Properties

Label 192.4.k.a.47.16
Level $192$
Weight $4$
Character 192.47
Analytic conductor $11.328$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(47,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.16
Character \(\chi\) \(=\) 192.47
Dual form 192.4.k.a.143.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.71261 + 4.43190i) q^{3} +(3.17566 + 3.17566i) q^{5} +32.3513 q^{7} +(-12.2835 + 24.0440i) q^{9} +(16.0965 - 16.0965i) q^{11} +(-18.2871 - 18.2871i) q^{13} +(-5.45988 + 22.6886i) q^{15} +38.5606i q^{17} +(56.2887 - 56.2887i) q^{19} +(87.7565 + 143.378i) q^{21} +197.652i q^{23} -104.830i q^{25} +(-139.881 + 10.7831i) q^{27} +(-57.3016 + 57.3016i) q^{29} +148.290i q^{31} +(115.002 + 27.6746i) q^{33} +(102.737 + 102.737i) q^{35} +(-72.5852 + 72.5852i) q^{37} +(31.4408 - 130.652i) q^{39} -73.1133 q^{41} +(-226.984 - 226.984i) q^{43} +(-115.364 + 37.3476i) q^{45} +412.986 q^{47} +703.607 q^{49} +(-170.897 + 104.600i) q^{51} +(-94.8845 - 94.8845i) q^{53} +102.234 q^{55} +(402.155 + 96.7764i) q^{57} +(-344.070 + 344.070i) q^{59} +(-153.024 - 153.024i) q^{61} +(-397.386 + 777.856i) q^{63} -116.147i q^{65} +(603.490 - 603.490i) q^{67} +(-875.976 + 536.154i) q^{69} -711.320i q^{71} -687.773i q^{73} +(464.598 - 284.364i) q^{75} +(520.744 - 520.744i) q^{77} -162.513i q^{79} +(-427.233 - 590.689i) q^{81} +(-748.288 - 748.288i) q^{83} +(-122.455 + 122.455i) q^{85} +(-409.392 - 98.5180i) q^{87} -927.910 q^{89} +(-591.611 - 591.611i) q^{91} +(-657.206 + 402.253i) q^{93} +357.508 q^{95} -208.855 q^{97} +(189.304 + 584.747i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} + 8 q^{7} - 4 q^{13} - 20 q^{19} - 56 q^{21} + 134 q^{27} - 4 q^{33} - 4 q^{37} - 596 q^{39} + 436 q^{43} - 252 q^{45} + 972 q^{49} + 648 q^{51} - 280 q^{55} - 916 q^{61} + 1636 q^{67} + 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.71261 + 4.43190i 0.522042 + 0.852920i
\(4\) 0 0
\(5\) 3.17566 + 3.17566i 0.284040 + 0.284040i 0.834718 0.550678i \(-0.185631\pi\)
−0.550678 + 0.834718i \(0.685631\pi\)
\(6\) 0 0
\(7\) 32.3513 1.74681 0.873403 0.486998i \(-0.161908\pi\)
0.873403 + 0.486998i \(0.161908\pi\)
\(8\) 0 0
\(9\) −12.2835 + 24.0440i −0.454943 + 0.890520i
\(10\) 0 0
\(11\) 16.0965 16.0965i 0.441208 0.441208i −0.451210 0.892418i \(-0.649007\pi\)
0.892418 + 0.451210i \(0.149007\pi\)
\(12\) 0 0
\(13\) −18.2871 18.2871i −0.390148 0.390148i 0.484592 0.874740i \(-0.338968\pi\)
−0.874740 + 0.484592i \(0.838968\pi\)
\(14\) 0 0
\(15\) −5.45988 + 22.6886i −0.0939823 + 0.390544i
\(16\) 0 0
\(17\) 38.5606i 0.550136i 0.961425 + 0.275068i \(0.0887003\pi\)
−0.961425 + 0.275068i \(0.911300\pi\)
\(18\) 0 0
\(19\) 56.2887 56.2887i 0.679658 0.679658i −0.280264 0.959923i \(-0.590422\pi\)
0.959923 + 0.280264i \(0.0904222\pi\)
\(20\) 0 0
\(21\) 87.7565 + 143.378i 0.911907 + 1.48988i
\(22\) 0 0
\(23\) 197.652i 1.79189i 0.444169 + 0.895943i \(0.353499\pi\)
−0.444169 + 0.895943i \(0.646501\pi\)
\(24\) 0 0
\(25\) 104.830i 0.838643i
\(26\) 0 0
\(27\) −139.881 + 10.7831i −0.997042 + 0.0768593i
\(28\) 0 0
\(29\) −57.3016 + 57.3016i −0.366919 + 0.366919i −0.866352 0.499433i \(-0.833542\pi\)
0.499433 + 0.866352i \(0.333542\pi\)
\(30\) 0 0
\(31\) 148.290i 0.859151i 0.903031 + 0.429575i \(0.141337\pi\)
−0.903031 + 0.429575i \(0.858663\pi\)
\(32\) 0 0
\(33\) 115.002 + 27.6746i 0.606644 + 0.145986i
\(34\) 0 0
\(35\) 102.737 + 102.737i 0.496162 + 0.496162i
\(36\) 0 0
\(37\) −72.5852 + 72.5852i −0.322512 + 0.322512i −0.849730 0.527218i \(-0.823235\pi\)
0.527218 + 0.849730i \(0.323235\pi\)
\(38\) 0 0
\(39\) 31.4408 130.652i 0.129091 0.536439i
\(40\) 0 0
\(41\) −73.1133 −0.278497 −0.139249 0.990257i \(-0.544469\pi\)
−0.139249 + 0.990257i \(0.544469\pi\)
\(42\) 0 0
\(43\) −226.984 226.984i −0.804993 0.804993i 0.178878 0.983871i \(-0.442753\pi\)
−0.983871 + 0.178878i \(0.942753\pi\)
\(44\) 0 0
\(45\) −115.364 + 37.3476i −0.382165 + 0.123721i
\(46\) 0 0
\(47\) 412.986 1.28171 0.640853 0.767663i \(-0.278581\pi\)
0.640853 + 0.767663i \(0.278581\pi\)
\(48\) 0 0
\(49\) 703.607 2.05133
\(50\) 0 0
\(51\) −170.897 + 104.600i −0.469222 + 0.287194i
\(52\) 0 0
\(53\) −94.8845 94.8845i −0.245913 0.245913i 0.573378 0.819291i \(-0.305633\pi\)
−0.819291 + 0.573378i \(0.805633\pi\)
\(54\) 0 0
\(55\) 102.234 0.250641
\(56\) 0 0
\(57\) 402.155 + 96.7764i 0.934504 + 0.224883i
\(58\) 0 0
\(59\) −344.070 + 344.070i −0.759222 + 0.759222i −0.976181 0.216959i \(-0.930386\pi\)
0.216959 + 0.976181i \(0.430386\pi\)
\(60\) 0 0
\(61\) −153.024 153.024i −0.321193 0.321193i 0.528032 0.849225i \(-0.322930\pi\)
−0.849225 + 0.528032i \(0.822930\pi\)
\(62\) 0 0
\(63\) −397.386 + 777.856i −0.794698 + 1.55557i
\(64\) 0 0
\(65\) 116.147i 0.221635i
\(66\) 0 0
\(67\) 603.490 603.490i 1.10042 1.10042i 0.106058 0.994360i \(-0.466177\pi\)
0.994360 0.106058i \(-0.0338228\pi\)
\(68\) 0 0
\(69\) −875.976 + 536.154i −1.52833 + 0.935441i
\(70\) 0 0
\(71\) 711.320i 1.18899i −0.804100 0.594494i \(-0.797353\pi\)
0.804100 0.594494i \(-0.202647\pi\)
\(72\) 0 0
\(73\) 687.773i 1.10271i −0.834271 0.551355i \(-0.814111\pi\)
0.834271 0.551355i \(-0.185889\pi\)
\(74\) 0 0
\(75\) 464.598 284.364i 0.715295 0.437807i
\(76\) 0 0
\(77\) 520.744 520.744i 0.770704 0.770704i
\(78\) 0 0
\(79\) 162.513i 0.231445i −0.993282 0.115723i \(-0.963082\pi\)
0.993282 0.115723i \(-0.0369184\pi\)
\(80\) 0 0
\(81\) −427.233 590.689i −0.586053 0.810273i
\(82\) 0 0
\(83\) −748.288 748.288i −0.989582 0.989582i 0.0103646 0.999946i \(-0.496701\pi\)
−0.999946 + 0.0103646i \(0.996701\pi\)
\(84\) 0 0
\(85\) −122.455 + 122.455i −0.156260 + 0.156260i
\(86\) 0 0
\(87\) −409.392 98.5180i −0.504499 0.121405i
\(88\) 0 0
\(89\) −927.910 −1.10515 −0.552575 0.833463i \(-0.686355\pi\)
−0.552575 + 0.833463i \(0.686355\pi\)
\(90\) 0 0
\(91\) −591.611 591.611i −0.681513 0.681513i
\(92\) 0 0
\(93\) −657.206 + 402.253i −0.732786 + 0.448513i
\(94\) 0 0
\(95\) 357.508 0.386100
\(96\) 0 0
\(97\) −208.855 −0.218618 −0.109309 0.994008i \(-0.534864\pi\)
−0.109309 + 0.994008i \(0.534864\pi\)
\(98\) 0 0
\(99\) 189.304 + 584.747i 0.192180 + 0.593629i
\(100\) 0 0
\(101\) −0.578244 0.578244i −0.000569677 0.000569677i 0.706822 0.707392i \(-0.250128\pi\)
−0.707392 + 0.706822i \(0.750128\pi\)
\(102\) 0 0
\(103\) 1063.26 1.01715 0.508574 0.861018i \(-0.330173\pi\)
0.508574 + 0.861018i \(0.330173\pi\)
\(104\) 0 0
\(105\) −176.634 + 734.004i −0.164169 + 0.682205i
\(106\) 0 0
\(107\) 528.504 528.504i 0.477499 0.477499i −0.426832 0.904331i \(-0.640370\pi\)
0.904331 + 0.426832i \(0.140370\pi\)
\(108\) 0 0
\(109\) −522.214 522.214i −0.458890 0.458890i 0.439401 0.898291i \(-0.355191\pi\)
−0.898291 + 0.439401i \(0.855191\pi\)
\(110\) 0 0
\(111\) −518.586 124.795i −0.443441 0.106712i
\(112\) 0 0
\(113\) 152.618i 0.127054i 0.997980 + 0.0635269i \(0.0202349\pi\)
−0.997980 + 0.0635269i \(0.979765\pi\)
\(114\) 0 0
\(115\) −627.677 + 627.677i −0.508967 + 0.508967i
\(116\) 0 0
\(117\) 664.324 215.067i 0.524930 0.169939i
\(118\) 0 0
\(119\) 1247.48i 0.960980i
\(120\) 0 0
\(121\) 812.804i 0.610671i
\(122\) 0 0
\(123\) −198.328 324.031i −0.145387 0.237536i
\(124\) 0 0
\(125\) 729.863 729.863i 0.522248 0.522248i
\(126\) 0 0
\(127\) 399.802i 0.279344i −0.990198 0.139672i \(-0.955395\pi\)
0.990198 0.139672i \(-0.0446048\pi\)
\(128\) 0 0
\(129\) 390.250 1621.69i 0.266354 1.10683i
\(130\) 0 0
\(131\) −1339.67 1339.67i −0.893492 0.893492i 0.101358 0.994850i \(-0.467681\pi\)
−0.994850 + 0.101358i \(0.967681\pi\)
\(132\) 0 0
\(133\) 1821.01 1821.01i 1.18723 1.18723i
\(134\) 0 0
\(135\) −478.459 409.972i −0.305031 0.261369i
\(136\) 0 0
\(137\) 1598.46 0.996828 0.498414 0.866939i \(-0.333916\pi\)
0.498414 + 0.866939i \(0.333916\pi\)
\(138\) 0 0
\(139\) 1670.63 + 1670.63i 1.01943 + 1.01943i 0.999807 + 0.0196259i \(0.00624752\pi\)
0.0196259 + 0.999807i \(0.493752\pi\)
\(140\) 0 0
\(141\) 1120.27 + 1830.31i 0.669105 + 1.09319i
\(142\) 0 0
\(143\) −588.717 −0.344273
\(144\) 0 0
\(145\) −363.941 −0.208439
\(146\) 0 0
\(147\) 1908.61 + 3118.31i 1.07088 + 1.74962i
\(148\) 0 0
\(149\) 142.214 + 142.214i 0.0781919 + 0.0781919i 0.745121 0.666929i \(-0.232392\pi\)
−0.666929 + 0.745121i \(0.732392\pi\)
\(150\) 0 0
\(151\) −1880.73 −1.01359 −0.506794 0.862067i \(-0.669169\pi\)
−0.506794 + 0.862067i \(0.669169\pi\)
\(152\) 0 0
\(153\) −927.152 473.657i −0.489907 0.250281i
\(154\) 0 0
\(155\) −470.919 + 470.919i −0.244033 + 0.244033i
\(156\) 0 0
\(157\) 1585.52 + 1585.52i 0.805976 + 0.805976i 0.984022 0.178046i \(-0.0569777\pi\)
−0.178046 + 0.984022i \(0.556978\pi\)
\(158\) 0 0
\(159\) 163.134 677.903i 0.0813670 0.338121i
\(160\) 0 0
\(161\) 6394.31i 3.13008i
\(162\) 0 0
\(163\) 721.338 721.338i 0.346623 0.346623i −0.512227 0.858850i \(-0.671179\pi\)
0.858850 + 0.512227i \(0.171179\pi\)
\(164\) 0 0
\(165\) 277.322 + 453.092i 0.130845 + 0.213777i
\(166\) 0 0
\(167\) 2199.31i 1.01909i 0.860445 + 0.509544i \(0.170186\pi\)
−0.860445 + 0.509544i \(0.829814\pi\)
\(168\) 0 0
\(169\) 1528.17i 0.695569i
\(170\) 0 0
\(171\) 661.987 + 2044.83i 0.296044 + 0.914456i
\(172\) 0 0
\(173\) 450.646 450.646i 0.198046 0.198046i −0.601116 0.799162i \(-0.705277\pi\)
0.799162 + 0.601116i \(0.205277\pi\)
\(174\) 0 0
\(175\) 3391.40i 1.46495i
\(176\) 0 0
\(177\) −2458.21 591.555i −1.04390 0.251209i
\(178\) 0 0
\(179\) 1160.45 + 1160.45i 0.484559 + 0.484559i 0.906584 0.422025i \(-0.138681\pi\)
−0.422025 + 0.906584i \(0.638681\pi\)
\(180\) 0 0
\(181\) −125.614 + 125.614i −0.0515847 + 0.0515847i −0.732429 0.680844i \(-0.761613\pi\)
0.680844 + 0.732429i \(0.261613\pi\)
\(182\) 0 0
\(183\) 263.093 1093.29i 0.106275 0.441628i
\(184\) 0 0
\(185\) −461.012 −0.183212
\(186\) 0 0
\(187\) 620.691 + 620.691i 0.242724 + 0.242724i
\(188\) 0 0
\(189\) −4525.34 + 348.846i −1.74164 + 0.134258i
\(190\) 0 0
\(191\) 3729.92 1.41302 0.706512 0.707702i \(-0.250268\pi\)
0.706512 + 0.707702i \(0.250268\pi\)
\(192\) 0 0
\(193\) −3286.88 −1.22588 −0.612941 0.790129i \(-0.710014\pi\)
−0.612941 + 0.790129i \(0.710014\pi\)
\(194\) 0 0
\(195\) 514.753 315.062i 0.189037 0.115703i
\(196\) 0 0
\(197\) −1961.53 1961.53i −0.709406 0.709406i 0.257004 0.966410i \(-0.417264\pi\)
−0.966410 + 0.257004i \(0.917264\pi\)
\(198\) 0 0
\(199\) 202.789 0.0722380 0.0361190 0.999347i \(-0.488500\pi\)
0.0361190 + 0.999347i \(0.488500\pi\)
\(200\) 0 0
\(201\) 4311.64 + 1037.57i 1.51303 + 0.364103i
\(202\) 0 0
\(203\) −1853.78 + 1853.78i −0.640936 + 0.640936i
\(204\) 0 0
\(205\) −232.183 232.183i −0.0791043 0.0791043i
\(206\) 0 0
\(207\) −4752.36 2427.86i −1.59571 0.815207i
\(208\) 0 0
\(209\) 1812.10i 0.599741i
\(210\) 0 0
\(211\) −2022.16 + 2022.16i −0.659770 + 0.659770i −0.955325 0.295556i \(-0.904495\pi\)
0.295556 + 0.955325i \(0.404495\pi\)
\(212\) 0 0
\(213\) 3152.50 1929.53i 1.01411 0.620702i
\(214\) 0 0
\(215\) 1441.65i 0.457300i
\(216\) 0 0
\(217\) 4797.37i 1.50077i
\(218\) 0 0
\(219\) 3048.14 1865.66i 0.940522 0.575661i
\(220\) 0 0
\(221\) 705.160 705.160i 0.214634 0.214634i
\(222\) 0 0
\(223\) 1803.88i 0.541688i 0.962623 + 0.270844i \(0.0873028\pi\)
−0.962623 + 0.270844i \(0.912697\pi\)
\(224\) 0 0
\(225\) 2520.55 + 1287.68i 0.746828 + 0.381535i
\(226\) 0 0
\(227\) −1811.19 1811.19i −0.529573 0.529573i 0.390872 0.920445i \(-0.372174\pi\)
−0.920445 + 0.390872i \(0.872174\pi\)
\(228\) 0 0
\(229\) −1529.22 + 1529.22i −0.441281 + 0.441281i −0.892442 0.451161i \(-0.851010\pi\)
0.451161 + 0.892442i \(0.351010\pi\)
\(230\) 0 0
\(231\) 3720.46 + 895.308i 1.05969 + 0.255008i
\(232\) 0 0
\(233\) −3502.19 −0.984703 −0.492352 0.870396i \(-0.663863\pi\)
−0.492352 + 0.870396i \(0.663863\pi\)
\(234\) 0 0
\(235\) 1311.50 + 1311.50i 0.364056 + 0.364056i
\(236\) 0 0
\(237\) 720.243 440.836i 0.197404 0.120824i
\(238\) 0 0
\(239\) 1874.23 0.507254 0.253627 0.967302i \(-0.418376\pi\)
0.253627 + 0.967302i \(0.418376\pi\)
\(240\) 0 0
\(241\) −627.829 −0.167809 −0.0839046 0.996474i \(-0.526739\pi\)
−0.0839046 + 0.996474i \(0.526739\pi\)
\(242\) 0 0
\(243\) 1458.96 3495.76i 0.385153 0.922853i
\(244\) 0 0
\(245\) 2234.42 + 2234.42i 0.582660 + 0.582660i
\(246\) 0 0
\(247\) −2058.71 −0.530335
\(248\) 0 0
\(249\) 1286.52 5346.15i 0.327430 1.36064i
\(250\) 0 0
\(251\) 1278.26 1278.26i 0.321446 0.321446i −0.527876 0.849322i \(-0.677011\pi\)
0.849322 + 0.527876i \(0.177011\pi\)
\(252\) 0 0
\(253\) 3181.52 + 3181.52i 0.790594 + 0.790594i
\(254\) 0 0
\(255\) −874.883 210.536i −0.214852 0.0517030i
\(256\) 0 0
\(257\) 4587.43i 1.11345i −0.830698 0.556724i \(-0.812058\pi\)
0.830698 0.556724i \(-0.187942\pi\)
\(258\) 0 0
\(259\) −2348.22 + 2348.22i −0.563365 + 0.563365i
\(260\) 0 0
\(261\) −673.900 2081.63i −0.159821 0.493676i
\(262\) 0 0
\(263\) 1063.89i 0.249438i −0.992192 0.124719i \(-0.960197\pi\)
0.992192 0.124719i \(-0.0398029\pi\)
\(264\) 0 0
\(265\) 602.642i 0.139698i
\(266\) 0 0
\(267\) −2517.06 4112.40i −0.576935 0.942603i
\(268\) 0 0
\(269\) 5167.40 5167.40i 1.17123 1.17123i 0.189318 0.981916i \(-0.439372\pi\)
0.981916 0.189318i \(-0.0606276\pi\)
\(270\) 0 0
\(271\) 6888.32i 1.54404i 0.635597 + 0.772021i \(0.280754\pi\)
−0.635597 + 0.772021i \(0.719246\pi\)
\(272\) 0 0
\(273\) 1017.15 4226.77i 0.225497 0.937054i
\(274\) 0 0
\(275\) −1687.40 1687.40i −0.370016 0.370016i
\(276\) 0 0
\(277\) −2142.76 + 2142.76i −0.464786 + 0.464786i −0.900221 0.435434i \(-0.856595\pi\)
0.435434 + 0.900221i \(0.356595\pi\)
\(278\) 0 0
\(279\) −3565.49 1821.52i −0.765091 0.390865i
\(280\) 0 0
\(281\) −7913.97 −1.68010 −0.840049 0.542510i \(-0.817474\pi\)
−0.840049 + 0.542510i \(0.817474\pi\)
\(282\) 0 0
\(283\) −3967.83 3967.83i −0.833438 0.833438i 0.154548 0.987985i \(-0.450608\pi\)
−0.987985 + 0.154548i \(0.950608\pi\)
\(284\) 0 0
\(285\) 969.780 + 1584.44i 0.201561 + 0.329312i
\(286\) 0 0
\(287\) −2365.31 −0.486481
\(288\) 0 0
\(289\) 3426.08 0.697351
\(290\) 0 0
\(291\) −566.541 925.622i −0.114128 0.186464i
\(292\) 0 0
\(293\) −5006.37 5006.37i −0.998209 0.998209i 0.00178897 0.999998i \(-0.499431\pi\)
−0.999998 + 0.00178897i \(0.999431\pi\)
\(294\) 0 0
\(295\) −2185.30 −0.431299
\(296\) 0 0
\(297\) −2078.03 + 2425.17i −0.405992 + 0.473814i
\(298\) 0 0
\(299\) 3614.49 3614.49i 0.699101 0.699101i
\(300\) 0 0
\(301\) −7343.22 7343.22i −1.40617 1.40617i
\(302\) 0 0
\(303\) 0.994167 4.13127i 0.000188493 0.000783284i
\(304\) 0 0
\(305\) 971.908i 0.182463i
\(306\) 0 0
\(307\) 1435.75 1435.75i 0.266914 0.266914i −0.560942 0.827855i \(-0.689561\pi\)
0.827855 + 0.560942i \(0.189561\pi\)
\(308\) 0 0
\(309\) 2884.22 + 4712.27i 0.530995 + 0.867546i
\(310\) 0 0
\(311\) 3502.88i 0.638681i 0.947640 + 0.319341i \(0.103461\pi\)
−0.947640 + 0.319341i \(0.896539\pi\)
\(312\) 0 0
\(313\) 751.490i 0.135708i −0.997695 0.0678542i \(-0.978385\pi\)
0.997695 0.0678542i \(-0.0216153\pi\)
\(314\) 0 0
\(315\) −3732.17 + 1208.24i −0.667569 + 0.216117i
\(316\) 0 0
\(317\) −6924.49 + 6924.49i −1.22687 + 1.22687i −0.261729 + 0.965141i \(0.584293\pi\)
−0.965141 + 0.261729i \(0.915707\pi\)
\(318\) 0 0
\(319\) 1844.71i 0.323775i
\(320\) 0 0
\(321\) 3775.90 + 908.650i 0.656543 + 0.157994i
\(322\) 0 0
\(323\) 2170.52 + 2170.52i 0.373904 + 0.373904i
\(324\) 0 0
\(325\) −1917.04 + 1917.04i −0.327195 + 0.327195i
\(326\) 0 0
\(327\) 897.836 3730.97i 0.151836 0.630957i
\(328\) 0 0
\(329\) 13360.6 2.23889
\(330\) 0 0
\(331\) −3203.80 3203.80i −0.532014 0.532014i 0.389157 0.921171i \(-0.372766\pi\)
−0.921171 + 0.389157i \(0.872766\pi\)
\(332\) 0 0
\(333\) −853.644 2636.84i −0.140479 0.433928i
\(334\) 0 0
\(335\) 3832.96 0.625125
\(336\) 0 0
\(337\) 2592.71 0.419091 0.209546 0.977799i \(-0.432802\pi\)
0.209546 + 0.977799i \(0.432802\pi\)
\(338\) 0 0
\(339\) −676.387 + 413.993i −0.108367 + 0.0663274i
\(340\) 0 0
\(341\) 2386.95 + 2386.95i 0.379064 + 0.379064i
\(342\) 0 0
\(343\) 11666.1 1.83647
\(344\) 0 0
\(345\) −4484.45 1079.16i −0.699810 0.168406i
\(346\) 0 0
\(347\) −6043.76 + 6043.76i −0.935003 + 0.935003i −0.998013 0.0630095i \(-0.979930\pi\)
0.0630095 + 0.998013i \(0.479930\pi\)
\(348\) 0 0
\(349\) −1836.04 1836.04i −0.281607 0.281607i 0.552143 0.833750i \(-0.313810\pi\)
−0.833750 + 0.552143i \(0.813810\pi\)
\(350\) 0 0
\(351\) 2755.21 + 2360.83i 0.418980 + 0.359007i
\(352\) 0 0
\(353\) 7004.62i 1.05614i 0.849200 + 0.528071i \(0.177085\pi\)
−0.849200 + 0.528071i \(0.822915\pi\)
\(354\) 0 0
\(355\) 2258.91 2258.91i 0.337720 0.337720i
\(356\) 0 0
\(357\) −5528.72 + 3383.94i −0.819639 + 0.501673i
\(358\) 0 0
\(359\) 3792.90i 0.557609i −0.960348 0.278805i \(-0.910062\pi\)
0.960348 0.278805i \(-0.0899382\pi\)
\(360\) 0 0
\(361\) 522.169i 0.0761291i
\(362\) 0 0
\(363\) −3602.26 + 2204.82i −0.520854 + 0.318796i
\(364\) 0 0
\(365\) 2184.14 2184.14i 0.313213 0.313213i
\(366\) 0 0
\(367\) 4167.61i 0.592773i 0.955068 + 0.296386i \(0.0957816\pi\)
−0.955068 + 0.296386i \(0.904218\pi\)
\(368\) 0 0
\(369\) 898.086 1757.94i 0.126700 0.248007i
\(370\) 0 0
\(371\) −3069.64 3069.64i −0.429562 0.429562i
\(372\) 0 0
\(373\) −5292.64 + 5292.64i −0.734698 + 0.734698i −0.971547 0.236848i \(-0.923886\pi\)
0.236848 + 0.971547i \(0.423886\pi\)
\(374\) 0 0
\(375\) 5214.52 + 1254.85i 0.718071 + 0.172800i
\(376\) 0 0
\(377\) 2095.76 0.286305
\(378\) 0 0
\(379\) 4863.55 + 4863.55i 0.659165 + 0.659165i 0.955183 0.296017i \(-0.0956586\pi\)
−0.296017 + 0.955183i \(0.595659\pi\)
\(380\) 0 0
\(381\) 1771.88 1084.51i 0.238258 0.145829i
\(382\) 0 0
\(383\) −6729.11 −0.897759 −0.448879 0.893592i \(-0.648177\pi\)
−0.448879 + 0.893592i \(0.648177\pi\)
\(384\) 0 0
\(385\) 3307.41 0.437821
\(386\) 0 0
\(387\) 8245.76 2669.46i 1.08309 0.350636i
\(388\) 0 0
\(389\) 1689.70 + 1689.70i 0.220234 + 0.220234i 0.808597 0.588363i \(-0.200227\pi\)
−0.588363 + 0.808597i \(0.700227\pi\)
\(390\) 0 0
\(391\) −7621.59 −0.985781
\(392\) 0 0
\(393\) 2303.28 9571.28i 0.295636 1.22852i
\(394\) 0 0
\(395\) 516.087 516.087i 0.0657397 0.0657397i
\(396\) 0 0
\(397\) 8515.47 + 8515.47i 1.07652 + 1.07652i 0.996819 + 0.0797039i \(0.0253975\pi\)
0.0797039 + 0.996819i \(0.474603\pi\)
\(398\) 0 0
\(399\) 13010.2 + 3130.84i 1.63240 + 0.392828i
\(400\) 0 0
\(401\) 4257.88i 0.530246i −0.964215 0.265123i \(-0.914588\pi\)
0.964215 0.265123i \(-0.0854125\pi\)
\(402\) 0 0
\(403\) 2711.79 2711.79i 0.335196 0.335196i
\(404\) 0 0
\(405\) 519.081 3232.57i 0.0636873 0.396612i
\(406\) 0 0
\(407\) 2336.74i 0.284589i
\(408\) 0 0
\(409\) 5141.14i 0.621548i −0.950484 0.310774i \(-0.899412\pi\)
0.950484 0.310774i \(-0.100588\pi\)
\(410\) 0 0
\(411\) 4335.99 + 7084.20i 0.520386 + 0.850214i
\(412\) 0 0
\(413\) −11131.1 + 11131.1i −1.32621 + 1.32621i
\(414\) 0 0
\(415\) 4752.62i 0.562161i
\(416\) 0 0
\(417\) −2872.30 + 11935.9i −0.337307 + 1.40168i
\(418\) 0 0
\(419\) 9514.69 + 9514.69i 1.10936 + 1.10936i 0.993234 + 0.116129i \(0.0370487\pi\)
0.116129 + 0.993234i \(0.462951\pi\)
\(420\) 0 0
\(421\) −942.451 + 942.451i −0.109103 + 0.109103i −0.759551 0.650448i \(-0.774581\pi\)
0.650448 + 0.759551i \(0.274581\pi\)
\(422\) 0 0
\(423\) −5072.90 + 9929.86i −0.583104 + 1.14139i
\(424\) 0 0
\(425\) 4042.32 0.461367
\(426\) 0 0
\(427\) −4950.54 4950.54i −0.561062 0.561062i
\(428\) 0 0
\(429\) −1596.96 2609.13i −0.179725 0.293637i
\(430\) 0 0
\(431\) −106.218 −0.0118709 −0.00593543 0.999982i \(-0.501889\pi\)
−0.00593543 + 0.999982i \(0.501889\pi\)
\(432\) 0 0
\(433\) 4043.15 0.448733 0.224367 0.974505i \(-0.427969\pi\)
0.224367 + 0.974505i \(0.427969\pi\)
\(434\) 0 0
\(435\) −987.231 1612.95i −0.108814 0.177782i
\(436\) 0 0
\(437\) 11125.6 + 11125.6i 1.21787 + 1.21787i
\(438\) 0 0
\(439\) 2283.39 0.248246 0.124123 0.992267i \(-0.460388\pi\)
0.124123 + 0.992267i \(0.460388\pi\)
\(440\) 0 0
\(441\) −8642.73 + 16917.6i −0.933239 + 1.82675i
\(442\) 0 0
\(443\) 3308.60 3308.60i 0.354845 0.354845i −0.507064 0.861909i \(-0.669269\pi\)
0.861909 + 0.507064i \(0.169269\pi\)
\(444\) 0 0
\(445\) −2946.73 2946.73i −0.313906 0.313906i
\(446\) 0 0
\(447\) −244.506 + 1016.05i −0.0258719 + 0.107511i
\(448\) 0 0
\(449\) 5247.10i 0.551506i 0.961229 + 0.275753i \(0.0889272\pi\)
−0.961229 + 0.275753i \(0.911073\pi\)
\(450\) 0 0
\(451\) −1176.87 + 1176.87i −0.122875 + 0.122875i
\(452\) 0 0
\(453\) −5101.69 8335.21i −0.529136 0.864509i
\(454\) 0 0
\(455\) 3757.51i 0.387154i
\(456\) 0 0
\(457\) 682.527i 0.0698627i −0.999390 0.0349314i \(-0.988879\pi\)
0.999390 0.0349314i \(-0.0111213\pi\)
\(458\) 0 0
\(459\) −415.801 5393.89i −0.0422831 0.548508i
\(460\) 0 0
\(461\) 5158.76 5158.76i 0.521187 0.521187i −0.396743 0.917930i \(-0.629859\pi\)
0.917930 + 0.396743i \(0.129859\pi\)
\(462\) 0 0
\(463\) 4260.25i 0.427625i −0.976875 0.213813i \(-0.931412\pi\)
0.976875 0.213813i \(-0.0685882\pi\)
\(464\) 0 0
\(465\) −3364.49 809.645i −0.335536 0.0807449i
\(466\) 0 0
\(467\) −501.947 501.947i −0.0497374 0.0497374i 0.681801 0.731538i \(-0.261197\pi\)
−0.731538 + 0.681801i \(0.761197\pi\)
\(468\) 0 0
\(469\) 19523.7 19523.7i 1.92222 1.92222i
\(470\) 0 0
\(471\) −2725.96 + 11327.8i −0.266679 + 1.10819i
\(472\) 0 0
\(473\) −7307.30 −0.710338
\(474\) 0 0
\(475\) −5900.76 5900.76i −0.569991 0.569991i
\(476\) 0 0
\(477\) 3446.92 1115.90i 0.330867 0.107114i
\(478\) 0 0
\(479\) −15980.7 −1.52438 −0.762190 0.647353i \(-0.775876\pi\)
−0.762190 + 0.647353i \(0.775876\pi\)
\(480\) 0 0
\(481\) 2654.74 0.251655
\(482\) 0 0
\(483\) −28339.0 + 17345.3i −2.66970 + 1.63403i
\(484\) 0 0
\(485\) −663.251 663.251i −0.0620963 0.0620963i
\(486\) 0 0
\(487\) −1901.65 −0.176945 −0.0884723 0.996079i \(-0.528198\pi\)
−0.0884723 + 0.996079i \(0.528198\pi\)
\(488\) 0 0
\(489\) 5153.61 + 1240.19i 0.476593 + 0.114690i
\(490\) 0 0
\(491\) −5271.77 + 5271.77i −0.484545 + 0.484545i −0.906580 0.422035i \(-0.861316\pi\)
0.422035 + 0.906580i \(0.361316\pi\)
\(492\) 0 0
\(493\) −2209.58 2209.58i −0.201855 0.201855i
\(494\) 0 0
\(495\) −1255.79 + 2458.13i −0.114028 + 0.223201i
\(496\) 0 0
\(497\) 23012.1i 2.07693i
\(498\) 0 0
\(499\) −29.4722 + 29.4722i −0.00264400 + 0.00264400i −0.708428 0.705784i \(-0.750595\pi\)
0.705784 + 0.708428i \(0.250595\pi\)
\(500\) 0 0
\(501\) −9747.11 + 5965.87i −0.869200 + 0.532007i
\(502\) 0 0
\(503\) 11304.7i 1.00209i −0.865421 0.501045i \(-0.832949\pi\)
0.865421 0.501045i \(-0.167051\pi\)
\(504\) 0 0
\(505\) 3.67261i 0.000323622i
\(506\) 0 0
\(507\) 6772.68 4145.32i 0.593264 0.363117i
\(508\) 0 0
\(509\) 2527.57 2527.57i 0.220103 0.220103i −0.588439 0.808542i \(-0.700257\pi\)
0.808542 + 0.588439i \(0.200257\pi\)
\(510\) 0 0
\(511\) 22250.4i 1.92622i
\(512\) 0 0
\(513\) −7266.76 + 8480.69i −0.625410 + 0.729886i
\(514\) 0 0
\(515\) 3376.56 + 3376.56i 0.288911 + 0.288911i
\(516\) 0 0
\(517\) 6647.64 6647.64i 0.565499 0.565499i
\(518\) 0 0
\(519\) 3219.65 + 774.790i 0.272306 + 0.0655289i
\(520\) 0 0
\(521\) 55.5878 0.00467437 0.00233719 0.999997i \(-0.499256\pi\)
0.00233719 + 0.999997i \(0.499256\pi\)
\(522\) 0 0
\(523\) 14970.9 + 14970.9i 1.25169 + 1.25169i 0.954963 + 0.296723i \(0.0958940\pi\)
0.296723 + 0.954963i \(0.404106\pi\)
\(524\) 0 0
\(525\) 15030.3 9199.55i 1.24948 0.764764i
\(526\) 0 0
\(527\) −5718.14 −0.472650
\(528\) 0 0
\(529\) −26899.5 −2.21086
\(530\) 0 0
\(531\) −4046.46 12499.2i −0.330700 1.02151i
\(532\) 0 0
\(533\) 1337.03 + 1337.03i 0.108655 + 0.108655i
\(534\) 0 0
\(535\) 3356.70 0.271258
\(536\) 0 0
\(537\) −1995.15 + 8290.85i −0.160329 + 0.666250i
\(538\) 0 0
\(539\) 11325.6 11325.6i 0.905063 0.905063i
\(540\) 0 0
\(541\) 1527.27 + 1527.27i 0.121372 + 0.121372i 0.765184 0.643812i \(-0.222648\pi\)
−0.643812 + 0.765184i \(0.722648\pi\)
\(542\) 0 0
\(543\) −897.452 215.967i −0.0709270 0.0170682i
\(544\) 0 0
\(545\) 3316.75i 0.260686i
\(546\) 0 0
\(547\) 8402.23 8402.23i 0.656770 0.656770i −0.297844 0.954615i \(-0.596268\pi\)
0.954615 + 0.297844i \(0.0962676\pi\)
\(548\) 0 0
\(549\) 5559.00 1799.66i 0.432154 0.139904i
\(550\) 0 0
\(551\) 6450.86i 0.498759i
\(552\) 0 0
\(553\) 5257.52i 0.404290i
\(554\) 0 0
\(555\) −1250.55 2043.16i −0.0956446 0.156265i
\(556\) 0 0
\(557\) −11345.5 + 11345.5i −0.863060 + 0.863060i −0.991692 0.128633i \(-0.958941\pi\)
0.128633 + 0.991692i \(0.458941\pi\)
\(558\) 0 0
\(559\) 8301.74i 0.628133i
\(560\) 0 0
\(561\) −1067.15 + 4434.53i −0.0803119 + 0.333736i
\(562\) 0 0
\(563\) 6452.36 + 6452.36i 0.483010 + 0.483010i 0.906092 0.423082i \(-0.139052\pi\)
−0.423082 + 0.906092i \(0.639052\pi\)
\(564\) 0 0
\(565\) −484.662 + 484.662i −0.0360883 + 0.0360883i
\(566\) 0 0
\(567\) −13821.5 19109.5i −1.02372 1.41539i
\(568\) 0 0
\(569\) −8010.89 −0.590218 −0.295109 0.955464i \(-0.595356\pi\)
−0.295109 + 0.955464i \(0.595356\pi\)
\(570\) 0 0
\(571\) 13548.1 + 13548.1i 0.992946 + 0.992946i 0.999975 0.00702892i \(-0.00223739\pi\)
−0.00702892 + 0.999975i \(0.502237\pi\)
\(572\) 0 0
\(573\) 10117.8 + 16530.6i 0.737658 + 1.20519i
\(574\) 0 0
\(575\) 20720.0 1.50275
\(576\) 0 0
\(577\) 3085.97 0.222652 0.111326 0.993784i \(-0.464490\pi\)
0.111326 + 0.993784i \(0.464490\pi\)
\(578\) 0 0
\(579\) −8916.04 14567.1i −0.639962 1.04558i
\(580\) 0 0
\(581\) −24208.1 24208.1i −1.72861 1.72861i
\(582\) 0 0
\(583\) −3054.62 −0.216997
\(584\) 0 0
\(585\) 2792.65 + 1426.69i 0.197371 + 0.100831i
\(586\) 0 0
\(587\) 7599.07 7599.07i 0.534323 0.534323i −0.387533 0.921856i \(-0.626673\pi\)
0.921856 + 0.387533i \(0.126673\pi\)
\(588\) 0 0
\(589\) 8347.05 + 8347.05i 0.583929 + 0.583929i
\(590\) 0 0
\(591\) 3372.43 14014.1i 0.234726 0.975406i
\(592\) 0 0
\(593\) 13043.4i 0.903253i −0.892207 0.451627i \(-0.850844\pi\)
0.892207 0.451627i \(-0.149156\pi\)
\(594\) 0 0
\(595\) −3961.59 + 3961.59i −0.272957 + 0.272957i
\(596\) 0 0
\(597\) 550.089 + 898.742i 0.0377113 + 0.0616132i
\(598\) 0 0
\(599\) 12441.1i 0.848630i −0.905515 0.424315i \(-0.860515\pi\)
0.905515 0.424315i \(-0.139485\pi\)
\(600\) 0 0
\(601\) 556.990i 0.0378038i −0.999821 0.0189019i \(-0.993983\pi\)
0.999821 0.0189019i \(-0.00601702\pi\)
\(602\) 0 0
\(603\) 7097.39 + 21923.3i 0.479317 + 1.48057i
\(604\) 0 0
\(605\) −2581.19 + 2581.19i −0.173455 + 0.173455i
\(606\) 0 0
\(607\) 10080.8i 0.674080i −0.941490 0.337040i \(-0.890574\pi\)
0.941490 0.337040i \(-0.109426\pi\)
\(608\) 0 0
\(609\) −13244.4 3187.18i −0.881262 0.212071i
\(610\) 0 0
\(611\) −7552.31 7552.31i −0.500055 0.500055i
\(612\) 0 0
\(613\) −13360.3 + 13360.3i −0.880290 + 0.880290i −0.993564 0.113274i \(-0.963866\pi\)
0.113274 + 0.993564i \(0.463866\pi\)
\(614\) 0 0
\(615\) 399.190 1658.84i 0.0261738 0.108765i
\(616\) 0 0
\(617\) 28317.5 1.84768 0.923840 0.382779i \(-0.125033\pi\)
0.923840 + 0.382779i \(0.125033\pi\)
\(618\) 0 0
\(619\) −5399.53 5399.53i −0.350606 0.350606i 0.509729 0.860335i \(-0.329746\pi\)
−0.860335 + 0.509729i \(0.829746\pi\)
\(620\) 0 0
\(621\) −2131.30 27647.8i −0.137723 1.78659i
\(622\) 0 0
\(623\) −30019.1 −1.93048
\(624\) 0 0
\(625\) −8468.19 −0.541964
\(626\) 0 0
\(627\) 8031.06 4915.54i 0.511531 0.313090i
\(628\) 0 0
\(629\) −2798.92 2798.92i −0.177425 0.177425i
\(630\) 0 0
\(631\) 6123.81 0.386347 0.193174 0.981165i \(-0.438122\pi\)
0.193174 + 0.981165i \(0.438122\pi\)
\(632\) 0 0
\(633\) −14447.4 3476.68i −0.907158 0.218303i
\(634\) 0 0
\(635\) 1269.63 1269.63i 0.0793447 0.0793447i
\(636\) 0 0
\(637\) −12866.9 12866.9i −0.800323 0.800323i
\(638\) 0 0
\(639\) 17103.0 + 8737.47i 1.05882 + 0.540922i
\(640\) 0 0
\(641\) 20240.4i 1.24719i 0.781748 + 0.623594i \(0.214328\pi\)
−0.781748 + 0.623594i \(0.785672\pi\)
\(642\) 0 0
\(643\) −12470.6 + 12470.6i −0.764842 + 0.764842i −0.977193 0.212352i \(-0.931888\pi\)
0.212352 + 0.977193i \(0.431888\pi\)
\(644\) 0 0
\(645\) 6389.24 3910.63i 0.390040 0.238730i
\(646\) 0 0
\(647\) 7081.47i 0.430296i 0.976581 + 0.215148i \(0.0690234\pi\)
−0.976581 + 0.215148i \(0.930977\pi\)
\(648\) 0 0
\(649\) 11076.7i 0.669949i
\(650\) 0 0
\(651\) −21261.5 + 13013.4i −1.28004 + 0.783465i
\(652\) 0 0
\(653\) 4674.02 4674.02i 0.280105 0.280105i −0.553046 0.833151i \(-0.686535\pi\)
0.833151 + 0.553046i \(0.186535\pi\)
\(654\) 0 0
\(655\) 8508.67i 0.507575i
\(656\) 0 0
\(657\) 16536.9 + 8448.24i 0.981985 + 0.501670i
\(658\) 0 0
\(659\) 20967.1 + 20967.1i 1.23939 + 1.23939i 0.960249 + 0.279146i \(0.0900512\pi\)
0.279146 + 0.960249i \(0.409949\pi\)
\(660\) 0 0
\(661\) 17021.5 17021.5i 1.00160 1.00160i 0.00160195 0.999999i \(-0.499490\pi\)
0.999999 0.00160195i \(-0.000509918\pi\)
\(662\) 0 0
\(663\) 5038.02 + 1212.37i 0.295114 + 0.0710176i
\(664\) 0 0
\(665\) 11565.8 0.674442
\(666\) 0 0
\(667\) −11325.8 11325.8i −0.657477 0.657477i
\(668\) 0 0
\(669\) −7994.60 + 4893.22i −0.462016 + 0.282784i
\(670\) 0 0
\(671\) −4926.32 −0.283426
\(672\) 0 0
\(673\) 5131.88 0.293937 0.146969 0.989141i \(-0.453048\pi\)
0.146969 + 0.989141i \(0.453048\pi\)
\(674\) 0 0
\(675\) 1130.39 + 14663.8i 0.0644575 + 0.836162i
\(676\) 0 0
\(677\) 7945.30 + 7945.30i 0.451053 + 0.451053i 0.895704 0.444651i \(-0.146672\pi\)
−0.444651 + 0.895704i \(0.646672\pi\)
\(678\) 0 0
\(679\) −6756.72 −0.381884
\(680\) 0 0
\(681\) 3113.96 12940.1i 0.175224 0.728143i
\(682\) 0 0
\(683\) −14603.2 + 14603.2i −0.818121 + 0.818121i −0.985836 0.167714i \(-0.946361\pi\)
0.167714 + 0.985836i \(0.446361\pi\)
\(684\) 0 0
\(685\) 5076.16 + 5076.16i 0.283139 + 0.283139i
\(686\) 0 0
\(687\) −10925.5 2629.16i −0.606745 0.146010i
\(688\) 0 0
\(689\) 3470.32i 0.191885i
\(690\) 0 0
\(691\) −5956.77 + 5956.77i −0.327940 + 0.327940i −0.851803 0.523863i \(-0.824490\pi\)
0.523863 + 0.851803i \(0.324490\pi\)
\(692\) 0 0
\(693\) 6124.25 + 18917.3i 0.335701 + 1.03695i
\(694\) 0 0
\(695\) 10610.7i 0.579119i
\(696\) 0 0
\(697\) 2819.29i 0.153211i
\(698\) 0 0
\(699\) −9500.07 15521.3i −0.514057 0.839872i
\(700\) 0 0
\(701\) −19922.3 + 19922.3i −1.07340 + 1.07340i −0.0763183 + 0.997084i \(0.524317\pi\)
−0.997084 + 0.0763183i \(0.975683\pi\)
\(702\) 0 0
\(703\) 8171.45i 0.438395i
\(704\) 0 0
\(705\) −2254.85 + 9370.06i −0.120458 + 0.500563i
\(706\) 0 0
\(707\) −18.7069 18.7069i −0.000995115 0.000995115i
\(708\) 0 0
\(709\) −6339.66 + 6339.66i −0.335812 + 0.335812i −0.854789 0.518976i \(-0.826313\pi\)
0.518976 + 0.854789i \(0.326313\pi\)
\(710\) 0 0
\(711\) 3907.48 + 1996.23i 0.206107 + 0.105295i
\(712\) 0 0
\(713\) −29309.9 −1.53950
\(714\) 0 0
\(715\) −1869.57 1869.57i −0.0977871 0.0977871i
\(716\) 0 0
\(717\) 5084.06 + 8306.39i 0.264808 + 0.432647i
\(718\) 0 0
\(719\) 23861.1 1.23765 0.618824 0.785530i \(-0.287610\pi\)
0.618824 + 0.785530i \(0.287610\pi\)
\(720\) 0 0
\(721\) 34397.9 1.77676
\(722\) 0 0
\(723\) −1703.06 2782.47i −0.0876035 0.143128i
\(724\) 0 0
\(725\) 6006.95 + 6006.95i 0.307714 + 0.307714i
\(726\) 0 0
\(727\) −13991.5 −0.713776 −0.356888 0.934147i \(-0.616162\pi\)
−0.356888 + 0.934147i \(0.616162\pi\)
\(728\) 0 0
\(729\) 19450.5 3016.70i 0.988185 0.153264i
\(730\) 0 0
\(731\) 8752.62 8752.62i 0.442856 0.442856i
\(732\) 0 0
\(733\) 11874.1 + 11874.1i 0.598334 + 0.598334i 0.939869 0.341535i \(-0.110947\pi\)
−0.341535 + 0.939869i \(0.610947\pi\)
\(734\) 0 0
\(735\) −3841.60 + 15963.8i −0.192789 + 0.801135i
\(736\) 0 0
\(737\) 19428.2i 0.971026i
\(738\) 0 0
\(739\) 24843.0 24843.0i 1.23662 1.23662i 0.275253 0.961372i \(-0.411238\pi\)
0.961372 0.275253i \(-0.0887615\pi\)
\(740\) 0 0
\(741\) −5584.49 9124.00i −0.276857 0.452333i
\(742\) 0 0
\(743\) 12479.8i 0.616204i 0.951353 + 0.308102i \(0.0996939\pi\)
−0.951353 + 0.308102i \(0.900306\pi\)
\(744\) 0 0
\(745\) 903.245i 0.0444192i
\(746\) 0 0
\(747\) 27183.4 8800.30i 1.33145 0.431039i
\(748\) 0 0
\(749\) 17097.8 17097.8i 0.834098 0.834098i
\(750\) 0 0
\(751\) 34126.2i 1.65817i 0.559124 + 0.829084i \(0.311138\pi\)
−0.559124 + 0.829084i \(0.688862\pi\)
\(752\) 0 0
\(753\) 9132.53 + 2197.69i 0.441976 + 0.106359i
\(754\) 0 0
\(755\) −5972.57 5972.57i −0.287899 0.287899i
\(756\) 0 0
\(757\) −7341.39 + 7341.39i −0.352480 + 0.352480i −0.861032 0.508551i \(-0.830181\pi\)
0.508551 + 0.861032i \(0.330181\pi\)
\(758\) 0 0
\(759\) −5469.94 + 22730.4i −0.261589 + 1.08704i
\(760\) 0 0
\(761\) −18960.2 −0.903162 −0.451581 0.892230i \(-0.649140\pi\)
−0.451581 + 0.892230i \(0.649140\pi\)
\(762\) 0 0
\(763\) −16894.3 16894.3i −0.801592 0.801592i
\(764\) 0 0
\(765\) −1440.15 4448.50i −0.0680635 0.210243i
\(766\) 0 0
\(767\) 12584.1 0.592418
\(768\) 0 0
\(769\) 12020.7 0.563692 0.281846 0.959460i \(-0.409053\pi\)
0.281846 + 0.959460i \(0.409053\pi\)
\(770\) 0 0
\(771\) 20331.0 12443.9i 0.949681 0.581267i
\(772\) 0 0
\(773\) 18559.5 + 18559.5i 0.863568 + 0.863568i 0.991751 0.128183i \(-0.0409145\pi\)
−0.128183 + 0.991751i \(0.540914\pi\)
\(774\) 0 0
\(775\) 15545.3 0.720520
\(776\) 0 0
\(777\) −16776.9 4037.27i −0.774606 0.186405i
\(778\) 0 0
\(779\) −4115.45 + 4115.45i −0.189283 + 0.189283i
\(780\) 0 0
\(781\) −11449.8 11449.8i −0.524590 0.524590i
\(782\) 0 0
\(783\) 7397.53 8633.30i 0.337632 0.394034i
\(784\) 0 0
\(785\) 10070.1i 0.457858i
\(786\) 0 0
\(787\) −6934.87 + 6934.87i −0.314106 + 0.314106i −0.846498 0.532392i \(-0.821293\pi\)
0.532392 + 0.846498i \(0.321293\pi\)
\(788\) 0 0
\(789\) 4715.05 2885.92i 0.212751 0.130217i
\(790\) 0 0
\(791\) 4937.38i 0.221938i
\(792\) 0 0
\(793\) 5596.74i 0.250626i
\(794\) 0 0
\(795\) 2670.85 1634.73i 0.119151 0.0729284i
\(796\) 0 0
\(797\) 1033.71 1033.71i 0.0459424 0.0459424i −0.683762 0.729705i \(-0.739658\pi\)
0.729705 + 0.683762i \(0.239658\pi\)
\(798\) 0 0
\(799\) 15925.0i 0.705113i
\(800\) 0 0
\(801\) 11398.0 22310.7i 0.502780 0.984158i
\(802\) 0 0
\(803\) −11070.8 11070.8i −0.486524 0.486524i
\(804\) 0 0
\(805\) −20306.2 + 20306.2i −0.889067 + 0.889067i
\(806\) 0 0
\(807\) 36918.5 + 8884.24i 1.61040 + 0.387534i
\(808\) 0 0
\(809\) 28378.6 1.23330 0.616649 0.787239i \(-0.288490\pi\)
0.616649 + 0.787239i \(0.288490\pi\)
\(810\) 0 0
\(811\) 18955.2 + 18955.2i 0.820723 + 0.820723i 0.986212 0.165489i \(-0.0529202\pi\)
−0.165489 + 0.986212i \(0.552920\pi\)
\(812\) 0 0
\(813\) −30528.3 + 18685.3i −1.31694 + 0.806056i
\(814\) 0 0
\(815\) 4581.45 0.196909
\(816\) 0 0
\(817\) −25553.2 −1.09424
\(818\) 0 0
\(819\) 21491.8 6957.69i 0.916951 0.296851i
\(820\) 0 0
\(821\) 26166.4 + 26166.4i 1.11232 + 1.11232i 0.992836 + 0.119482i \(0.0381233\pi\)
0.119482 + 0.992836i \(0.461877\pi\)
\(822\) 0 0
\(823\) 22421.9 0.949672 0.474836 0.880074i \(-0.342507\pi\)
0.474836 + 0.880074i \(0.342507\pi\)
\(824\) 0 0
\(825\) 2901.13 12055.7i 0.122430 0.508757i
\(826\) 0 0
\(827\) −32421.5 + 32421.5i −1.36325 + 1.36325i −0.493501 + 0.869745i \(0.664283\pi\)
−0.869745 + 0.493501i \(0.835717\pi\)
\(828\) 0 0
\(829\) 508.732 + 508.732i 0.0213136 + 0.0213136i 0.717683 0.696370i \(-0.245203\pi\)
−0.696370 + 0.717683i \(0.745203\pi\)
\(830\) 0 0
\(831\) −15309.0 3684.02i −0.639063 0.153787i
\(832\) 0 0
\(833\) 27131.5i 1.12851i
\(834\) 0 0
\(835\) −6984.26 + 6984.26i −0.289461 + 0.289461i
\(836\) 0 0
\(837\) −1599.02 20743.0i −0.0660338 0.856609i
\(838\) 0 0
\(839\) 28733.8i 1.18236i −0.806539 0.591181i \(-0.798662\pi\)
0.806539 0.591181i \(-0.201338\pi\)
\(840\) 0 0
\(841\) 17822.0i 0.730741i
\(842\) 0 0
\(843\) −21467.5 35073.9i −0.877083 1.43299i
\(844\) 0 0
\(845\) 4852.94 4852.94i 0.197569 0.197569i
\(846\) 0 0
\(847\) 26295.3i 1.06672i
\(848\) 0 0
\(849\) 6821.84 28348.2i 0.275765 1.14595i
\(850\) 0 0
\(851\) −14346.6 14346.6i −0.577904 0.577904i
\(852\) 0 0
\(853\) −32516.7 + 32516.7i −1.30522 + 1.30522i −0.380390 + 0.924826i \(0.624210\pi\)
−0.924826 + 0.380390i \(0.875790\pi\)
\(854\) 0 0
\(855\) −4391.43 + 8595.93i −0.175654 + 0.343830i
\(856\) 0 0
\(857\) −17192.8 −0.685292 −0.342646 0.939465i \(-0.611323\pi\)
−0.342646 + 0.939465i \(0.611323\pi\)
\(858\) 0 0
\(859\) −28319.0 28319.0i −1.12483 1.12483i −0.991005 0.133827i \(-0.957273\pi\)
−0.133827 0.991005i \(-0.542727\pi\)
\(860\) 0 0
\(861\) −6416.17 10482.8i −0.253963 0.414929i
\(862\) 0 0
\(863\) −25432.8 −1.00318 −0.501589 0.865106i \(-0.667251\pi\)
−0.501589 + 0.865106i \(0.667251\pi\)
\(864\) 0 0
\(865\) 2862.20 0.112506
\(866\) 0 0
\(867\) 9293.64 + 15184.1i 0.364047 + 0.594784i
\(868\) 0 0
\(869\) −2615.90 2615.90i −0.102115 0.102115i
\(870\) 0 0
\(871\) −22072.1 −0.858652
\(872\) 0 0
\(873\) 2565.46 5021.71i 0.0994589 0.194684i
\(874\) 0 0
\(875\) 23612.0 23612.0i 0.912266 0.912266i
\(876\) 0 0
\(877\) −34340.0 34340.0i −1.32221 1.32221i −0.911982 0.410231i \(-0.865448\pi\)
−0.410231 0.911982i \(-0.634552\pi\)
\(878\) 0 0
\(879\) 8607.39 35768.1i 0.330285 1.37250i
\(880\) 0 0
\(881\) 1486.40i 0.0568423i 0.999596 + 0.0284211i \(0.00904795\pi\)
−0.999596 + 0.0284211i \(0.990952\pi\)
\(882\) 0 0
\(883\) −26569.1 + 26569.1i −1.01260 + 1.01260i −0.0126765 + 0.999920i \(0.504035\pi\)
−0.999920 + 0.0126765i \(0.995965\pi\)
\(884\) 0 0
\(885\) −5927.87 9685.03i −0.225156 0.367863i
\(886\) 0 0
\(887\) 24047.1i 0.910284i −0.890419 0.455142i \(-0.849588\pi\)
0.890419 0.455142i \(-0.150412\pi\)
\(888\) 0 0
\(889\) 12934.1i 0.487959i
\(890\) 0 0
\(891\) −16385.0 2631.08i −0.616070 0.0989274i
\(892\) 0 0
\(893\) 23246.4 23246.4i 0.871123 0.871123i
\(894\) 0 0
\(895\) 7370.39i 0.275268i
\(896\) 0 0
\(897\) 25823.7 + 6214.34i 0.961237 + 0.231316i
\(898\) 0 0
\(899\) −8497.26 8497.26i −0.315238 0.315238i
\(900\) 0 0
\(901\) 3658.80 3658.80i 0.135286 0.135286i
\(902\) 0 0
\(903\) 12625.1 52463.7i 0.465268 1.93343i
\(904\) 0 0
\(905\) −797.817 −0.0293042
\(906\) 0 0
\(907\) 20817.3 + 20817.3i 0.762101 + 0.762101i 0.976702 0.214601i \(-0.0688451\pi\)
−0.214601 + 0.976702i \(0.568845\pi\)
\(908\) 0 0
\(909\) 21.0062 6.80048i 0.000766480 0.000248138i
\(910\) 0 0
\(911\) 9545.92 0.347168 0.173584 0.984819i \(-0.444465\pi\)
0.173584 + 0.984819i \(0.444465\pi\)
\(912\) 0 0
\(913\) −24089.7 −0.873222
\(914\) 0 0
\(915\) 4307.40 2636.41i 0.155626 0.0952536i
\(916\) 0 0
\(917\) −43340.0 43340.0i −1.56076 1.56076i
\(918\) 0 0
\(919\) 12290.4 0.441156 0.220578 0.975369i \(-0.429206\pi\)
0.220578 + 0.975369i \(0.429206\pi\)
\(920\) 0 0
\(921\) 10257.7 + 2468.47i 0.366996 + 0.0883157i
\(922\) 0 0
\(923\) −13008.0 + 13008.0i −0.463881 + 0.463881i
\(924\) 0 0
\(925\) 7609.13 + 7609.13i 0.270472 + 0.270472i
\(926\) 0 0
\(927\) −13060.5 + 25565.1i −0.462745 + 0.905791i
\(928\) 0 0
\(929\) 26256.0i 0.927268i −0.886027 0.463634i \(-0.846545\pi\)
0.886027 0.463634i \(-0.153455\pi\)
\(930\) 0 0
\(931\) 39605.1 39605.1i 1.39420 1.39420i
\(932\) 0 0
\(933\) −15524.4 + 9501.94i −0.544744 + 0.333419i
\(934\) 0 0
\(935\) 3942.21i 0.137887i
\(936\) 0 0
\(937\) 9723.86i 0.339023i −0.985528 0.169512i \(-0.945781\pi\)
0.985528 0.169512i \(-0.0542190\pi\)
\(938\) 0 0
\(939\) 3330.53 2038.50i 0.115748 0.0708455i
\(940\) 0 0
\(941\) −24237.0 + 24237.0i −0.839644 + 0.839644i −0.988812 0.149168i \(-0.952340\pi\)
0.149168 + 0.988812i \(0.452340\pi\)
\(942\) 0 0
\(943\) 14451.0i 0.499035i
\(944\) 0 0
\(945\) −15478.8 13263.1i −0.532830 0.456560i
\(946\) 0 0
\(947\) −26385.5 26385.5i −0.905399 0.905399i 0.0904976 0.995897i \(-0.471154\pi\)
−0.995897 + 0.0904976i \(0.971154\pi\)
\(948\) 0 0
\(949\) −12577.4 + 12577.4i −0.430220 + 0.430220i
\(950\) 0 0
\(951\) −49472.1 11905.2i −1.68690 0.405943i
\(952\) 0 0
\(953\) 11928.6 0.405464 0.202732 0.979234i \(-0.435018\pi\)
0.202732 + 0.979234i \(0.435018\pi\)
\(954\) 0 0
\(955\) 11845.0 + 11845.0i 0.401355 + 0.401355i
\(956\) 0 0
\(957\) −8175.59 + 5003.99i −0.276154 + 0.169024i
\(958\) 0 0
\(959\) 51712.2 1.74126
\(960\) 0 0
\(961\) 7801.07 0.261860
\(962\) 0 0
\(963\) 6215.51 + 19199.2i 0.207988 + 0.642458i
\(964\) 0 0
\(965\) −10438.0 10438.0i −0.348199 0.348199i
\(966\) 0 0
\(967\) −52495.5 −1.74575 −0.872876 0.487943i \(-0.837748\pi\)
−0.872876 + 0.487943i \(0.837748\pi\)
\(968\) 0 0
\(969\) −3731.75 + 15507.3i −0.123716 + 0.514104i
\(970\) 0 0
\(971\) 8668.87 8668.87i 0.286506 0.286506i −0.549191 0.835697i \(-0.685064\pi\)
0.835697 + 0.549191i \(0.185064\pi\)
\(972\) 0 0
\(973\) 54047.1 + 54047.1i 1.78075 + 1.78075i
\(974\) 0 0
\(975\) −13696.3 3295.95i −0.449880 0.108261i
\(976\) 0 0
\(977\) 34992.7i 1.14587i 0.819600 + 0.572936i \(0.194196\pi\)
−0.819600 + 0.572936i \(0.805804\pi\)
\(978\) 0 0
\(979\) −14936.1 + 14936.1i −0.487600 + 0.487600i
\(980\) 0 0
\(981\) 18970.7 6141.54i 0.617420 0.199882i
\(982\) 0 0
\(983\) 60755.5i 1.97131i 0.168767 + 0.985656i \(0.446021\pi\)
−0.168767 + 0.985656i \(0.553979\pi\)
\(984\) 0 0
\(985\) 12458.3i 0.402999i
\(986\) 0 0
\(987\) 36242.2 + 59213.0i 1.16880 + 1.90960i
\(988\) 0 0
\(989\) 44863.9 44863.9i 1.44246 1.44246i
\(990\) 0 0
\(991\) 1498.28i 0.0480268i 0.999712 + 0.0240134i \(0.00764444\pi\)
−0.999712 + 0.0240134i \(0.992356\pi\)
\(992\) 0 0
\(993\) 5508.25 22889.6i 0.176031 0.731499i
\(994\) 0 0
\(995\) 643.990 + 643.990i 0.0205185 + 0.0205185i
\(996\) 0 0
\(997\) 43616.9 43616.9i 1.38552 1.38552i 0.551033 0.834484i \(-0.314234\pi\)
0.834484 0.551033i \(-0.185766\pi\)
\(998\) 0 0
\(999\) 9370.60 10936.0i 0.296770 0.346346i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.k.a.47.16 44
3.2 odd 2 inner 192.4.k.a.47.4 44
4.3 odd 2 48.4.k.a.35.1 yes 44
8.3 odd 2 384.4.k.b.95.16 44
8.5 even 2 384.4.k.a.95.7 44
12.11 even 2 48.4.k.a.35.22 yes 44
16.3 odd 4 384.4.k.a.287.19 44
16.5 even 4 48.4.k.a.11.22 yes 44
16.11 odd 4 inner 192.4.k.a.143.4 44
16.13 even 4 384.4.k.b.287.4 44
24.5 odd 2 384.4.k.a.95.19 44
24.11 even 2 384.4.k.b.95.4 44
48.5 odd 4 48.4.k.a.11.1 44
48.11 even 4 inner 192.4.k.a.143.16 44
48.29 odd 4 384.4.k.b.287.16 44
48.35 even 4 384.4.k.a.287.7 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.1 44 48.5 odd 4
48.4.k.a.11.22 yes 44 16.5 even 4
48.4.k.a.35.1 yes 44 4.3 odd 2
48.4.k.a.35.22 yes 44 12.11 even 2
192.4.k.a.47.4 44 3.2 odd 2 inner
192.4.k.a.47.16 44 1.1 even 1 trivial
192.4.k.a.143.4 44 16.11 odd 4 inner
192.4.k.a.143.16 44 48.11 even 4 inner
384.4.k.a.95.7 44 8.5 even 2
384.4.k.a.95.19 44 24.5 odd 2
384.4.k.a.287.7 44 48.35 even 4
384.4.k.a.287.19 44 16.3 odd 4
384.4.k.b.95.4 44 24.11 even 2
384.4.k.b.95.16 44 8.3 odd 2
384.4.k.b.287.4 44 16.13 even 4
384.4.k.b.287.16 44 48.29 odd 4