\(853\) −2526.73 2526.73i −0.101423 0.101423i 0.654575 0.755997i \(-0.272848\pi\)
−0.755997 + 0.654575i \(0.772848\pi\)
\(854\) 0 0
\(855\) −2163.80 + 62.4808i −0.0865501 + 0.00249918i
\(856\) 0 0
\(857\) 35121.3 1.39991 0.699954 0.714188i \(-0.253204\pi\)
0.699954 + 0.714188i \(0.253204\pi\)
\(858\) 0 0
\(859\) −14337.3 + 14337.3i −0.569480 + 0.569480i −0.931983 0.362503i \(-0.881922\pi\)
0.362503 + 0.931983i \(0.381922\pi\)
\(860\) 0 0
\(861\) 506.391 + 35081.4i 0.0200439 + 1.38858i
\(862\) 0 0
\(863\) 4109.05 0.162079 0.0810393 0.996711i \(-0.474176\pi\)
0.0810393 + 0.996711i \(0.474176\pi\)
\(864\) 0 0
\(865\) 27592.9 1.08461
\(866\) 0 0
\(867\) 189.549 + 13131.4i 0.00742492 + 0.514378i
\(868\) 0 0
\(869\) 20824.4 20824.4i 0.812910 0.812910i
\(870\) 0 0
\(871\) −41112.7 −1.59937
\(872\) 0 0
\(873\) 17320.2 500.129i 0.671477 0.0193892i
\(874\) 0 0
\(875\) 15352.3 + 15352.3i 0.593144 + 0.593144i
\(876\) 0 0
\(877\) −2839.24 + 2839.24i −0.109321 + 0.109321i −0.759651 0.650331i \(-0.774630\pi\)
0.650331 + 0.759651i \(0.274630\pi\)
\(878\) 0 0
\(879\) 30140.1 + 29282.4i 1.15654 + 1.12363i
\(880\) 0 0
\(881\) 25816.2i 0.987254i 0.869674 + 0.493627i \(0.164329\pi\)
−0.869674 + 0.493627i \(0.835671\pi\)
\(882\) 0 0
\(883\) −21733.3 21733.3i −0.828294 0.828294i 0.158986 0.987281i \(-0.449177\pi\)
−0.987281 + 0.158986i \(0.949177\pi\)
\(884\) 0 0
\(885\) 209.860 + 14538.5i 0.00797103 + 0.552211i
\(886\) 0 0
\(887\) 32216.9i 1.21955i −0.792575 0.609774i \(-0.791260\pi\)
0.792575 0.609774i \(-0.208740\pi\)
\(888\) 0 0
\(889\) 470.711i 0.0177583i
\(890\) 0 0
\(891\) −23136.0 20607.7i −0.869906 0.774841i
\(892\) 0 0
\(893\) 226.834 + 226.834i 0.00850023 + 0.00850023i
\(894\) 0 0
\(895\) 13464.4i 0.502868i
\(896\) 0 0
\(897\) 13574.9 13972.5i 0.505298 0.520099i
\(898\) 0 0
\(899\) −5714.97 + 5714.97i −0.212019 + 0.212019i
\(900\) 0 0
\(901\) 11514.3 + 11514.3i 0.425745 + 0.425745i
\(902\) 0 0
\(903\) 18727.4 + 18194.4i 0.690153 + 0.670512i
\(904\) 0 0
\(905\) −18630.1 −0.684294
\(906\) 0 0
\(907\) −6623.37 + 6623.37i −0.242476 + 0.242476i −0.817874 0.575398i \(-0.804847\pi\)
0.575398 + 0.817874i \(0.304847\pi\)
\(908\) 0 0
\(909\) −25227.1 + 26727.3i −0.920495 + 0.975235i
\(910\) 0 0
\(911\) −13826.3 −0.502838 −0.251419 0.967878i \(-0.580897\pi\)
−0.251419 + 0.967878i \(0.580897\pi\)
\(912\) 0 0
\(913\) −40701.8 −1.47539
\(914\) 0 0
\(915\) 21726.0 313.609i 0.784959 0.0113307i
\(916\) 0 0
\(917\) 25068.0 25068.0i 0.902747 0.902747i
\(918\) 0 0
\(919\) 32283.9 1.15881 0.579407 0.815039i \(-0.303284\pi\)
0.579407 + 0.815039i \(0.303284\pi\)
\(920\) 0 0
\(921\) 5259.35 5413.41i 0.188167 0.193678i
\(922\) 0 0
\(923\) 32153.0 + 32153.0i 1.14662 + 1.14662i
\(924\) 0 0
\(925\) 11927.8 11927.8i 0.423981 0.423981i
\(926\) 0 0
\(927\) 39907.0 1152.34i 1.41394 0.0408281i
\(928\) 0 0
\(929\) 19418.8i 0.685801i 0.939372 + 0.342901i \(0.111409\pi\)
−0.939372 + 0.342901i \(0.888591\pi\)
\(930\) 0 0
\(931\) 911.504 + 911.504i 0.0320874 + 0.0320874i
\(932\) 0 0
\(933\) −18075.7 + 260.919i −0.634269 + 0.00915552i
\(934\) 0 0
\(935\) 15784.1i 0.552081i
\(936\) 0 0
\(937\) 13947.1i 0.486266i 0.969993 + 0.243133i \(0.0781751\pi\)
−0.969993 + 0.243133i \(0.921825\pi\)
\(938\) 0 0
\(939\) −17188.4 + 248.110i −0.597361 + 0.00862276i
\(940\) 0 0
\(941\) −32438.8 32438.8i −1.12378 1.12378i −0.991169 0.132608i \(-0.957665\pi\)
−0.132608 0.991169i \(-0.542335\pi\)
\(942\) 0 0
\(943\) 19576.0i 0.676016i
\(944\) 0 0
\(945\) −11681.9 10711.7i −0.402130 0.368730i
\(946\) 0 0
\(947\) 14766.0 14766.0i 0.506685 0.506685i −0.406823 0.913507i \(-0.633363\pi\)
0.913507 + 0.406823i \(0.133363\pi\)
\(948\) 0 0
\(949\) 42449.8 + 42449.8i 1.45203 + 1.45203i
\(950\) 0 0
\(951\) −6642.18 + 6836.75i −0.226485 + 0.233120i
\(952\) 0 0
\(953\) −27736.7 −0.942791 −0.471395 0.881922i \(-0.656250\pi\)
−0.471395 + 0.881922i \(0.656250\pi\)
\(954\) 0 0
\(955\) 1013.30 1013.30i 0.0343345 0.0343345i
\(956\) 0 0
\(957\) −10294.9 + 148.604i −0.347740 + 0.00501954i
\(958\) 0 0
\(959\) 6738.59 0.226904
\(960\) 0 0
\(961\) −261.548 −0.00877942
\(962\) 0 0
\(963\) −41229.5 38915.3i −1.37965 1.30221i
\(964\) 0 0
\(965\) 454.775 454.775i 0.0151707 0.0151707i
\(966\) 0 0
\(967\) 38161.5 1.26907 0.634535 0.772894i \(-0.281191\pi\)
0.634535 + 0.772894i \(0.281191\pi\)
\(968\) 0 0
\(969\) 1919.35 + 1864.73i 0.0636310 + 0.0618201i
\(970\) 0 0
\(971\) 40351.2 + 40351.2i 1.33361 + 1.33361i 0.902119 + 0.431488i \(0.142011\pi\)
0.431488 + 0.902119i \(0.357989\pi\)
\(972\) 0 0
\(973\) −20682.4 + 20682.4i −0.681446 + 0.681446i
\(974\) 0 0
\(975\) −21172.5 + 21792.6i −0.695447 + 0.715819i
\(976\) 0 0
\(977\) 37478.8i 1.22728i 0.789586 + 0.613640i \(0.210296\pi\)
−0.789586 + 0.613640i \(0.789704\pi\)
\(978\) 0 0
\(979\) −7872.25 7872.25i −0.256995 0.256995i
\(980\) 0 0
\(981\) 2720.69 2882.48i 0.0885472 0.0938130i
\(982\) 0 0
\(983\) 11135.5i 0.361310i 0.983547 + 0.180655i \(0.0578217\pi\)
−0.983547 + 0.180655i \(0.942178\pi\)
\(984\) 0 0
\(985\) 8395.49i 0.271576i
\(986\) 0 0
\(987\) 33.9004 + 2348.53i 0.00109328 + 0.0757391i
\(988\) 0 0
\(989\) 10301.5 + 10301.5i 0.331212 + 0.331212i
\(990\) 0 0
\(991\) 39321.0i 1.26042i 0.776427 + 0.630208i \(0.217030\pi\)
−0.776427 + 0.630208i \(0.782970\pi\)
\(992\) 0 0
\(993\) −22768.1 22120.2i −0.727617 0.706910i
\(994\) 0 0
\(995\) −8818.09 + 8818.09i −0.280957 + 0.280957i
\(996\) 0 0
\(997\) −33341.7 33341.7i −1.05912 1.05912i −0.998139 0.0609797i \(-0.980578\pi\)
−0.0609797 0.998139i \(-0.519422\pi\)
\(998\) 0 0
\(999\) −23806.4 + 25962.8i −0.753956 + 0.822250i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.k.a.143.11 44
3.2 odd 2 inner 192.4.k.a.143.22 44
4.3 odd 2 48.4.k.a.11.17 yes 44
8.3 odd 2 384.4.k.b.287.11 44
8.5 even 2 384.4.k.a.287.12 44
12.11 even 2 48.4.k.a.11.6 44
16.3 odd 4 inner 192.4.k.a.47.22 44
16.5 even 4 384.4.k.b.95.22 44
16.11 odd 4 384.4.k.a.95.1 44
16.13 even 4 48.4.k.a.35.6 yes 44
24.5 odd 2 384.4.k.a.287.1 44
24.11 even 2 384.4.k.b.287.22 44
48.5 odd 4 384.4.k.b.95.11 44
48.11 even 4 384.4.k.a.95.12 44
48.29 odd 4 48.4.k.a.35.17 yes 44
48.35 even 4 inner 192.4.k.a.47.11 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.6 44 12.11 even 2
48.4.k.a.11.17 yes 44 4.3 odd 2
48.4.k.a.35.6 yes 44 16.13 even 4
48.4.k.a.35.17 yes 44 48.29 odd 4
192.4.k.a.47.11 44 48.35 even 4 inner
192.4.k.a.47.22 44 16.3 odd 4 inner
192.4.k.a.143.11 44 1.1 even 1 trivial
192.4.k.a.143.22 44 3.2 odd 2 inner
384.4.k.a.95.1 44 16.11 odd 4
384.4.k.a.95.12 44 48.11 even 4
384.4.k.a.287.1 44 24.5 odd 2
384.4.k.a.287.12 44 8.5 even 2
384.4.k.b.95.11 44 48.5 odd 4
384.4.k.b.95.22 44 16.5 even 4
384.4.k.b.287.11 44 8.3 odd 2
384.4.k.b.287.22 44 24.11 even 2