Properties

Label 384.4.k.b.287.4
Level $384$
Weight $4$
Character 384.287
Analytic conductor $22.657$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [384,4,Mod(95,384)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("384.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(384, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.6567334422\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.4
Character \(\chi\) \(=\) 384.287
Dual form 384.4.k.b.95.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.43190 + 2.71261i) q^{3} +(3.17566 - 3.17566i) q^{5} -32.3513 q^{7} +(12.2835 - 24.0440i) q^{9} +(-16.0965 - 16.0965i) q^{11} +(18.2871 - 18.2871i) q^{13} +(-5.45988 + 22.6886i) q^{15} +38.5606i q^{17} +(56.2887 + 56.2887i) q^{19} +(143.378 - 87.7565i) q^{21} -197.652i q^{23} +104.830i q^{25} +(10.7831 + 139.881i) q^{27} +(-57.3016 - 57.3016i) q^{29} +148.290i q^{31} +(115.002 + 27.6746i) q^{33} +(-102.737 + 102.737i) q^{35} +(72.5852 + 72.5852i) q^{37} +(-31.4408 + 130.652i) q^{39} +73.1133 q^{41} +(-226.984 + 226.984i) q^{43} +(-37.3476 - 115.364i) q^{45} +412.986 q^{47} +703.607 q^{49} +(-104.600 - 170.897i) q^{51} +(-94.8845 + 94.8845i) q^{53} -102.234 q^{55} +(-402.155 - 96.7764i) q^{57} +(344.070 + 344.070i) q^{59} +(153.024 - 153.024i) q^{61} +(-397.386 + 777.856i) q^{63} -116.147i q^{65} +(603.490 + 603.490i) q^{67} +(536.154 + 875.976i) q^{69} +711.320i q^{71} +687.773i q^{73} +(-284.364 - 464.598i) q^{75} +(520.744 + 520.744i) q^{77} -162.513i q^{79} +(-427.233 - 590.689i) q^{81} +(748.288 - 748.288i) q^{83} +(122.455 + 122.455i) q^{85} +(409.392 + 98.5180i) q^{87} +927.910 q^{89} +(-591.611 + 591.611i) q^{91} +(-402.253 - 657.206i) q^{93} +357.508 q^{95} -208.855 q^{97} +(-584.747 + 189.304i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} - 8 q^{7} + 4 q^{13} - 20 q^{19} + 56 q^{21} + 134 q^{27} - 4 q^{33} + 4 q^{37} + 596 q^{39} + 436 q^{43} + 252 q^{45} + 972 q^{49} + 648 q^{51} + 280 q^{55} + 916 q^{61} + 1636 q^{67} - 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.43190 + 2.71261i −0.852920 + 0.522042i
\(4\) 0 0
\(5\) 3.17566 3.17566i 0.284040 0.284040i −0.550678 0.834718i \(-0.685631\pi\)
0.834718 + 0.550678i \(0.185631\pi\)
\(6\) 0 0
\(7\) −32.3513 −1.74681 −0.873403 0.486998i \(-0.838092\pi\)
−0.873403 + 0.486998i \(0.838092\pi\)
\(8\) 0 0
\(9\) 12.2835 24.0440i 0.454943 0.890520i
\(10\) 0 0
\(11\) −16.0965 16.0965i −0.441208 0.441208i 0.451210 0.892418i \(-0.350993\pi\)
−0.892418 + 0.451210i \(0.850993\pi\)
\(12\) 0 0
\(13\) 18.2871 18.2871i 0.390148 0.390148i −0.484592 0.874740i \(-0.661032\pi\)
0.874740 + 0.484592i \(0.161032\pi\)
\(14\) 0 0
\(15\) −5.45988 + 22.6886i −0.0939823 + 0.390544i
\(16\) 0 0
\(17\) 38.5606i 0.550136i 0.961425 + 0.275068i \(0.0887003\pi\)
−0.961425 + 0.275068i \(0.911300\pi\)
\(18\) 0 0
\(19\) 56.2887 + 56.2887i 0.679658 + 0.679658i 0.959923 0.280264i \(-0.0904222\pi\)
−0.280264 + 0.959923i \(0.590422\pi\)
\(20\) 0 0
\(21\) 143.378 87.7565i 1.48988 0.911907i
\(22\) 0 0
\(23\) 197.652i 1.79189i −0.444169 0.895943i \(-0.646501\pi\)
0.444169 0.895943i \(-0.353499\pi\)
\(24\) 0 0
\(25\) 104.830i 0.838643i
\(26\) 0 0
\(27\) 10.7831 + 139.881i 0.0768593 + 0.997042i
\(28\) 0 0
\(29\) −57.3016 57.3016i −0.366919 0.366919i 0.499433 0.866352i \(-0.333542\pi\)
−0.866352 + 0.499433i \(0.833542\pi\)
\(30\) 0 0
\(31\) 148.290i 0.859151i 0.903031 + 0.429575i \(0.141337\pi\)
−0.903031 + 0.429575i \(0.858663\pi\)
\(32\) 0 0
\(33\) 115.002 + 27.6746i 0.606644 + 0.145986i
\(34\) 0 0
\(35\) −102.737 + 102.737i −0.496162 + 0.496162i
\(36\) 0 0
\(37\) 72.5852 + 72.5852i 0.322512 + 0.322512i 0.849730 0.527218i \(-0.176765\pi\)
−0.527218 + 0.849730i \(0.676765\pi\)
\(38\) 0 0
\(39\) −31.4408 + 130.652i −0.129091 + 0.536439i
\(40\) 0 0
\(41\) 73.1133 0.278497 0.139249 0.990257i \(-0.455531\pi\)
0.139249 + 0.990257i \(0.455531\pi\)
\(42\) 0 0
\(43\) −226.984 + 226.984i −0.804993 + 0.804993i −0.983871 0.178878i \(-0.942753\pi\)
0.178878 + 0.983871i \(0.442753\pi\)
\(44\) 0 0
\(45\) −37.3476 115.364i −0.123721 0.382165i
\(46\) 0 0
\(47\) 412.986 1.28171 0.640853 0.767663i \(-0.278581\pi\)
0.640853 + 0.767663i \(0.278581\pi\)
\(48\) 0 0
\(49\) 703.607 2.05133
\(50\) 0 0
\(51\) −104.600 170.897i −0.287194 0.469222i
\(52\) 0 0
\(53\) −94.8845 + 94.8845i −0.245913 + 0.245913i −0.819291 0.573378i \(-0.805633\pi\)
0.573378 + 0.819291i \(0.305633\pi\)
\(54\) 0 0
\(55\) −102.234 −0.250641
\(56\) 0 0
\(57\) −402.155 96.7764i −0.934504 0.224883i
\(58\) 0 0
\(59\) 344.070 + 344.070i 0.759222 + 0.759222i 0.976181 0.216959i \(-0.0696137\pi\)
−0.216959 + 0.976181i \(0.569614\pi\)
\(60\) 0 0
\(61\) 153.024 153.024i 0.321193 0.321193i −0.528032 0.849225i \(-0.677070\pi\)
0.849225 + 0.528032i \(0.177070\pi\)
\(62\) 0 0
\(63\) −397.386 + 777.856i −0.794698 + 1.55557i
\(64\) 0 0
\(65\) 116.147i 0.221635i
\(66\) 0 0
\(67\) 603.490 + 603.490i 1.10042 + 1.10042i 0.994360 + 0.106058i \(0.0338228\pi\)
0.106058 + 0.994360i \(0.466177\pi\)
\(68\) 0 0
\(69\) 536.154 + 875.976i 0.935441 + 1.52833i
\(70\) 0 0
\(71\) 711.320i 1.18899i 0.804100 + 0.594494i \(0.202647\pi\)
−0.804100 + 0.594494i \(0.797353\pi\)
\(72\) 0 0
\(73\) 687.773i 1.10271i 0.834271 + 0.551355i \(0.185889\pi\)
−0.834271 + 0.551355i \(0.814111\pi\)
\(74\) 0 0
\(75\) −284.364 464.598i −0.437807 0.715295i
\(76\) 0 0
\(77\) 520.744 + 520.744i 0.770704 + 0.770704i
\(78\) 0 0
\(79\) 162.513i 0.231445i −0.993282 0.115723i \(-0.963082\pi\)
0.993282 0.115723i \(-0.0369184\pi\)
\(80\) 0 0
\(81\) −427.233 590.689i −0.586053 0.810273i
\(82\) 0 0
\(83\) 748.288 748.288i 0.989582 0.989582i −0.0103646 0.999946i \(-0.503299\pi\)
0.999946 + 0.0103646i \(0.00329923\pi\)
\(84\) 0 0
\(85\) 122.455 + 122.455i 0.156260 + 0.156260i
\(86\) 0 0
\(87\) 409.392 + 98.5180i 0.504499 + 0.121405i
\(88\) 0 0
\(89\) 927.910 1.10515 0.552575 0.833463i \(-0.313645\pi\)
0.552575 + 0.833463i \(0.313645\pi\)
\(90\) 0 0
\(91\) −591.611 + 591.611i −0.681513 + 0.681513i
\(92\) 0 0
\(93\) −402.253 657.206i −0.448513 0.732786i
\(94\) 0 0
\(95\) 357.508 0.386100
\(96\) 0 0
\(97\) −208.855 −0.218618 −0.109309 0.994008i \(-0.534864\pi\)
−0.109309 + 0.994008i \(0.534864\pi\)
\(98\) 0 0
\(99\) −584.747 + 189.304i −0.593629 + 0.192180i
\(100\) 0 0
\(101\) −0.578244 + 0.578244i −0.000569677 + 0.000569677i −0.707392 0.706822i \(-0.750128\pi\)
0.706822 + 0.707392i \(0.250128\pi\)
\(102\) 0 0
\(103\) −1063.26 −1.01715 −0.508574 0.861018i \(-0.669827\pi\)
−0.508574 + 0.861018i \(0.669827\pi\)
\(104\) 0 0
\(105\) 176.634 734.004i 0.164169 0.682205i
\(106\) 0 0
\(107\) −528.504 528.504i −0.477499 0.477499i 0.426832 0.904331i \(-0.359630\pi\)
−0.904331 + 0.426832i \(0.859630\pi\)
\(108\) 0 0
\(109\) 522.214 522.214i 0.458890 0.458890i −0.439401 0.898291i \(-0.644809\pi\)
0.898291 + 0.439401i \(0.144809\pi\)
\(110\) 0 0
\(111\) −518.586 124.795i −0.443441 0.106712i
\(112\) 0 0
\(113\) 152.618i 0.127054i 0.997980 + 0.0635269i \(0.0202349\pi\)
−0.997980 + 0.0635269i \(0.979765\pi\)
\(114\) 0 0
\(115\) −627.677 627.677i −0.508967 0.508967i
\(116\) 0 0
\(117\) −215.067 664.324i −0.169939 0.524930i
\(118\) 0 0
\(119\) 1247.48i 0.960980i
\(120\) 0 0
\(121\) 812.804i 0.610671i
\(122\) 0 0
\(123\) −324.031 + 198.328i −0.237536 + 0.145387i
\(124\) 0 0
\(125\) 729.863 + 729.863i 0.522248 + 0.522248i
\(126\) 0 0
\(127\) 399.802i 0.279344i −0.990198 0.139672i \(-0.955395\pi\)
0.990198 0.139672i \(-0.0446048\pi\)
\(128\) 0 0
\(129\) 390.250 1621.69i 0.266354 1.10683i
\(130\) 0 0
\(131\) 1339.67 1339.67i 0.893492 0.893492i −0.101358 0.994850i \(-0.532319\pi\)
0.994850 + 0.101358i \(0.0323188\pi\)
\(132\) 0 0
\(133\) −1821.01 1821.01i −1.18723 1.18723i
\(134\) 0 0
\(135\) 478.459 + 409.972i 0.305031 + 0.261369i
\(136\) 0 0
\(137\) −1598.46 −0.996828 −0.498414 0.866939i \(-0.666084\pi\)
−0.498414 + 0.866939i \(0.666084\pi\)
\(138\) 0 0
\(139\) 1670.63 1670.63i 1.01943 1.01943i 0.0196259 0.999807i \(-0.493752\pi\)
0.999807 0.0196259i \(-0.00624752\pi\)
\(140\) 0 0
\(141\) −1830.31 + 1120.27i −1.09319 + 0.669105i
\(142\) 0 0
\(143\) −588.717 −0.344273
\(144\) 0 0
\(145\) −363.941 −0.208439
\(146\) 0 0
\(147\) −3118.31 + 1908.61i −1.74962 + 1.07088i
\(148\) 0 0
\(149\) 142.214 142.214i 0.0781919 0.0781919i −0.666929 0.745121i \(-0.732392\pi\)
0.745121 + 0.666929i \(0.232392\pi\)
\(150\) 0 0
\(151\) 1880.73 1.01359 0.506794 0.862067i \(-0.330831\pi\)
0.506794 + 0.862067i \(0.330831\pi\)
\(152\) 0 0
\(153\) 927.152 + 473.657i 0.489907 + 0.250281i
\(154\) 0 0
\(155\) 470.919 + 470.919i 0.244033 + 0.244033i
\(156\) 0 0
\(157\) −1585.52 + 1585.52i −0.805976 + 0.805976i −0.984022 0.178046i \(-0.943022\pi\)
0.178046 + 0.984022i \(0.443022\pi\)
\(158\) 0 0
\(159\) 163.134 677.903i 0.0813670 0.338121i
\(160\) 0 0
\(161\) 6394.31i 3.13008i
\(162\) 0 0
\(163\) 721.338 + 721.338i 0.346623 + 0.346623i 0.858850 0.512227i \(-0.171179\pi\)
−0.512227 + 0.858850i \(0.671179\pi\)
\(164\) 0 0
\(165\) 453.092 277.322i 0.213777 0.130845i
\(166\) 0 0
\(167\) 2199.31i 1.01909i −0.860445 0.509544i \(-0.829814\pi\)
0.860445 0.509544i \(-0.170186\pi\)
\(168\) 0 0
\(169\) 1528.17i 0.695569i
\(170\) 0 0
\(171\) 2044.83 661.987i 0.914456 0.296044i
\(172\) 0 0
\(173\) 450.646 + 450.646i 0.198046 + 0.198046i 0.799162 0.601116i \(-0.205277\pi\)
−0.601116 + 0.799162i \(0.705277\pi\)
\(174\) 0 0
\(175\) 3391.40i 1.46495i
\(176\) 0 0
\(177\) −2458.21 591.555i −1.04390 0.251209i
\(178\) 0 0
\(179\) −1160.45 + 1160.45i −0.484559 + 0.484559i −0.906584 0.422025i \(-0.861319\pi\)
0.422025 + 0.906584i \(0.361319\pi\)
\(180\) 0 0
\(181\) 125.614 + 125.614i 0.0515847 + 0.0515847i 0.732429 0.680844i \(-0.238387\pi\)
−0.680844 + 0.732429i \(0.738387\pi\)
\(182\) 0 0
\(183\) −263.093 + 1093.29i −0.106275 + 0.441628i
\(184\) 0 0
\(185\) 461.012 0.183212
\(186\) 0 0
\(187\) 620.691 620.691i 0.242724 0.242724i
\(188\) 0 0
\(189\) −348.846 4525.34i −0.134258 1.74164i
\(190\) 0 0
\(191\) 3729.92 1.41302 0.706512 0.707702i \(-0.250268\pi\)
0.706512 + 0.707702i \(0.250268\pi\)
\(192\) 0 0
\(193\) −3286.88 −1.22588 −0.612941 0.790129i \(-0.710014\pi\)
−0.612941 + 0.790129i \(0.710014\pi\)
\(194\) 0 0
\(195\) 315.062 + 514.753i 0.115703 + 0.189037i
\(196\) 0 0
\(197\) −1961.53 + 1961.53i −0.709406 + 0.709406i −0.966410 0.257004i \(-0.917264\pi\)
0.257004 + 0.966410i \(0.417264\pi\)
\(198\) 0 0
\(199\) −202.789 −0.0722380 −0.0361190 0.999347i \(-0.511500\pi\)
−0.0361190 + 0.999347i \(0.511500\pi\)
\(200\) 0 0
\(201\) −4311.64 1037.57i −1.51303 0.364103i
\(202\) 0 0
\(203\) 1853.78 + 1853.78i 0.640936 + 0.640936i
\(204\) 0 0
\(205\) 232.183 232.183i 0.0791043 0.0791043i
\(206\) 0 0
\(207\) −4752.36 2427.86i −1.59571 0.815207i
\(208\) 0 0
\(209\) 1812.10i 0.599741i
\(210\) 0 0
\(211\) −2022.16 2022.16i −0.659770 0.659770i 0.295556 0.955325i \(-0.404495\pi\)
−0.955325 + 0.295556i \(0.904495\pi\)
\(212\) 0 0
\(213\) −1929.53 3152.50i −0.620702 1.01411i
\(214\) 0 0
\(215\) 1441.65i 0.457300i
\(216\) 0 0
\(217\) 4797.37i 1.50077i
\(218\) 0 0
\(219\) −1865.66 3048.14i −0.575661 0.940522i
\(220\) 0 0
\(221\) 705.160 + 705.160i 0.214634 + 0.214634i
\(222\) 0 0
\(223\) 1803.88i 0.541688i 0.962623 + 0.270844i \(0.0873028\pi\)
−0.962623 + 0.270844i \(0.912697\pi\)
\(224\) 0 0
\(225\) 2520.55 + 1287.68i 0.746828 + 0.381535i
\(226\) 0 0
\(227\) 1811.19 1811.19i 0.529573 0.529573i −0.390872 0.920445i \(-0.627826\pi\)
0.920445 + 0.390872i \(0.127826\pi\)
\(228\) 0 0
\(229\) 1529.22 + 1529.22i 0.441281 + 0.441281i 0.892442 0.451161i \(-0.148990\pi\)
−0.451161 + 0.892442i \(0.648990\pi\)
\(230\) 0 0
\(231\) −3720.46 895.308i −1.05969 0.255008i
\(232\) 0 0
\(233\) 3502.19 0.984703 0.492352 0.870396i \(-0.336137\pi\)
0.492352 + 0.870396i \(0.336137\pi\)
\(234\) 0 0
\(235\) 1311.50 1311.50i 0.364056 0.364056i
\(236\) 0 0
\(237\) 440.836 + 720.243i 0.120824 + 0.197404i
\(238\) 0 0
\(239\) 1874.23 0.507254 0.253627 0.967302i \(-0.418376\pi\)
0.253627 + 0.967302i \(0.418376\pi\)
\(240\) 0 0
\(241\) −627.829 −0.167809 −0.0839046 0.996474i \(-0.526739\pi\)
−0.0839046 + 0.996474i \(0.526739\pi\)
\(242\) 0 0
\(243\) 3495.76 + 1458.96i 0.922853 + 0.385153i
\(244\) 0 0
\(245\) 2234.42 2234.42i 0.582660 0.582660i
\(246\) 0 0
\(247\) 2058.71 0.530335
\(248\) 0 0
\(249\) −1286.52 + 5346.15i −0.327430 + 1.36064i
\(250\) 0 0
\(251\) −1278.26 1278.26i −0.321446 0.321446i 0.527876 0.849322i \(-0.322989\pi\)
−0.849322 + 0.527876i \(0.822989\pi\)
\(252\) 0 0
\(253\) −3181.52 + 3181.52i −0.790594 + 0.790594i
\(254\) 0 0
\(255\) −874.883 210.536i −0.214852 0.0517030i
\(256\) 0 0
\(257\) 4587.43i 1.11345i −0.830698 0.556724i \(-0.812058\pi\)
0.830698 0.556724i \(-0.187942\pi\)
\(258\) 0 0
\(259\) −2348.22 2348.22i −0.563365 0.563365i
\(260\) 0 0
\(261\) −2081.63 + 673.900i −0.493676 + 0.159821i
\(262\) 0 0
\(263\) 1063.89i 0.249438i 0.992192 + 0.124719i \(0.0398029\pi\)
−0.992192 + 0.124719i \(0.960197\pi\)
\(264\) 0 0
\(265\) 602.642i 0.139698i
\(266\) 0 0
\(267\) −4112.40 + 2517.06i −0.942603 + 0.576935i
\(268\) 0 0
\(269\) 5167.40 + 5167.40i 1.17123 + 1.17123i 0.981916 + 0.189318i \(0.0606276\pi\)
0.189318 + 0.981916i \(0.439372\pi\)
\(270\) 0 0
\(271\) 6888.32i 1.54404i 0.635597 + 0.772021i \(0.280754\pi\)
−0.635597 + 0.772021i \(0.719246\pi\)
\(272\) 0 0
\(273\) 1017.15 4226.77i 0.225497 0.937054i
\(274\) 0 0
\(275\) 1687.40 1687.40i 0.370016 0.370016i
\(276\) 0 0
\(277\) 2142.76 + 2142.76i 0.464786 + 0.464786i 0.900221 0.435434i \(-0.143405\pi\)
−0.435434 + 0.900221i \(0.643405\pi\)
\(278\) 0 0
\(279\) 3565.49 + 1821.52i 0.765091 + 0.390865i
\(280\) 0 0
\(281\) 7913.97 1.68010 0.840049 0.542510i \(-0.182526\pi\)
0.840049 + 0.542510i \(0.182526\pi\)
\(282\) 0 0
\(283\) −3967.83 + 3967.83i −0.833438 + 0.833438i −0.987985 0.154548i \(-0.950608\pi\)
0.154548 + 0.987985i \(0.450608\pi\)
\(284\) 0 0
\(285\) −1584.44 + 969.780i −0.329312 + 0.201561i
\(286\) 0 0
\(287\) −2365.31 −0.486481
\(288\) 0 0
\(289\) 3426.08 0.697351
\(290\) 0 0
\(291\) 925.622 566.541i 0.186464 0.114128i
\(292\) 0 0
\(293\) −5006.37 + 5006.37i −0.998209 + 0.998209i −0.999998 0.00178897i \(-0.999431\pi\)
0.00178897 + 0.999998i \(0.499431\pi\)
\(294\) 0 0
\(295\) 2185.30 0.431299
\(296\) 0 0
\(297\) 2078.03 2425.17i 0.405992 0.473814i
\(298\) 0 0
\(299\) −3614.49 3614.49i −0.699101 0.699101i
\(300\) 0 0
\(301\) 7343.22 7343.22i 1.40617 1.40617i
\(302\) 0 0
\(303\) 0.994167 4.13127i 0.000188493 0.000783284i
\(304\) 0 0
\(305\) 971.908i 0.182463i
\(306\) 0 0
\(307\) 1435.75 + 1435.75i 0.266914 + 0.266914i 0.827855 0.560942i \(-0.189561\pi\)
−0.560942 + 0.827855i \(0.689561\pi\)
\(308\) 0 0
\(309\) 4712.27 2884.22i 0.867546 0.530995i
\(310\) 0 0
\(311\) 3502.88i 0.638681i −0.947640 0.319341i \(-0.896539\pi\)
0.947640 0.319341i \(-0.103461\pi\)
\(312\) 0 0
\(313\) 751.490i 0.135708i 0.997695 + 0.0678542i \(0.0216153\pi\)
−0.997695 + 0.0678542i \(0.978385\pi\)
\(314\) 0 0
\(315\) 1208.24 + 3732.17i 0.216117 + 0.667569i
\(316\) 0 0
\(317\) −6924.49 6924.49i −1.22687 1.22687i −0.965141 0.261729i \(-0.915707\pi\)
−0.261729 0.965141i \(-0.584293\pi\)
\(318\) 0 0
\(319\) 1844.71i 0.323775i
\(320\) 0 0
\(321\) 3775.90 + 908.650i 0.656543 + 0.157994i
\(322\) 0 0
\(323\) −2170.52 + 2170.52i −0.373904 + 0.373904i
\(324\) 0 0
\(325\) 1917.04 + 1917.04i 0.327195 + 0.327195i
\(326\) 0 0
\(327\) −897.836 + 3730.97i −0.151836 + 0.630957i
\(328\) 0 0
\(329\) −13360.6 −2.23889
\(330\) 0 0
\(331\) −3203.80 + 3203.80i −0.532014 + 0.532014i −0.921171 0.389157i \(-0.872766\pi\)
0.389157 + 0.921171i \(0.372766\pi\)
\(332\) 0 0
\(333\) 2636.84 853.644i 0.433928 0.140479i
\(334\) 0 0
\(335\) 3832.96 0.625125
\(336\) 0 0
\(337\) 2592.71 0.419091 0.209546 0.977799i \(-0.432802\pi\)
0.209546 + 0.977799i \(0.432802\pi\)
\(338\) 0 0
\(339\) −413.993 676.387i −0.0663274 0.108367i
\(340\) 0 0
\(341\) 2386.95 2386.95i 0.379064 0.379064i
\(342\) 0 0
\(343\) −11666.1 −1.83647
\(344\) 0 0
\(345\) 4484.45 + 1079.16i 0.699810 + 0.168406i
\(346\) 0 0
\(347\) 6043.76 + 6043.76i 0.935003 + 0.935003i 0.998013 0.0630095i \(-0.0200699\pi\)
−0.0630095 + 0.998013i \(0.520070\pi\)
\(348\) 0 0
\(349\) 1836.04 1836.04i 0.281607 0.281607i −0.552143 0.833750i \(-0.686190\pi\)
0.833750 + 0.552143i \(0.186190\pi\)
\(350\) 0 0
\(351\) 2755.21 + 2360.83i 0.418980 + 0.359007i
\(352\) 0 0
\(353\) 7004.62i 1.05614i 0.849200 + 0.528071i \(0.177085\pi\)
−0.849200 + 0.528071i \(0.822915\pi\)
\(354\) 0 0
\(355\) 2258.91 + 2258.91i 0.337720 + 0.337720i
\(356\) 0 0
\(357\) 3383.94 + 5528.72i 0.501673 + 0.819639i
\(358\) 0 0
\(359\) 3792.90i 0.557609i 0.960348 + 0.278805i \(0.0899382\pi\)
−0.960348 + 0.278805i \(0.910062\pi\)
\(360\) 0 0
\(361\) 522.169i 0.0761291i
\(362\) 0 0
\(363\) 2204.82 + 3602.26i 0.318796 + 0.520854i
\(364\) 0 0
\(365\) 2184.14 + 2184.14i 0.313213 + 0.313213i
\(366\) 0 0
\(367\) 4167.61i 0.592773i 0.955068 + 0.296386i \(0.0957816\pi\)
−0.955068 + 0.296386i \(0.904218\pi\)
\(368\) 0 0
\(369\) 898.086 1757.94i 0.126700 0.248007i
\(370\) 0 0
\(371\) 3069.64 3069.64i 0.429562 0.429562i
\(372\) 0 0
\(373\) 5292.64 + 5292.64i 0.734698 + 0.734698i 0.971547 0.236848i \(-0.0761144\pi\)
−0.236848 + 0.971547i \(0.576114\pi\)
\(374\) 0 0
\(375\) −5214.52 1254.85i −0.718071 0.172800i
\(376\) 0 0
\(377\) −2095.76 −0.286305
\(378\) 0 0
\(379\) 4863.55 4863.55i 0.659165 0.659165i −0.296017 0.955183i \(-0.595659\pi\)
0.955183 + 0.296017i \(0.0956586\pi\)
\(380\) 0 0
\(381\) 1084.51 + 1771.88i 0.145829 + 0.238258i
\(382\) 0 0
\(383\) −6729.11 −0.897759 −0.448879 0.893592i \(-0.648177\pi\)
−0.448879 + 0.893592i \(0.648177\pi\)
\(384\) 0 0
\(385\) 3307.41 0.437821
\(386\) 0 0
\(387\) 2669.46 + 8245.76i 0.350636 + 1.08309i
\(388\) 0 0
\(389\) 1689.70 1689.70i 0.220234 0.220234i −0.588363 0.808597i \(-0.700227\pi\)
0.808597 + 0.588363i \(0.200227\pi\)
\(390\) 0 0
\(391\) 7621.59 0.985781
\(392\) 0 0
\(393\) −2303.28 + 9571.28i −0.295636 + 1.22852i
\(394\) 0 0
\(395\) −516.087 516.087i −0.0657397 0.0657397i
\(396\) 0 0
\(397\) −8515.47 + 8515.47i −1.07652 + 1.07652i −0.0797039 + 0.996819i \(0.525397\pi\)
−0.996819 + 0.0797039i \(0.974603\pi\)
\(398\) 0 0
\(399\) 13010.2 + 3130.84i 1.63240 + 0.392828i
\(400\) 0 0
\(401\) 4257.88i 0.530246i −0.964215 0.265123i \(-0.914588\pi\)
0.964215 0.265123i \(-0.0854125\pi\)
\(402\) 0 0
\(403\) 2711.79 + 2711.79i 0.335196 + 0.335196i
\(404\) 0 0
\(405\) −3232.57 519.081i −0.396612 0.0636873i
\(406\) 0 0
\(407\) 2336.74i 0.284589i
\(408\) 0 0
\(409\) 5141.14i 0.621548i 0.950484 + 0.310774i \(0.100588\pi\)
−0.950484 + 0.310774i \(0.899412\pi\)
\(410\) 0 0
\(411\) 7084.20 4335.99i 0.850214 0.520386i
\(412\) 0 0
\(413\) −11131.1 11131.1i −1.32621 1.32621i
\(414\) 0 0
\(415\) 4752.62i 0.562161i
\(416\) 0 0
\(417\) −2872.30 + 11935.9i −0.337307 + 1.40168i
\(418\) 0 0
\(419\) −9514.69 + 9514.69i −1.10936 + 1.10936i −0.116129 + 0.993234i \(0.537049\pi\)
−0.993234 + 0.116129i \(0.962951\pi\)
\(420\) 0 0
\(421\) 942.451 + 942.451i 0.109103 + 0.109103i 0.759551 0.650448i \(-0.225419\pi\)
−0.650448 + 0.759551i \(0.725419\pi\)
\(422\) 0 0
\(423\) 5072.90 9929.86i 0.583104 1.14139i
\(424\) 0 0
\(425\) −4042.32 −0.461367
\(426\) 0 0
\(427\) −4950.54 + 4950.54i −0.561062 + 0.561062i
\(428\) 0 0
\(429\) 2609.13 1596.96i 0.293637 0.179725i
\(430\) 0 0
\(431\) −106.218 −0.0118709 −0.00593543 0.999982i \(-0.501889\pi\)
−0.00593543 + 0.999982i \(0.501889\pi\)
\(432\) 0 0
\(433\) 4043.15 0.448733 0.224367 0.974505i \(-0.427969\pi\)
0.224367 + 0.974505i \(0.427969\pi\)
\(434\) 0 0
\(435\) 1612.95 987.231i 0.177782 0.108814i
\(436\) 0 0
\(437\) 11125.6 11125.6i 1.21787 1.21787i
\(438\) 0 0
\(439\) −2283.39 −0.248246 −0.124123 0.992267i \(-0.539612\pi\)
−0.124123 + 0.992267i \(0.539612\pi\)
\(440\) 0 0
\(441\) 8642.73 16917.6i 0.933239 1.82675i
\(442\) 0 0
\(443\) −3308.60 3308.60i −0.354845 0.354845i 0.507064 0.861909i \(-0.330731\pi\)
−0.861909 + 0.507064i \(0.830731\pi\)
\(444\) 0 0
\(445\) 2946.73 2946.73i 0.313906 0.313906i
\(446\) 0 0
\(447\) −244.506 + 1016.05i −0.0258719 + 0.107511i
\(448\) 0 0
\(449\) 5247.10i 0.551506i 0.961229 + 0.275753i \(0.0889272\pi\)
−0.961229 + 0.275753i \(0.911073\pi\)
\(450\) 0 0
\(451\) −1176.87 1176.87i −0.122875 0.122875i
\(452\) 0 0
\(453\) −8335.21 + 5101.69i −0.864509 + 0.529136i
\(454\) 0 0
\(455\) 3757.51i 0.387154i
\(456\) 0 0
\(457\) 682.527i 0.0698627i 0.999390 + 0.0349314i \(0.0111213\pi\)
−0.999390 + 0.0349314i \(0.988879\pi\)
\(458\) 0 0
\(459\) −5393.89 + 415.801i −0.548508 + 0.0422831i
\(460\) 0 0
\(461\) 5158.76 + 5158.76i 0.521187 + 0.521187i 0.917930 0.396743i \(-0.129859\pi\)
−0.396743 + 0.917930i \(0.629859\pi\)
\(462\) 0 0
\(463\) 4260.25i 0.427625i −0.976875 0.213813i \(-0.931412\pi\)
0.976875 0.213813i \(-0.0685882\pi\)
\(464\) 0 0
\(465\) −3364.49 809.645i −0.335536 0.0807449i
\(466\) 0 0
\(467\) 501.947 501.947i 0.0497374 0.0497374i −0.681801 0.731538i \(-0.738803\pi\)
0.731538 + 0.681801i \(0.238803\pi\)
\(468\) 0 0
\(469\) −19523.7 19523.7i −1.92222 1.92222i
\(470\) 0 0
\(471\) 2725.96 11327.8i 0.266679 1.10819i
\(472\) 0 0
\(473\) 7307.30 0.710338
\(474\) 0 0
\(475\) −5900.76 + 5900.76i −0.569991 + 0.569991i
\(476\) 0 0
\(477\) 1115.90 + 3446.92i 0.107114 + 0.330867i
\(478\) 0 0
\(479\) −15980.7 −1.52438 −0.762190 0.647353i \(-0.775876\pi\)
−0.762190 + 0.647353i \(0.775876\pi\)
\(480\) 0 0
\(481\) 2654.74 0.251655
\(482\) 0 0
\(483\) −17345.3 28339.0i −1.63403 2.66970i
\(484\) 0 0
\(485\) −663.251 + 663.251i −0.0620963 + 0.0620963i
\(486\) 0 0
\(487\) 1901.65 0.176945 0.0884723 0.996079i \(-0.471802\pi\)
0.0884723 + 0.996079i \(0.471802\pi\)
\(488\) 0 0
\(489\) −5153.61 1240.19i −0.476593 0.114690i
\(490\) 0 0
\(491\) 5271.77 + 5271.77i 0.484545 + 0.484545i 0.906580 0.422035i \(-0.138684\pi\)
−0.422035 + 0.906580i \(0.638684\pi\)
\(492\) 0 0
\(493\) 2209.58 2209.58i 0.201855 0.201855i
\(494\) 0 0
\(495\) −1255.79 + 2458.13i −0.114028 + 0.223201i
\(496\) 0 0
\(497\) 23012.1i 2.07693i
\(498\) 0 0
\(499\) −29.4722 29.4722i −0.00264400 0.00264400i 0.705784 0.708428i \(-0.250595\pi\)
−0.708428 + 0.705784i \(0.750595\pi\)
\(500\) 0 0
\(501\) 5965.87 + 9747.11i 0.532007 + 0.869200i
\(502\) 0 0
\(503\) 11304.7i 1.00209i 0.865421 + 0.501045i \(0.167051\pi\)
−0.865421 + 0.501045i \(0.832949\pi\)
\(504\) 0 0
\(505\) 3.67261i 0.000323622i
\(506\) 0 0
\(507\) −4145.32 6772.68i −0.363117 0.593264i
\(508\) 0 0
\(509\) 2527.57 + 2527.57i 0.220103 + 0.220103i 0.808542 0.588439i \(-0.200257\pi\)
−0.588439 + 0.808542i \(0.700257\pi\)
\(510\) 0 0
\(511\) 22250.4i 1.92622i
\(512\) 0 0
\(513\) −7266.76 + 8480.69i −0.625410 + 0.729886i
\(514\) 0 0
\(515\) −3376.56 + 3376.56i −0.288911 + 0.288911i
\(516\) 0 0
\(517\) −6647.64 6647.64i −0.565499 0.565499i
\(518\) 0 0
\(519\) −3219.65 774.790i −0.272306 0.0655289i
\(520\) 0 0
\(521\) −55.5878 −0.00467437 −0.00233719 0.999997i \(-0.500744\pi\)
−0.00233719 + 0.999997i \(0.500744\pi\)
\(522\) 0 0
\(523\) 14970.9 14970.9i 1.25169 1.25169i 0.296723 0.954963i \(-0.404106\pi\)
0.954963 0.296723i \(-0.0958940\pi\)
\(524\) 0 0
\(525\) 9199.55 + 15030.3i 0.764764 + 1.24948i
\(526\) 0 0
\(527\) −5718.14 −0.472650
\(528\) 0 0
\(529\) −26899.5 −2.21086
\(530\) 0 0
\(531\) 12499.2 4046.46i 1.02151 0.330700i
\(532\) 0 0
\(533\) 1337.03 1337.03i 0.108655 0.108655i
\(534\) 0 0
\(535\) −3356.70 −0.271258
\(536\) 0 0
\(537\) 1995.15 8290.85i 0.160329 0.666250i
\(538\) 0 0
\(539\) −11325.6 11325.6i −0.905063 0.905063i
\(540\) 0 0
\(541\) −1527.27 + 1527.27i −0.121372 + 0.121372i −0.765184 0.643812i \(-0.777352\pi\)
0.643812 + 0.765184i \(0.277352\pi\)
\(542\) 0 0
\(543\) −897.452 215.967i −0.0709270 0.0170682i
\(544\) 0 0
\(545\) 3316.75i 0.260686i
\(546\) 0 0
\(547\) 8402.23 + 8402.23i 0.656770 + 0.656770i 0.954615 0.297844i \(-0.0962676\pi\)
−0.297844 + 0.954615i \(0.596268\pi\)
\(548\) 0 0
\(549\) −1799.66 5559.00i −0.139904 0.432154i
\(550\) 0 0
\(551\) 6450.86i 0.498759i
\(552\) 0 0
\(553\) 5257.52i 0.404290i
\(554\) 0 0
\(555\) −2043.16 + 1250.55i −0.156265 + 0.0956446i
\(556\) 0 0
\(557\) −11345.5 11345.5i −0.863060 0.863060i 0.128633 0.991692i \(-0.458941\pi\)
−0.991692 + 0.128633i \(0.958941\pi\)
\(558\) 0 0
\(559\) 8301.74i 0.628133i
\(560\) 0 0
\(561\) −1067.15 + 4434.53i −0.0803119 + 0.333736i
\(562\) 0 0
\(563\) −6452.36 + 6452.36i −0.483010 + 0.483010i −0.906092 0.423082i \(-0.860948\pi\)
0.423082 + 0.906092i \(0.360948\pi\)
\(564\) 0 0
\(565\) 484.662 + 484.662i 0.0360883 + 0.0360883i
\(566\) 0 0
\(567\) 13821.5 + 19109.5i 1.02372 + 1.41539i
\(568\) 0 0
\(569\) 8010.89 0.590218 0.295109 0.955464i \(-0.404644\pi\)
0.295109 + 0.955464i \(0.404644\pi\)
\(570\) 0 0
\(571\) 13548.1 13548.1i 0.992946 0.992946i −0.00702892 0.999975i \(-0.502237\pi\)
0.999975 + 0.00702892i \(0.00223739\pi\)
\(572\) 0 0
\(573\) −16530.6 + 10117.8i −1.20519 + 0.737658i
\(574\) 0 0
\(575\) 20720.0 1.50275
\(576\) 0 0
\(577\) 3085.97 0.222652 0.111326 0.993784i \(-0.464490\pi\)
0.111326 + 0.993784i \(0.464490\pi\)
\(578\) 0 0
\(579\) 14567.1 8916.04i 1.04558 0.639962i
\(580\) 0 0
\(581\) −24208.1 + 24208.1i −1.72861 + 1.72861i
\(582\) 0 0
\(583\) 3054.62 0.216997
\(584\) 0 0
\(585\) −2792.65 1426.69i −0.197371 0.100831i
\(586\) 0 0
\(587\) −7599.07 7599.07i −0.534323 0.534323i 0.387533 0.921856i \(-0.373327\pi\)
−0.921856 + 0.387533i \(0.873327\pi\)
\(588\) 0 0
\(589\) −8347.05 + 8347.05i −0.583929 + 0.583929i
\(590\) 0 0
\(591\) 3372.43 14014.1i 0.234726 0.975406i
\(592\) 0 0
\(593\) 13043.4i 0.903253i −0.892207 0.451627i \(-0.850844\pi\)
0.892207 0.451627i \(-0.149156\pi\)
\(594\) 0 0
\(595\) −3961.59 3961.59i −0.272957 0.272957i
\(596\) 0 0
\(597\) 898.742 550.089i 0.0616132 0.0377113i
\(598\) 0 0
\(599\) 12441.1i 0.848630i 0.905515 + 0.424315i \(0.139485\pi\)
−0.905515 + 0.424315i \(0.860515\pi\)
\(600\) 0 0
\(601\) 556.990i 0.0378038i 0.999821 + 0.0189019i \(0.00601702\pi\)
−0.999821 + 0.0189019i \(0.993983\pi\)
\(602\) 0 0
\(603\) 21923.3 7097.39i 1.48057 0.479317i
\(604\) 0 0
\(605\) −2581.19 2581.19i −0.173455 0.173455i
\(606\) 0 0
\(607\) 10080.8i 0.674080i −0.941490 0.337040i \(-0.890574\pi\)
0.941490 0.337040i \(-0.109426\pi\)
\(608\) 0 0
\(609\) −13244.4 3187.18i −0.881262 0.212071i
\(610\) 0 0
\(611\) 7552.31 7552.31i 0.500055 0.500055i
\(612\) 0 0
\(613\) 13360.3 + 13360.3i 0.880290 + 0.880290i 0.993564 0.113274i \(-0.0361339\pi\)
−0.113274 + 0.993564i \(0.536134\pi\)
\(614\) 0 0
\(615\) −399.190 + 1658.84i −0.0261738 + 0.108765i
\(616\) 0 0
\(617\) −28317.5 −1.84768 −0.923840 0.382779i \(-0.874967\pi\)
−0.923840 + 0.382779i \(0.874967\pi\)
\(618\) 0 0
\(619\) −5399.53 + 5399.53i −0.350606 + 0.350606i −0.860335 0.509729i \(-0.829746\pi\)
0.509729 + 0.860335i \(0.329746\pi\)
\(620\) 0 0
\(621\) 27647.8 2131.30i 1.78659 0.137723i
\(622\) 0 0
\(623\) −30019.1 −1.93048
\(624\) 0 0
\(625\) −8468.19 −0.541964
\(626\) 0 0
\(627\) 4915.54 + 8031.06i 0.313090 + 0.511531i
\(628\) 0 0
\(629\) −2798.92 + 2798.92i −0.177425 + 0.177425i
\(630\) 0 0
\(631\) −6123.81 −0.386347 −0.193174 0.981165i \(-0.561878\pi\)
−0.193174 + 0.981165i \(0.561878\pi\)
\(632\) 0 0
\(633\) 14447.4 + 3476.68i 0.907158 + 0.218303i
\(634\) 0 0
\(635\) −1269.63 1269.63i −0.0793447 0.0793447i
\(636\) 0 0
\(637\) 12866.9 12866.9i 0.800323 0.800323i
\(638\) 0 0
\(639\) 17103.0 + 8737.47i 1.05882 + 0.540922i
\(640\) 0 0
\(641\) 20240.4i 1.24719i 0.781748 + 0.623594i \(0.214328\pi\)
−0.781748 + 0.623594i \(0.785672\pi\)
\(642\) 0 0
\(643\) −12470.6 12470.6i −0.764842 0.764842i 0.212352 0.977193i \(-0.431888\pi\)
−0.977193 + 0.212352i \(0.931888\pi\)
\(644\) 0 0
\(645\) −3910.63 6389.24i −0.238730 0.390040i
\(646\) 0 0
\(647\) 7081.47i 0.430296i −0.976581 0.215148i \(-0.930977\pi\)
0.976581 0.215148i \(-0.0690234\pi\)
\(648\) 0 0
\(649\) 11076.7i 0.669949i
\(650\) 0 0
\(651\) 13013.4 + 21261.5i 0.783465 + 1.28004i
\(652\) 0 0
\(653\) 4674.02 + 4674.02i 0.280105 + 0.280105i 0.833151 0.553046i \(-0.186535\pi\)
−0.553046 + 0.833151i \(0.686535\pi\)
\(654\) 0 0
\(655\) 8508.67i 0.507575i
\(656\) 0 0
\(657\) 16536.9 + 8448.24i 0.981985 + 0.501670i
\(658\) 0 0
\(659\) −20967.1 + 20967.1i −1.23939 + 1.23939i −0.279146 + 0.960249i \(0.590051\pi\)
−0.960249 + 0.279146i \(0.909949\pi\)
\(660\) 0 0
\(661\) −17021.5 17021.5i −1.00160 1.00160i −0.999999 0.00160195i \(-0.999490\pi\)
−0.00160195 0.999999i \(-0.500510\pi\)
\(662\) 0 0
\(663\) −5038.02 1212.37i −0.295114 0.0710176i
\(664\) 0 0
\(665\) −11565.8 −0.674442
\(666\) 0 0
\(667\) −11325.8 + 11325.8i −0.657477 + 0.657477i
\(668\) 0 0
\(669\) −4893.22 7994.60i −0.282784 0.462016i
\(670\) 0 0
\(671\) −4926.32 −0.283426
\(672\) 0 0
\(673\) 5131.88 0.293937 0.146969 0.989141i \(-0.453048\pi\)
0.146969 + 0.989141i \(0.453048\pi\)
\(674\) 0 0
\(675\) −14663.8 + 1130.39i −0.836162 + 0.0644575i
\(676\) 0 0
\(677\) 7945.30 7945.30i 0.451053 0.451053i −0.444651 0.895704i \(-0.646672\pi\)
0.895704 + 0.444651i \(0.146672\pi\)
\(678\) 0 0
\(679\) 6756.72 0.381884
\(680\) 0 0
\(681\) −3113.96 + 12940.1i −0.175224 + 0.728143i
\(682\) 0 0
\(683\) 14603.2 + 14603.2i 0.818121 + 0.818121i 0.985836 0.167714i \(-0.0536386\pi\)
−0.167714 + 0.985836i \(0.553639\pi\)
\(684\) 0 0
\(685\) −5076.16 + 5076.16i −0.283139 + 0.283139i
\(686\) 0 0
\(687\) −10925.5 2629.16i −0.606745 0.146010i
\(688\) 0 0
\(689\) 3470.32i 0.191885i
\(690\) 0 0
\(691\) −5956.77 5956.77i −0.327940 0.327940i 0.523863 0.851803i \(-0.324490\pi\)
−0.851803 + 0.523863i \(0.824490\pi\)
\(692\) 0 0
\(693\) 18917.3 6124.25i 1.03695 0.335701i
\(694\) 0 0
\(695\) 10610.7i 0.579119i
\(696\) 0 0
\(697\) 2819.29i 0.153211i
\(698\) 0 0
\(699\) −15521.3 + 9500.07i −0.839872 + 0.514057i
\(700\) 0 0
\(701\) −19922.3 19922.3i −1.07340 1.07340i −0.997084 0.0763183i \(-0.975683\pi\)
−0.0763183 0.997084i \(-0.524317\pi\)
\(702\) 0 0
\(703\) 8171.45i 0.438395i
\(704\) 0 0
\(705\) −2254.85 + 9370.06i −0.120458 + 0.500563i
\(706\) 0 0
\(707\) 18.7069 18.7069i 0.000995115 0.000995115i
\(708\) 0 0
\(709\) 6339.66 + 6339.66i 0.335812 + 0.335812i 0.854789 0.518976i \(-0.173687\pi\)
−0.518976 + 0.854789i \(0.673687\pi\)
\(710\) 0 0
\(711\) −3907.48 1996.23i −0.206107 0.105295i
\(712\) 0 0
\(713\) 29309.9 1.53950
\(714\) 0 0
\(715\) −1869.57 + 1869.57i −0.0977871 + 0.0977871i
\(716\) 0 0
\(717\) −8306.39 + 5084.06i −0.432647 + 0.264808i
\(718\) 0 0
\(719\) 23861.1 1.23765 0.618824 0.785530i \(-0.287610\pi\)
0.618824 + 0.785530i \(0.287610\pi\)
\(720\) 0 0
\(721\) 34397.9 1.77676
\(722\) 0 0
\(723\) 2782.47 1703.06i 0.143128 0.0876035i
\(724\) 0 0
\(725\) 6006.95 6006.95i 0.307714 0.307714i
\(726\) 0 0
\(727\) 13991.5 0.713776 0.356888 0.934147i \(-0.383838\pi\)
0.356888 + 0.934147i \(0.383838\pi\)
\(728\) 0 0
\(729\) −19450.5 + 3016.70i −0.988185 + 0.153264i
\(730\) 0 0
\(731\) −8752.62 8752.62i −0.442856 0.442856i
\(732\) 0 0
\(733\) −11874.1 + 11874.1i −0.598334 + 0.598334i −0.939869 0.341535i \(-0.889053\pi\)
0.341535 + 0.939869i \(0.389053\pi\)
\(734\) 0 0
\(735\) −3841.60 + 15963.8i −0.192789 + 0.801135i
\(736\) 0 0
\(737\) 19428.2i 0.971026i
\(738\) 0 0
\(739\) 24843.0 + 24843.0i 1.23662 + 1.23662i 0.961372 + 0.275253i \(0.0887615\pi\)
0.275253 + 0.961372i \(0.411238\pi\)
\(740\) 0 0
\(741\) −9124.00 + 5584.49i −0.452333 + 0.276857i
\(742\) 0 0
\(743\) 12479.8i 0.616204i −0.951353 0.308102i \(-0.900306\pi\)
0.951353 0.308102i \(-0.0996939\pi\)
\(744\) 0 0
\(745\) 903.245i 0.0444192i
\(746\) 0 0
\(747\) −8800.30 27183.4i −0.431039 1.33145i
\(748\) 0 0
\(749\) 17097.8 + 17097.8i 0.834098 + 0.834098i
\(750\) 0 0
\(751\) 34126.2i 1.65817i 0.559124 + 0.829084i \(0.311138\pi\)
−0.559124 + 0.829084i \(0.688862\pi\)
\(752\) 0 0
\(753\) 9132.53 + 2197.69i 0.441976 + 0.106359i
\(754\) 0 0
\(755\) 5972.57 5972.57i 0.287899 0.287899i
\(756\) 0 0
\(757\) 7341.39 + 7341.39i 0.352480 + 0.352480i 0.861032 0.508551i \(-0.169819\pi\)
−0.508551 + 0.861032i \(0.669819\pi\)
\(758\) 0 0
\(759\) 5469.94 22730.4i 0.261589 1.08704i
\(760\) 0 0
\(761\) 18960.2 0.903162 0.451581 0.892230i \(-0.350860\pi\)
0.451581 + 0.892230i \(0.350860\pi\)
\(762\) 0 0
\(763\) −16894.3 + 16894.3i −0.801592 + 0.801592i
\(764\) 0 0
\(765\) 4448.50 1440.15i 0.210243 0.0680635i
\(766\) 0 0
\(767\) 12584.1 0.592418
\(768\) 0 0
\(769\) 12020.7 0.563692 0.281846 0.959460i \(-0.409053\pi\)
0.281846 + 0.959460i \(0.409053\pi\)
\(770\) 0 0
\(771\) 12443.9 + 20331.0i 0.581267 + 0.949681i
\(772\) 0 0
\(773\) 18559.5 18559.5i 0.863568 0.863568i −0.128183 0.991751i \(-0.540914\pi\)
0.991751 + 0.128183i \(0.0409145\pi\)
\(774\) 0 0
\(775\) −15545.3 −0.720520
\(776\) 0 0
\(777\) 16776.9 + 4037.27i 0.774606 + 0.186405i
\(778\) 0 0
\(779\) 4115.45 + 4115.45i 0.189283 + 0.189283i
\(780\) 0 0
\(781\) 11449.8 11449.8i 0.524590 0.524590i
\(782\) 0 0
\(783\) 7397.53 8633.30i 0.337632 0.394034i
\(784\) 0 0
\(785\) 10070.1i 0.457858i
\(786\) 0 0
\(787\) −6934.87 6934.87i −0.314106 0.314106i 0.532392 0.846498i \(-0.321293\pi\)
−0.846498 + 0.532392i \(0.821293\pi\)
\(788\) 0 0
\(789\) −2885.92 4715.05i −0.130217 0.212751i
\(790\) 0 0
\(791\) 4937.38i 0.221938i
\(792\) 0 0
\(793\) 5596.74i 0.250626i
\(794\) 0 0
\(795\) −1634.73 2670.85i −0.0729284 0.119151i
\(796\) 0 0
\(797\) 1033.71 + 1033.71i 0.0459424 + 0.0459424i 0.729705 0.683762i \(-0.239658\pi\)
−0.683762 + 0.729705i \(0.739658\pi\)
\(798\) 0 0
\(799\) 15925.0i 0.705113i
\(800\) 0 0
\(801\) 11398.0 22310.7i 0.502780 0.984158i
\(802\) 0 0
\(803\) 11070.8 11070.8i 0.486524 0.486524i
\(804\) 0 0
\(805\) 20306.2 + 20306.2i 0.889067 + 0.889067i
\(806\) 0 0
\(807\) −36918.5 8884.24i −1.61040 0.387534i
\(808\) 0 0
\(809\) −28378.6 −1.23330 −0.616649 0.787239i \(-0.711510\pi\)
−0.616649 + 0.787239i \(0.711510\pi\)
\(810\) 0 0
\(811\) 18955.2 18955.2i 0.820723 0.820723i −0.165489 0.986212i \(-0.552920\pi\)
0.986212 + 0.165489i \(0.0529202\pi\)
\(812\) 0 0
\(813\) −18685.3 30528.3i −0.806056 1.31694i
\(814\) 0 0
\(815\) 4581.45 0.196909
\(816\) 0 0
\(817\) −25553.2 −1.09424
\(818\) 0 0
\(819\) 6957.69 + 21491.8i 0.296851 + 0.916951i
\(820\) 0 0
\(821\) 26166.4 26166.4i 1.11232 1.11232i 0.119482 0.992836i \(-0.461877\pi\)
0.992836 0.119482i \(-0.0381233\pi\)
\(822\) 0 0
\(823\) −22421.9 −0.949672 −0.474836 0.880074i \(-0.657493\pi\)
−0.474836 + 0.880074i \(0.657493\pi\)
\(824\) 0 0
\(825\) −2901.13 + 12055.7i −0.122430 + 0.508757i
\(826\) 0 0
\(827\) 32421.5 + 32421.5i 1.36325 + 1.36325i 0.869745 + 0.493501i \(0.164283\pi\)
0.493501 + 0.869745i \(0.335717\pi\)
\(828\) 0 0
\(829\) −508.732 + 508.732i −0.0213136 + 0.0213136i −0.717683 0.696370i \(-0.754797\pi\)
0.696370 + 0.717683i \(0.254797\pi\)
\(830\) 0 0
\(831\) −15309.0 3684.02i −0.639063 0.153787i
\(832\) 0 0
\(833\) 27131.5i 1.12851i
\(834\) 0 0
\(835\) −6984.26 6984.26i −0.289461 0.289461i
\(836\) 0 0
\(837\) −20743.0 + 1599.02i −0.856609 + 0.0660338i
\(838\) 0 0
\(839\) 28733.8i 1.18236i 0.806539 + 0.591181i \(0.201338\pi\)
−0.806539 + 0.591181i \(0.798662\pi\)
\(840\) 0 0
\(841\) 17822.0i 0.730741i
\(842\) 0 0
\(843\) −35073.9 + 21467.5i −1.43299 + 0.877083i
\(844\) 0 0
\(845\) 4852.94 + 4852.94i 0.197569 + 0.197569i
\(846\) 0 0
\(847\) 26295.3i 1.06672i
\(848\) 0 0
\(849\) 6821.84 28348.2i 0.275765 1.14595i
\(850\) 0 0
\(851\) 14346.6 14346.6i 0.577904 0.577904i
\(852\) 0 0
\(853\) 32516.7 + 32516.7i 1.30522 + 1.30522i 0.924826 + 0.380390i \(0.124210\pi\)
0.380390 + 0.924826i \(0.375790\pi\)
\(854\) 0 0
\(855\) 4391.43 8595.93i 0.175654 0.343830i
\(856\) 0 0
\(857\) 17192.8 0.685292 0.342646 0.939465i \(-0.388677\pi\)
0.342646 + 0.939465i \(0.388677\pi\)
\(858\) 0 0
\(859\) −28319.0 + 28319.0i −1.12483 + 1.12483i −0.133827 + 0.991005i \(0.542727\pi\)
−0.991005 + 0.133827i \(0.957273\pi\)
\(860\) 0 0
\(861\) 10482.8 6416.17i 0.414929 0.253963i
\(862\) 0 0
\(863\) −25432.8 −1.00318 −0.501589 0.865106i \(-0.667251\pi\)
−0.501589 + 0.865106i \(0.667251\pi\)
\(864\) 0 0
\(865\) 2862.20 0.112506
\(866\) 0 0
\(867\) −15184.1 + 9293.64i −0.594784 + 0.364047i
\(868\) 0 0
\(869\) −2615.90 + 2615.90i −0.102115 + 0.102115i
\(870\) 0 0
\(871\) 22072.1 0.858652
\(872\) 0 0
\(873\) −2565.46 + 5021.71i −0.0994589 + 0.194684i
\(874\) 0 0
\(875\) −23612.0 23612.0i −0.912266 0.912266i
\(876\) 0 0
\(877\) 34340.0 34340.0i 1.32221 1.32221i 0.410231 0.911982i \(-0.365448\pi\)
0.911982 0.410231i \(-0.134552\pi\)
\(878\) 0 0
\(879\) 8607.39 35768.1i 0.330285 1.37250i
\(880\) 0 0
\(881\) 1486.40i 0.0568423i 0.999596 + 0.0284211i \(0.00904795\pi\)
−0.999596 + 0.0284211i \(0.990952\pi\)
\(882\) 0 0
\(883\) −26569.1 26569.1i −1.01260 1.01260i −0.999920 0.0126765i \(-0.995965\pi\)
−0.0126765 0.999920i \(-0.504035\pi\)
\(884\) 0 0
\(885\) −9685.03 + 5927.87i −0.367863 + 0.225156i
\(886\) 0 0
\(887\) 24047.1i 0.910284i 0.890419 + 0.455142i \(0.150412\pi\)
−0.890419 + 0.455142i \(0.849588\pi\)
\(888\) 0 0
\(889\) 12934.1i 0.487959i
\(890\) 0 0
\(891\) −2631.08 + 16385.0i −0.0989274 + 0.616070i
\(892\) 0 0
\(893\) 23246.4 + 23246.4i 0.871123 + 0.871123i
\(894\) 0 0
\(895\) 7370.39i 0.275268i
\(896\) 0 0
\(897\) 25823.7 + 6214.34i 0.961237 + 0.231316i
\(898\) 0 0
\(899\) 8497.26 8497.26i 0.315238 0.315238i
\(900\) 0 0
\(901\) −3658.80 3658.80i −0.135286 0.135286i
\(902\) 0 0
\(903\) −12625.1 + 52463.7i −0.465268 + 1.93343i
\(904\) 0 0
\(905\) 797.817 0.0293042
\(906\) 0 0
\(907\) 20817.3 20817.3i 0.762101 0.762101i −0.214601 0.976702i \(-0.568845\pi\)
0.976702 + 0.214601i \(0.0688451\pi\)
\(908\) 0 0
\(909\) 6.80048 + 21.0062i 0.000248138 + 0.000766480i
\(910\) 0 0
\(911\) 9545.92 0.347168 0.173584 0.984819i \(-0.444465\pi\)
0.173584 + 0.984819i \(0.444465\pi\)
\(912\) 0 0
\(913\) −24089.7 −0.873222
\(914\) 0 0
\(915\) 2636.41 + 4307.40i 0.0952536 + 0.155626i
\(916\) 0 0
\(917\) −43340.0 + 43340.0i −1.56076 + 1.56076i
\(918\) 0 0
\(919\) −12290.4 −0.441156 −0.220578 0.975369i \(-0.570794\pi\)
−0.220578 + 0.975369i \(0.570794\pi\)
\(920\) 0 0
\(921\) −10257.7 2468.47i −0.366996 0.0883157i
\(922\) 0 0
\(923\) 13008.0 + 13008.0i 0.463881 + 0.463881i
\(924\) 0 0
\(925\) −7609.13 + 7609.13i −0.270472 + 0.270472i
\(926\) 0 0
\(927\) −13060.5 + 25565.1i −0.462745 + 0.905791i
\(928\) 0 0
\(929\) 26256.0i 0.927268i −0.886027 0.463634i \(-0.846545\pi\)
0.886027 0.463634i \(-0.153455\pi\)
\(930\) 0 0
\(931\) 39605.1 + 39605.1i 1.39420 + 1.39420i
\(932\) 0 0
\(933\) 9501.94 + 15524.4i 0.333419 + 0.544744i
\(934\) 0 0
\(935\) 3942.21i 0.137887i
\(936\) 0 0
\(937\) 9723.86i 0.339023i 0.985528 + 0.169512i \(0.0542190\pi\)
−0.985528 + 0.169512i \(0.945781\pi\)
\(938\) 0 0
\(939\) −2038.50 3330.53i −0.0708455 0.115748i
\(940\) 0 0
\(941\) −24237.0 24237.0i −0.839644 0.839644i 0.149168 0.988812i \(-0.452340\pi\)
−0.988812 + 0.149168i \(0.952340\pi\)
\(942\) 0 0
\(943\) 14451.0i 0.499035i
\(944\) 0 0
\(945\) −15478.8 13263.1i −0.532830 0.456560i
\(946\) 0 0
\(947\) 26385.5 26385.5i 0.905399 0.905399i −0.0904976 0.995897i \(-0.528846\pi\)
0.995897 + 0.0904976i \(0.0288458\pi\)
\(948\) 0 0
\(949\) 12577.4 + 12577.4i 0.430220 + 0.430220i
\(950\) 0 0
\(951\) 49472.1 + 11905.2i 1.68690 + 0.405943i
\(952\) 0 0
\(953\) −11928.6 −0.405464 −0.202732 0.979234i \(-0.564982\pi\)
−0.202732 + 0.979234i \(0.564982\pi\)
\(954\) 0 0
\(955\) 11845.0 11845.0i 0.401355 0.401355i
\(956\) 0 0
\(957\) −5003.99 8175.59i −0.169024 0.276154i
\(958\) 0 0
\(959\) 51712.2 1.74126
\(960\) 0 0
\(961\) 7801.07 0.261860
\(962\) 0 0
\(963\) −19199.2 + 6215.51i −0.642458 + 0.207988i
\(964\) 0 0
\(965\) −10438.0 + 10438.0i −0.348199 + 0.348199i
\(966\) 0 0
\(967\) 52495.5 1.74575 0.872876 0.487943i \(-0.162252\pi\)
0.872876 + 0.487943i \(0.162252\pi\)
\(968\) 0 0
\(969\) 3731.75 15507.3i 0.123716 0.514104i
\(970\) 0 0
\(971\) −8668.87 8668.87i −0.286506 0.286506i 0.549191 0.835697i \(-0.314936\pi\)
−0.835697 + 0.549191i \(0.814936\pi\)
\(972\) 0 0
\(973\) −54047.1 + 54047.1i −1.78075 + 1.78075i
\(974\) 0 0
\(975\) −13696.3 3295.95i −0.449880 0.108261i
\(976\) 0 0
\(977\) 34992.7i 1.14587i 0.819600 + 0.572936i \(0.194196\pi\)
−0.819600 + 0.572936i \(0.805804\pi\)
\(978\) 0 0
\(979\) −14936.1 14936.1i −0.487600 0.487600i
\(980\) 0 0
\(981\) −6141.54 18970.7i −0.199882 0.617420i
\(982\) 0 0
\(983\) 60755.5i 1.97131i −0.168767 0.985656i \(-0.553979\pi\)
0.168767 0.985656i \(-0.446021\pi\)
\(984\) 0 0
\(985\) 12458.3i 0.402999i
\(986\) 0 0
\(987\) 59213.0 36242.2i 1.90960 1.16880i
\(988\) 0 0
\(989\) 44863.9 + 44863.9i 1.44246 + 1.44246i
\(990\) 0 0
\(991\) 1498.28i 0.0480268i 0.999712 + 0.0240134i \(0.00764444\pi\)
−0.999712 + 0.0240134i \(0.992356\pi\)
\(992\) 0 0
\(993\) 5508.25 22889.6i 0.176031 0.731499i
\(994\) 0 0
\(995\) −643.990 + 643.990i −0.0205185 + 0.0205185i
\(996\) 0 0
\(997\) −43616.9 43616.9i −1.38552 1.38552i −0.834484 0.551033i \(-0.814234\pi\)
−0.551033 0.834484i \(-0.685766\pi\)
\(998\) 0 0
\(999\) −9370.60 + 10936.0i −0.296770 + 0.346346i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.4.k.b.287.4 44
3.2 odd 2 inner 384.4.k.b.287.16 44
4.3 odd 2 384.4.k.a.287.19 44
8.3 odd 2 192.4.k.a.143.4 44
8.5 even 2 48.4.k.a.11.22 yes 44
12.11 even 2 384.4.k.a.287.7 44
16.3 odd 4 inner 384.4.k.b.95.16 44
16.5 even 4 192.4.k.a.47.16 44
16.11 odd 4 48.4.k.a.35.1 yes 44
16.13 even 4 384.4.k.a.95.7 44
24.5 odd 2 48.4.k.a.11.1 44
24.11 even 2 192.4.k.a.143.16 44
48.5 odd 4 192.4.k.a.47.4 44
48.11 even 4 48.4.k.a.35.22 yes 44
48.29 odd 4 384.4.k.a.95.19 44
48.35 even 4 inner 384.4.k.b.95.4 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.1 44 24.5 odd 2
48.4.k.a.11.22 yes 44 8.5 even 2
48.4.k.a.35.1 yes 44 16.11 odd 4
48.4.k.a.35.22 yes 44 48.11 even 4
192.4.k.a.47.4 44 48.5 odd 4
192.4.k.a.47.16 44 16.5 even 4
192.4.k.a.143.4 44 8.3 odd 2
192.4.k.a.143.16 44 24.11 even 2
384.4.k.a.95.7 44 16.13 even 4
384.4.k.a.95.19 44 48.29 odd 4
384.4.k.a.287.7 44 12.11 even 2
384.4.k.a.287.19 44 4.3 odd 2
384.4.k.b.95.4 44 48.35 even 4 inner
384.4.k.b.95.16 44 16.3 odd 4 inner
384.4.k.b.287.4 44 1.1 even 1 trivial
384.4.k.b.287.16 44 3.2 odd 2 inner