Properties

Label 3825.2.a.bt.1.5
Level $3825$
Weight $2$
Character 3825.1
Self dual yes
Analytic conductor $30.543$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3825,2,Mod(1,3825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3825.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,8,0,0,0,18,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5427787731\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.17830397164.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 8x^{6} + 24x^{5} + 16x^{4} - 51x^{3} - 11x^{2} + 30x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 765)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.63205\) of defining polynomial
Character \(\chi\) \(=\) 3825.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.32973 q^{2} -0.231826 q^{4} -3.42890 q^{7} -2.96772 q^{8} -4.87695 q^{11} -1.44805 q^{13} -4.55950 q^{14} -3.48261 q^{16} -1.00000 q^{17} +5.06562 q^{19} -6.48501 q^{22} +7.50407 q^{23} -1.92551 q^{26} +0.794907 q^{28} +4.67201 q^{29} -9.47179 q^{31} +1.30452 q^{32} -1.32973 q^{34} -0.485294 q^{37} +6.73589 q^{38} +0.962754 q^{41} +12.4926 q^{43} +1.13060 q^{44} +9.97836 q^{46} +2.43845 q^{47} +4.75736 q^{49} +0.335695 q^{52} -0.221007 q^{53} +10.1760 q^{56} +6.21249 q^{58} -5.15730 q^{59} +10.5949 q^{61} -12.5949 q^{62} +8.69987 q^{64} +12.0151 q^{67} +0.231826 q^{68} -8.78331 q^{71} -8.29802 q^{73} -0.645308 q^{74} -1.17434 q^{76} +16.7226 q^{77} +9.25435 q^{79} +1.28020 q^{82} +8.92730 q^{83} +16.6117 q^{86} +14.4734 q^{88} -11.0445 q^{89} +4.96521 q^{91} -1.73964 q^{92} +3.24247 q^{94} -10.9970 q^{97} +6.32599 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 8 q^{4} + 18 q^{8} + 16 q^{16} - 8 q^{17} + 2 q^{19} + 38 q^{23} - 12 q^{31} + 40 q^{32} - 4 q^{34} + 22 q^{38} + 40 q^{46} + 36 q^{47} + 28 q^{49} + 28 q^{53} - 12 q^{61} - 4 q^{62} + 54 q^{64}+ \cdots + 102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32973 0.940259 0.470130 0.882597i \(-0.344207\pi\)
0.470130 + 0.882597i \(0.344207\pi\)
\(3\) 0 0
\(4\) −0.231826 −0.115913
\(5\) 0 0
\(6\) 0 0
\(7\) −3.42890 −1.29600 −0.648001 0.761639i \(-0.724395\pi\)
−0.648001 + 0.761639i \(0.724395\pi\)
\(8\) −2.96772 −1.04925
\(9\) 0 0
\(10\) 0 0
\(11\) −4.87695 −1.47046 −0.735228 0.677820i \(-0.762925\pi\)
−0.735228 + 0.677820i \(0.762925\pi\)
\(12\) 0 0
\(13\) −1.44805 −0.401616 −0.200808 0.979631i \(-0.564357\pi\)
−0.200808 + 0.979631i \(0.564357\pi\)
\(14\) −4.55950 −1.21858
\(15\) 0 0
\(16\) −3.48261 −0.870651
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 5.06562 1.16213 0.581067 0.813856i \(-0.302636\pi\)
0.581067 + 0.813856i \(0.302636\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.48501 −1.38261
\(23\) 7.50407 1.56471 0.782353 0.622835i \(-0.214019\pi\)
0.782353 + 0.622835i \(0.214019\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.92551 −0.377623
\(27\) 0 0
\(28\) 0.794907 0.150223
\(29\) 4.67201 0.867570 0.433785 0.901017i \(-0.357178\pi\)
0.433785 + 0.901017i \(0.357178\pi\)
\(30\) 0 0
\(31\) −9.47179 −1.70118 −0.850592 0.525827i \(-0.823756\pi\)
−0.850592 + 0.525827i \(0.823756\pi\)
\(32\) 1.30452 0.230609
\(33\) 0 0
\(34\) −1.32973 −0.228046
\(35\) 0 0
\(36\) 0 0
\(37\) −0.485294 −0.0797818 −0.0398909 0.999204i \(-0.512701\pi\)
−0.0398909 + 0.999204i \(0.512701\pi\)
\(38\) 6.73589 1.09271
\(39\) 0 0
\(40\) 0 0
\(41\) 0.962754 0.150357 0.0751785 0.997170i \(-0.476047\pi\)
0.0751785 + 0.997170i \(0.476047\pi\)
\(42\) 0 0
\(43\) 12.4926 1.90510 0.952549 0.304386i \(-0.0984513\pi\)
0.952549 + 0.304386i \(0.0984513\pi\)
\(44\) 1.13060 0.170445
\(45\) 0 0
\(46\) 9.97836 1.47123
\(47\) 2.43845 0.355684 0.177842 0.984059i \(-0.443088\pi\)
0.177842 + 0.984059i \(0.443088\pi\)
\(48\) 0 0
\(49\) 4.75736 0.679622
\(50\) 0 0
\(51\) 0 0
\(52\) 0.335695 0.0465525
\(53\) −0.221007 −0.0303577 −0.0151788 0.999885i \(-0.504832\pi\)
−0.0151788 + 0.999885i \(0.504832\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 10.1760 1.35983
\(57\) 0 0
\(58\) 6.21249 0.815740
\(59\) −5.15730 −0.671423 −0.335712 0.941965i \(-0.608977\pi\)
−0.335712 + 0.941965i \(0.608977\pi\)
\(60\) 0 0
\(61\) 10.5949 1.35654 0.678269 0.734814i \(-0.262731\pi\)
0.678269 + 0.734814i \(0.262731\pi\)
\(62\) −12.5949 −1.59955
\(63\) 0 0
\(64\) 8.69987 1.08748
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0151 1.46788 0.733939 0.679215i \(-0.237680\pi\)
0.733939 + 0.679215i \(0.237680\pi\)
\(68\) 0.231826 0.0281130
\(69\) 0 0
\(70\) 0 0
\(71\) −8.78331 −1.04239 −0.521193 0.853439i \(-0.674513\pi\)
−0.521193 + 0.853439i \(0.674513\pi\)
\(72\) 0 0
\(73\) −8.29802 −0.971209 −0.485605 0.874179i \(-0.661401\pi\)
−0.485605 + 0.874179i \(0.661401\pi\)
\(74\) −0.645308 −0.0750155
\(75\) 0 0
\(76\) −1.17434 −0.134706
\(77\) 16.7226 1.90571
\(78\) 0 0
\(79\) 9.25435 1.04120 0.520598 0.853802i \(-0.325709\pi\)
0.520598 + 0.853802i \(0.325709\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.28020 0.141374
\(83\) 8.92730 0.979899 0.489949 0.871751i \(-0.337015\pi\)
0.489949 + 0.871751i \(0.337015\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 16.6117 1.79129
\(87\) 0 0
\(88\) 14.4734 1.54287
\(89\) −11.0445 −1.17072 −0.585358 0.810775i \(-0.699046\pi\)
−0.585358 + 0.810775i \(0.699046\pi\)
\(90\) 0 0
\(91\) 4.96521 0.520496
\(92\) −1.73964 −0.181370
\(93\) 0 0
\(94\) 3.24247 0.334435
\(95\) 0 0
\(96\) 0 0
\(97\) −10.9970 −1.11658 −0.558288 0.829647i \(-0.688542\pi\)
−0.558288 + 0.829647i \(0.688542\pi\)
\(98\) 6.32599 0.639021
\(99\) 0 0
\(100\) 0 0
\(101\) 0.970587 0.0965770 0.0482885 0.998833i \(-0.484623\pi\)
0.0482885 + 0.998833i \(0.484623\pi\)
\(102\) 0 0
\(103\) −5.63476 −0.555209 −0.277605 0.960695i \(-0.589541\pi\)
−0.277605 + 0.960695i \(0.589541\pi\)
\(104\) 4.29740 0.421395
\(105\) 0 0
\(106\) −0.293879 −0.0285441
\(107\) 14.4097 1.39304 0.696521 0.717537i \(-0.254730\pi\)
0.696521 + 0.717537i \(0.254730\pi\)
\(108\) 0 0
\(109\) 2.55698 0.244915 0.122457 0.992474i \(-0.460923\pi\)
0.122457 + 0.992474i \(0.460923\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 11.9415 1.12837
\(113\) 10.9379 1.02896 0.514478 0.857504i \(-0.327986\pi\)
0.514478 + 0.857504i \(0.327986\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.08309 −0.100562
\(117\) 0 0
\(118\) −6.85780 −0.631312
\(119\) 3.42890 0.314327
\(120\) 0 0
\(121\) 12.7846 1.16224
\(122\) 14.0883 1.27550
\(123\) 0 0
\(124\) 2.19580 0.197189
\(125\) 0 0
\(126\) 0 0
\(127\) 0.477461 0.0423678 0.0211839 0.999776i \(-0.493256\pi\)
0.0211839 + 0.999776i \(0.493256\pi\)
\(128\) 8.95941 0.791907
\(129\) 0 0
\(130\) 0 0
\(131\) 9.59646 0.838447 0.419223 0.907883i \(-0.362302\pi\)
0.419223 + 0.907883i \(0.362302\pi\)
\(132\) 0 0
\(133\) −17.3695 −1.50613
\(134\) 15.9768 1.38019
\(135\) 0 0
\(136\) 2.96772 0.254480
\(137\) −13.7307 −1.17309 −0.586547 0.809916i \(-0.699513\pi\)
−0.586547 + 0.809916i \(0.699513\pi\)
\(138\) 0 0
\(139\) −7.00814 −0.594422 −0.297211 0.954812i \(-0.596057\pi\)
−0.297211 + 0.954812i \(0.596057\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −11.6794 −0.980114
\(143\) 7.06205 0.590559
\(144\) 0 0
\(145\) 0 0
\(146\) −11.0341 −0.913188
\(147\) 0 0
\(148\) 0.112503 0.00924773
\(149\) 15.8661 1.29980 0.649901 0.760019i \(-0.274810\pi\)
0.649901 + 0.760019i \(0.274810\pi\)
\(150\) 0 0
\(151\) −6.59133 −0.536394 −0.268197 0.963364i \(-0.586428\pi\)
−0.268197 + 0.963364i \(0.586428\pi\)
\(152\) −15.0333 −1.21936
\(153\) 0 0
\(154\) 22.2365 1.79186
\(155\) 0 0
\(156\) 0 0
\(157\) 11.9319 0.952266 0.476133 0.879373i \(-0.342038\pi\)
0.476133 + 0.879373i \(0.342038\pi\)
\(158\) 12.3058 0.978993
\(159\) 0 0
\(160\) 0 0
\(161\) −25.7307 −2.02786
\(162\) 0 0
\(163\) −19.0700 −1.49368 −0.746839 0.665005i \(-0.768430\pi\)
−0.746839 + 0.665005i \(0.768430\pi\)
\(164\) −0.223191 −0.0174283
\(165\) 0 0
\(166\) 11.8709 0.921359
\(167\) −3.17166 −0.245430 −0.122715 0.992442i \(-0.539160\pi\)
−0.122715 + 0.992442i \(0.539160\pi\)
\(168\) 0 0
\(169\) −10.9032 −0.838704
\(170\) 0 0
\(171\) 0 0
\(172\) −2.89610 −0.220825
\(173\) −1.38910 −0.105611 −0.0528056 0.998605i \(-0.516816\pi\)
−0.0528056 + 0.998605i \(0.516816\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 16.9845 1.28025
\(177\) 0 0
\(178\) −14.6862 −1.10078
\(179\) 24.4244 1.82557 0.912783 0.408444i \(-0.133929\pi\)
0.912783 + 0.408444i \(0.133929\pi\)
\(180\) 0 0
\(181\) −14.3395 −1.06585 −0.532925 0.846163i \(-0.678907\pi\)
−0.532925 + 0.846163i \(0.678907\pi\)
\(182\) 6.60238 0.489401
\(183\) 0 0
\(184\) −22.2700 −1.64176
\(185\) 0 0
\(186\) 0 0
\(187\) 4.87695 0.356638
\(188\) −0.565295 −0.0412283
\(189\) 0 0
\(190\) 0 0
\(191\) −5.15730 −0.373169 −0.186585 0.982439i \(-0.559742\pi\)
−0.186585 + 0.982439i \(0.559742\pi\)
\(192\) 0 0
\(193\) −14.3980 −1.03639 −0.518195 0.855262i \(-0.673396\pi\)
−0.518195 + 0.855262i \(0.673396\pi\)
\(194\) −14.6230 −1.04987
\(195\) 0 0
\(196\) −1.10288 −0.0787769
\(197\) 14.2139 1.01270 0.506350 0.862328i \(-0.330994\pi\)
0.506350 + 0.862328i \(0.330994\pi\)
\(198\) 0 0
\(199\) −14.8932 −1.05575 −0.527874 0.849323i \(-0.677011\pi\)
−0.527874 + 0.849323i \(0.677011\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.29062 0.0908074
\(203\) −16.0198 −1.12437
\(204\) 0 0
\(205\) 0 0
\(206\) −7.49269 −0.522041
\(207\) 0 0
\(208\) 5.04298 0.349668
\(209\) −24.7048 −1.70886
\(210\) 0 0
\(211\) −23.3856 −1.60993 −0.804965 0.593322i \(-0.797816\pi\)
−0.804965 + 0.593322i \(0.797816\pi\)
\(212\) 0.0512351 0.00351884
\(213\) 0 0
\(214\) 19.1610 1.30982
\(215\) 0 0
\(216\) 0 0
\(217\) 32.4778 2.20474
\(218\) 3.40009 0.230283
\(219\) 0 0
\(220\) 0 0
\(221\) 1.44805 0.0974062
\(222\) 0 0
\(223\) 24.5818 1.64612 0.823061 0.567953i \(-0.192264\pi\)
0.823061 + 0.567953i \(0.192264\pi\)
\(224\) −4.47308 −0.298870
\(225\) 0 0
\(226\) 14.5445 0.967485
\(227\) 17.2437 1.14450 0.572252 0.820078i \(-0.306070\pi\)
0.572252 + 0.820078i \(0.306070\pi\)
\(228\) 0 0
\(229\) 11.6120 0.767340 0.383670 0.923470i \(-0.374660\pi\)
0.383670 + 0.923470i \(0.374660\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −13.8652 −0.910295
\(233\) 19.1287 1.25316 0.626582 0.779355i \(-0.284453\pi\)
0.626582 + 0.779355i \(0.284453\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.19559 0.0778265
\(237\) 0 0
\(238\) 4.55950 0.295549
\(239\) 4.20238 0.271829 0.135915 0.990721i \(-0.456603\pi\)
0.135915 + 0.990721i \(0.456603\pi\)
\(240\) 0 0
\(241\) 4.83397 0.311383 0.155692 0.987806i \(-0.450239\pi\)
0.155692 + 0.987806i \(0.450239\pi\)
\(242\) 17.0001 1.09281
\(243\) 0 0
\(244\) −2.45617 −0.157240
\(245\) 0 0
\(246\) 0 0
\(247\) −7.33526 −0.466731
\(248\) 28.1096 1.78496
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0151 0.758386 0.379193 0.925318i \(-0.376202\pi\)
0.379193 + 0.925318i \(0.376202\pi\)
\(252\) 0 0
\(253\) −36.5969 −2.30083
\(254\) 0.634892 0.0398367
\(255\) 0 0
\(256\) −5.48617 −0.342886
\(257\) −8.94357 −0.557885 −0.278942 0.960308i \(-0.589984\pi\)
−0.278942 + 0.960308i \(0.589984\pi\)
\(258\) 0 0
\(259\) 1.66402 0.103397
\(260\) 0 0
\(261\) 0 0
\(262\) 12.7607 0.788357
\(263\) 14.1185 0.870586 0.435293 0.900289i \(-0.356645\pi\)
0.435293 + 0.900289i \(0.356645\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −23.0967 −1.41615
\(267\) 0 0
\(268\) −2.78541 −0.170146
\(269\) −23.4617 −1.43048 −0.715241 0.698877i \(-0.753683\pi\)
−0.715241 + 0.698877i \(0.753683\pi\)
\(270\) 0 0
\(271\) −5.04042 −0.306184 −0.153092 0.988212i \(-0.548923\pi\)
−0.153092 + 0.988212i \(0.548923\pi\)
\(272\) 3.48261 0.211164
\(273\) 0 0
\(274\) −18.2581 −1.10301
\(275\) 0 0
\(276\) 0 0
\(277\) 3.16861 0.190384 0.0951918 0.995459i \(-0.469654\pi\)
0.0951918 + 0.995459i \(0.469654\pi\)
\(278\) −9.31891 −0.558911
\(279\) 0 0
\(280\) 0 0
\(281\) −9.84892 −0.587537 −0.293769 0.955877i \(-0.594910\pi\)
−0.293769 + 0.955877i \(0.594910\pi\)
\(282\) 0 0
\(283\) 32.2807 1.91889 0.959444 0.281898i \(-0.0909641\pi\)
0.959444 + 0.281898i \(0.0909641\pi\)
\(284\) 2.03620 0.120826
\(285\) 0 0
\(286\) 9.39060 0.555278
\(287\) −3.30119 −0.194863
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 1.92369 0.112576
\(293\) 29.2958 1.71148 0.855740 0.517406i \(-0.173102\pi\)
0.855740 + 0.517406i \(0.173102\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.44021 0.0837108
\(297\) 0 0
\(298\) 21.0976 1.22215
\(299\) −10.8662 −0.628411
\(300\) 0 0
\(301\) −42.8357 −2.46901
\(302\) −8.76466 −0.504350
\(303\) 0 0
\(304\) −17.6416 −1.01181
\(305\) 0 0
\(306\) 0 0
\(307\) −7.41850 −0.423396 −0.211698 0.977335i \(-0.567899\pi\)
−0.211698 + 0.977335i \(0.567899\pi\)
\(308\) −3.87672 −0.220897
\(309\) 0 0
\(310\) 0 0
\(311\) 21.7411 1.23282 0.616412 0.787424i \(-0.288585\pi\)
0.616412 + 0.787424i \(0.288585\pi\)
\(312\) 0 0
\(313\) 26.8352 1.51682 0.758408 0.651780i \(-0.225977\pi\)
0.758408 + 0.651780i \(0.225977\pi\)
\(314\) 15.8661 0.895377
\(315\) 0 0
\(316\) −2.14539 −0.120688
\(317\) 18.5445 1.04156 0.520781 0.853690i \(-0.325641\pi\)
0.520781 + 0.853690i \(0.325641\pi\)
\(318\) 0 0
\(319\) −22.7851 −1.27572
\(320\) 0 0
\(321\) 0 0
\(322\) −34.2148 −1.90672
\(323\) −5.06562 −0.281859
\(324\) 0 0
\(325\) 0 0
\(326\) −25.3579 −1.40444
\(327\) 0 0
\(328\) −2.85718 −0.157762
\(329\) −8.36119 −0.460967
\(330\) 0 0
\(331\) 20.3037 1.11599 0.557996 0.829844i \(-0.311570\pi\)
0.557996 + 0.829844i \(0.311570\pi\)
\(332\) −2.06958 −0.113583
\(333\) 0 0
\(334\) −4.21744 −0.230768
\(335\) 0 0
\(336\) 0 0
\(337\) 16.6871 0.909004 0.454502 0.890746i \(-0.349817\pi\)
0.454502 + 0.890746i \(0.349817\pi\)
\(338\) −14.4982 −0.788599
\(339\) 0 0
\(340\) 0 0
\(341\) 46.1934 2.50151
\(342\) 0 0
\(343\) 7.68980 0.415210
\(344\) −37.0744 −1.99892
\(345\) 0 0
\(346\) −1.84712 −0.0993019
\(347\) −2.16915 −0.116446 −0.0582230 0.998304i \(-0.518543\pi\)
−0.0582230 + 0.998304i \(0.518543\pi\)
\(348\) 0 0
\(349\) −7.84004 −0.419668 −0.209834 0.977737i \(-0.567292\pi\)
−0.209834 + 0.977737i \(0.567292\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.36209 −0.339101
\(353\) −13.2383 −0.704603 −0.352301 0.935887i \(-0.614601\pi\)
−0.352301 + 0.935887i \(0.614601\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.56040 0.135701
\(357\) 0 0
\(358\) 32.4778 1.71651
\(359\) −1.70050 −0.0897490 −0.0448745 0.998993i \(-0.514289\pi\)
−0.0448745 + 0.998993i \(0.514289\pi\)
\(360\) 0 0
\(361\) 6.66051 0.350553
\(362\) −19.0677 −1.00218
\(363\) 0 0
\(364\) −1.15106 −0.0603321
\(365\) 0 0
\(366\) 0 0
\(367\) −6.84213 −0.357157 −0.178578 0.983926i \(-0.557150\pi\)
−0.178578 + 0.983926i \(0.557150\pi\)
\(368\) −26.1337 −1.36231
\(369\) 0 0
\(370\) 0 0
\(371\) 0.757811 0.0393436
\(372\) 0 0
\(373\) −4.82160 −0.249653 −0.124827 0.992179i \(-0.539837\pi\)
−0.124827 + 0.992179i \(0.539837\pi\)
\(374\) 6.48501 0.335332
\(375\) 0 0
\(376\) −7.23663 −0.373201
\(377\) −6.76529 −0.348430
\(378\) 0 0
\(379\) −3.68009 −0.189034 −0.0945168 0.995523i \(-0.530131\pi\)
−0.0945168 + 0.995523i \(0.530131\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.85780 −0.350876
\(383\) 17.7482 0.906892 0.453446 0.891284i \(-0.350195\pi\)
0.453446 + 0.891284i \(0.350195\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −19.1454 −0.974476
\(387\) 0 0
\(388\) 2.54939 0.129426
\(389\) 3.96170 0.200866 0.100433 0.994944i \(-0.467977\pi\)
0.100433 + 0.994944i \(0.467977\pi\)
\(390\) 0 0
\(391\) −7.50407 −0.379497
\(392\) −14.1185 −0.713092
\(393\) 0 0
\(394\) 18.9006 0.952201
\(395\) 0 0
\(396\) 0 0
\(397\) −11.3048 −0.567372 −0.283686 0.958917i \(-0.591557\pi\)
−0.283686 + 0.958917i \(0.591557\pi\)
\(398\) −19.8038 −0.992677
\(399\) 0 0
\(400\) 0 0
\(401\) −2.90393 −0.145015 −0.0725076 0.997368i \(-0.523100\pi\)
−0.0725076 + 0.997368i \(0.523100\pi\)
\(402\) 0 0
\(403\) 13.7156 0.683223
\(404\) −0.225007 −0.0111945
\(405\) 0 0
\(406\) −21.3020 −1.05720
\(407\) 2.36675 0.117316
\(408\) 0 0
\(409\) −26.9957 −1.33485 −0.667426 0.744677i \(-0.732604\pi\)
−0.667426 + 0.744677i \(0.732604\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.30628 0.0643559
\(413\) 17.6839 0.870166
\(414\) 0 0
\(415\) 0 0
\(416\) −1.88901 −0.0926164
\(417\) 0 0
\(418\) −32.8506 −1.60678
\(419\) 1.26272 0.0616879 0.0308439 0.999524i \(-0.490181\pi\)
0.0308439 + 0.999524i \(0.490181\pi\)
\(420\) 0 0
\(421\) −7.16809 −0.349351 −0.174676 0.984626i \(-0.555888\pi\)
−0.174676 + 0.984626i \(0.555888\pi\)
\(422\) −31.0965 −1.51375
\(423\) 0 0
\(424\) 0.655887 0.0318527
\(425\) 0 0
\(426\) 0 0
\(427\) −36.3288 −1.75808
\(428\) −3.34055 −0.161471
\(429\) 0 0
\(430\) 0 0
\(431\) 15.3333 0.738580 0.369290 0.929314i \(-0.379601\pi\)
0.369290 + 0.929314i \(0.379601\pi\)
\(432\) 0 0
\(433\) −5.07406 −0.243844 −0.121922 0.992540i \(-0.538906\pi\)
−0.121922 + 0.992540i \(0.538906\pi\)
\(434\) 43.1866 2.07302
\(435\) 0 0
\(436\) −0.592774 −0.0283887
\(437\) 38.0128 1.81840
\(438\) 0 0
\(439\) 17.5476 0.837501 0.418751 0.908101i \(-0.362468\pi\)
0.418751 + 0.908101i \(0.362468\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.92551 0.0915871
\(443\) 40.0325 1.90200 0.951002 0.309185i \(-0.100056\pi\)
0.951002 + 0.309185i \(0.100056\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 32.6872 1.54778
\(447\) 0 0
\(448\) −29.8310 −1.40938
\(449\) −5.20481 −0.245630 −0.122815 0.992430i \(-0.539192\pi\)
−0.122815 + 0.992430i \(0.539192\pi\)
\(450\) 0 0
\(451\) −4.69530 −0.221093
\(452\) −2.53570 −0.119269
\(453\) 0 0
\(454\) 22.9294 1.07613
\(455\) 0 0
\(456\) 0 0
\(457\) −14.7538 −0.690152 −0.345076 0.938575i \(-0.612147\pi\)
−0.345076 + 0.938575i \(0.612147\pi\)
\(458\) 15.4407 0.721498
\(459\) 0 0
\(460\) 0 0
\(461\) 18.2965 0.852154 0.426077 0.904687i \(-0.359895\pi\)
0.426077 + 0.904687i \(0.359895\pi\)
\(462\) 0 0
\(463\) 39.0949 1.81690 0.908448 0.417998i \(-0.137268\pi\)
0.908448 + 0.417998i \(0.137268\pi\)
\(464\) −16.2708 −0.755351
\(465\) 0 0
\(466\) 25.4360 1.17830
\(467\) −3.92273 −0.181522 −0.0907612 0.995873i \(-0.528930\pi\)
−0.0907612 + 0.995873i \(0.528930\pi\)
\(468\) 0 0
\(469\) −41.1986 −1.90237
\(470\) 0 0
\(471\) 0 0
\(472\) 15.3054 0.704489
\(473\) −60.9256 −2.80136
\(474\) 0 0
\(475\) 0 0
\(476\) −0.794907 −0.0364345
\(477\) 0 0
\(478\) 5.58802 0.255590
\(479\) 40.3336 1.84289 0.921446 0.388507i \(-0.127009\pi\)
0.921446 + 0.388507i \(0.127009\pi\)
\(480\) 0 0
\(481\) 0.702728 0.0320416
\(482\) 6.42786 0.292781
\(483\) 0 0
\(484\) −2.96380 −0.134718
\(485\) 0 0
\(486\) 0 0
\(487\) −22.9489 −1.03991 −0.519957 0.854192i \(-0.674052\pi\)
−0.519957 + 0.854192i \(0.674052\pi\)
\(488\) −31.4427 −1.42334
\(489\) 0 0
\(490\) 0 0
\(491\) −7.30781 −0.329797 −0.164899 0.986311i \(-0.552730\pi\)
−0.164899 + 0.986311i \(0.552730\pi\)
\(492\) 0 0
\(493\) −4.67201 −0.210417
\(494\) −9.75390 −0.438849
\(495\) 0 0
\(496\) 32.9865 1.48114
\(497\) 30.1171 1.35094
\(498\) 0 0
\(499\) 4.15288 0.185908 0.0929542 0.995670i \(-0.470369\pi\)
0.0929542 + 0.995670i \(0.470369\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 15.9768 0.713080
\(503\) 0.0485525 0.00216485 0.00108242 0.999999i \(-0.499655\pi\)
0.00108242 + 0.999999i \(0.499655\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −48.6640 −2.16338
\(507\) 0 0
\(508\) −0.110688 −0.00491097
\(509\) 9.51322 0.421666 0.210833 0.977522i \(-0.432382\pi\)
0.210833 + 0.977522i \(0.432382\pi\)
\(510\) 0 0
\(511\) 28.4531 1.25869
\(512\) −25.2139 −1.11431
\(513\) 0 0
\(514\) −11.8925 −0.524556
\(515\) 0 0
\(516\) 0 0
\(517\) −11.8922 −0.523017
\(518\) 2.21270 0.0972203
\(519\) 0 0
\(520\) 0 0
\(521\) −33.1999 −1.45451 −0.727257 0.686365i \(-0.759205\pi\)
−0.727257 + 0.686365i \(0.759205\pi\)
\(522\) 0 0
\(523\) −3.96170 −0.173233 −0.0866166 0.996242i \(-0.527606\pi\)
−0.0866166 + 0.996242i \(0.527606\pi\)
\(524\) −2.22471 −0.0971867
\(525\) 0 0
\(526\) 18.7738 0.818577
\(527\) 9.47179 0.412598
\(528\) 0 0
\(529\) 33.3110 1.44831
\(530\) 0 0
\(531\) 0 0
\(532\) 4.02670 0.174579
\(533\) −1.39411 −0.0603858
\(534\) 0 0
\(535\) 0 0
\(536\) −35.6574 −1.54017
\(537\) 0 0
\(538\) −31.1976 −1.34502
\(539\) −23.2014 −0.999354
\(540\) 0 0
\(541\) −26.7816 −1.15143 −0.575715 0.817651i \(-0.695276\pi\)
−0.575715 + 0.817651i \(0.695276\pi\)
\(542\) −6.70238 −0.287892
\(543\) 0 0
\(544\) −1.30452 −0.0559310
\(545\) 0 0
\(546\) 0 0
\(547\) −0.942690 −0.0403065 −0.0201533 0.999797i \(-0.506415\pi\)
−0.0201533 + 0.999797i \(0.506415\pi\)
\(548\) 3.18313 0.135977
\(549\) 0 0
\(550\) 0 0
\(551\) 23.6666 1.00823
\(552\) 0 0
\(553\) −31.7322 −1.34939
\(554\) 4.21339 0.179010
\(555\) 0 0
\(556\) 1.62467 0.0689012
\(557\) −19.2331 −0.814931 −0.407465 0.913221i \(-0.633587\pi\)
−0.407465 + 0.913221i \(0.633587\pi\)
\(558\) 0 0
\(559\) −18.0898 −0.765118
\(560\) 0 0
\(561\) 0 0
\(562\) −13.0964 −0.552437
\(563\) −15.0671 −0.635004 −0.317502 0.948258i \(-0.602844\pi\)
−0.317502 + 0.948258i \(0.602844\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 42.9245 1.80425
\(567\) 0 0
\(568\) 26.0664 1.09372
\(569\) 20.0528 0.840658 0.420329 0.907372i \(-0.361915\pi\)
0.420329 + 0.907372i \(0.361915\pi\)
\(570\) 0 0
\(571\) −13.2923 −0.556264 −0.278132 0.960543i \(-0.589715\pi\)
−0.278132 + 0.960543i \(0.589715\pi\)
\(572\) −1.63717 −0.0684533
\(573\) 0 0
\(574\) −4.38968 −0.183222
\(575\) 0 0
\(576\) 0 0
\(577\) 45.7003 1.90253 0.951264 0.308378i \(-0.0997862\pi\)
0.951264 + 0.308378i \(0.0997862\pi\)
\(578\) 1.32973 0.0553094
\(579\) 0 0
\(580\) 0 0
\(581\) −30.6108 −1.26995
\(582\) 0 0
\(583\) 1.07784 0.0446396
\(584\) 24.6262 1.01904
\(585\) 0 0
\(586\) 38.9555 1.60923
\(587\) 23.3479 0.963670 0.481835 0.876262i \(-0.339970\pi\)
0.481835 + 0.876262i \(0.339970\pi\)
\(588\) 0 0
\(589\) −47.9805 −1.97700
\(590\) 0 0
\(591\) 0 0
\(592\) 1.69009 0.0694621
\(593\) −7.38739 −0.303364 −0.151682 0.988429i \(-0.548469\pi\)
−0.151682 + 0.988429i \(0.548469\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.67817 −0.150664
\(597\) 0 0
\(598\) −14.4491 −0.590870
\(599\) 36.5695 1.49419 0.747095 0.664718i \(-0.231448\pi\)
0.747095 + 0.664718i \(0.231448\pi\)
\(600\) 0 0
\(601\) −32.5899 −1.32937 −0.664684 0.747124i \(-0.731434\pi\)
−0.664684 + 0.747124i \(0.731434\pi\)
\(602\) −56.9598 −2.32151
\(603\) 0 0
\(604\) 1.52804 0.0621750
\(605\) 0 0
\(606\) 0 0
\(607\) 3.03468 0.123174 0.0615869 0.998102i \(-0.480384\pi\)
0.0615869 + 0.998102i \(0.480384\pi\)
\(608\) 6.60822 0.267999
\(609\) 0 0
\(610\) 0 0
\(611\) −3.53099 −0.142848
\(612\) 0 0
\(613\) 14.1189 0.570256 0.285128 0.958489i \(-0.407964\pi\)
0.285128 + 0.958489i \(0.407964\pi\)
\(614\) −9.86458 −0.398102
\(615\) 0 0
\(616\) −49.6279 −1.99956
\(617\) 14.8248 0.596825 0.298413 0.954437i \(-0.403543\pi\)
0.298413 + 0.954437i \(0.403543\pi\)
\(618\) 0 0
\(619\) −26.1567 −1.05132 −0.525662 0.850693i \(-0.676182\pi\)
−0.525662 + 0.850693i \(0.676182\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 28.9097 1.15917
\(623\) 37.8705 1.51725
\(624\) 0 0
\(625\) 0 0
\(626\) 35.6835 1.42620
\(627\) 0 0
\(628\) −2.76611 −0.110380
\(629\) 0.485294 0.0193499
\(630\) 0 0
\(631\) −19.0677 −0.759075 −0.379537 0.925176i \(-0.623917\pi\)
−0.379537 + 0.925176i \(0.623917\pi\)
\(632\) −27.4643 −1.09247
\(633\) 0 0
\(634\) 24.6591 0.979338
\(635\) 0 0
\(636\) 0 0
\(637\) −6.88888 −0.272947
\(638\) −30.2980 −1.19951
\(639\) 0 0
\(640\) 0 0
\(641\) 37.7380 1.49056 0.745280 0.666752i \(-0.232316\pi\)
0.745280 + 0.666752i \(0.232316\pi\)
\(642\) 0 0
\(643\) 3.41323 0.134605 0.0673024 0.997733i \(-0.478561\pi\)
0.0673024 + 0.997733i \(0.478561\pi\)
\(644\) 5.96504 0.235055
\(645\) 0 0
\(646\) −6.73589 −0.265020
\(647\) 20.9486 0.823574 0.411787 0.911280i \(-0.364905\pi\)
0.411787 + 0.911280i \(0.364905\pi\)
\(648\) 0 0
\(649\) 25.1519 0.987298
\(650\) 0 0
\(651\) 0 0
\(652\) 4.42092 0.173136
\(653\) −39.0767 −1.52919 −0.764594 0.644512i \(-0.777061\pi\)
−0.764594 + 0.644512i \(0.777061\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.35289 −0.130908
\(657\) 0 0
\(658\) −11.1181 −0.433429
\(659\) 20.0127 0.779584 0.389792 0.920903i \(-0.372547\pi\)
0.389792 + 0.920903i \(0.372547\pi\)
\(660\) 0 0
\(661\) −11.1427 −0.433400 −0.216700 0.976238i \(-0.569529\pi\)
−0.216700 + 0.976238i \(0.569529\pi\)
\(662\) 26.9984 1.04932
\(663\) 0 0
\(664\) −26.4937 −1.02816
\(665\) 0 0
\(666\) 0 0
\(667\) 35.0590 1.35749
\(668\) 0.735272 0.0284485
\(669\) 0 0
\(670\) 0 0
\(671\) −51.6707 −1.99473
\(672\) 0 0
\(673\) 18.8254 0.725665 0.362833 0.931854i \(-0.381810\pi\)
0.362833 + 0.931854i \(0.381810\pi\)
\(674\) 22.1893 0.854700
\(675\) 0 0
\(676\) 2.52763 0.0972166
\(677\) −2.58425 −0.0993208 −0.0496604 0.998766i \(-0.515814\pi\)
−0.0496604 + 0.998766i \(0.515814\pi\)
\(678\) 0 0
\(679\) 37.7076 1.44709
\(680\) 0 0
\(681\) 0 0
\(682\) 61.4246 2.35207
\(683\) −33.9357 −1.29851 −0.649257 0.760569i \(-0.724920\pi\)
−0.649257 + 0.760569i \(0.724920\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 10.2253 0.390405
\(687\) 0 0
\(688\) −43.5067 −1.65868
\(689\) 0.320029 0.0121921
\(690\) 0 0
\(691\) −31.0373 −1.18071 −0.590356 0.807143i \(-0.701013\pi\)
−0.590356 + 0.807143i \(0.701013\pi\)
\(692\) 0.322029 0.0122417
\(693\) 0 0
\(694\) −2.88438 −0.109489
\(695\) 0 0
\(696\) 0 0
\(697\) −0.962754 −0.0364669
\(698\) −10.4251 −0.394597
\(699\) 0 0
\(700\) 0 0
\(701\) 23.1338 0.873752 0.436876 0.899522i \(-0.356085\pi\)
0.436876 + 0.899522i \(0.356085\pi\)
\(702\) 0 0
\(703\) −2.45831 −0.0927170
\(704\) −42.4288 −1.59910
\(705\) 0 0
\(706\) −17.6033 −0.662509
\(707\) −3.32805 −0.125164
\(708\) 0 0
\(709\) 14.0717 0.528474 0.264237 0.964458i \(-0.414880\pi\)
0.264237 + 0.964458i \(0.414880\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 32.7770 1.22837
\(713\) −71.0769 −2.66185
\(714\) 0 0
\(715\) 0 0
\(716\) −5.66221 −0.211607
\(717\) 0 0
\(718\) −2.26120 −0.0843874
\(719\) −12.1446 −0.452918 −0.226459 0.974021i \(-0.572715\pi\)
−0.226459 + 0.974021i \(0.572715\pi\)
\(720\) 0 0
\(721\) 19.3210 0.719553
\(722\) 8.85667 0.329611
\(723\) 0 0
\(724\) 3.32427 0.123546
\(725\) 0 0
\(726\) 0 0
\(727\) −47.0741 −1.74588 −0.872942 0.487825i \(-0.837791\pi\)
−0.872942 + 0.487825i \(0.837791\pi\)
\(728\) −14.7354 −0.546129
\(729\) 0 0
\(730\) 0 0
\(731\) −12.4926 −0.462054
\(732\) 0 0
\(733\) 12.8750 0.475549 0.237774 0.971320i \(-0.423582\pi\)
0.237774 + 0.971320i \(0.423582\pi\)
\(734\) −9.09817 −0.335820
\(735\) 0 0
\(736\) 9.78923 0.360836
\(737\) −58.5970 −2.15845
\(738\) 0 0
\(739\) −7.81861 −0.287612 −0.143806 0.989606i \(-0.545934\pi\)
−0.143806 + 0.989606i \(0.545934\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.00768 0.0369932
\(743\) 7.81333 0.286643 0.143322 0.989676i \(-0.454222\pi\)
0.143322 + 0.989676i \(0.454222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −6.41142 −0.234739
\(747\) 0 0
\(748\) −1.13060 −0.0413389
\(749\) −49.4095 −1.80539
\(750\) 0 0
\(751\) 4.95396 0.180772 0.0903862 0.995907i \(-0.471190\pi\)
0.0903862 + 0.995907i \(0.471190\pi\)
\(752\) −8.49215 −0.309677
\(753\) 0 0
\(754\) −8.99599 −0.327614
\(755\) 0 0
\(756\) 0 0
\(757\) −40.4845 −1.47143 −0.735716 0.677290i \(-0.763154\pi\)
−0.735716 + 0.677290i \(0.763154\pi\)
\(758\) −4.89352 −0.177740
\(759\) 0 0
\(760\) 0 0
\(761\) 4.74741 0.172094 0.0860468 0.996291i \(-0.472577\pi\)
0.0860468 + 0.996291i \(0.472577\pi\)
\(762\) 0 0
\(763\) −8.76764 −0.317410
\(764\) 1.19559 0.0432551
\(765\) 0 0
\(766\) 23.6003 0.852713
\(767\) 7.46801 0.269654
\(768\) 0 0
\(769\) −4.29621 −0.154925 −0.0774627 0.996995i \(-0.524682\pi\)
−0.0774627 + 0.996995i \(0.524682\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.33783 0.120131
\(773\) −29.4037 −1.05758 −0.528788 0.848754i \(-0.677353\pi\)
−0.528788 + 0.848754i \(0.677353\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 32.6360 1.17156
\(777\) 0 0
\(778\) 5.26799 0.188866
\(779\) 4.87695 0.174735
\(780\) 0 0
\(781\) 42.8357 1.53278
\(782\) −9.97836 −0.356826
\(783\) 0 0
\(784\) −16.5680 −0.591714
\(785\) 0 0
\(786\) 0 0
\(787\) −4.96019 −0.176812 −0.0884058 0.996085i \(-0.528177\pi\)
−0.0884058 + 0.996085i \(0.528177\pi\)
\(788\) −3.29515 −0.117385
\(789\) 0 0
\(790\) 0 0
\(791\) −37.5051 −1.33353
\(792\) 0 0
\(793\) −15.3419 −0.544807
\(794\) −15.0323 −0.533476
\(795\) 0 0
\(796\) 3.45262 0.122375
\(797\) −17.7520 −0.628808 −0.314404 0.949289i \(-0.601805\pi\)
−0.314404 + 0.949289i \(0.601805\pi\)
\(798\) 0 0
\(799\) −2.43845 −0.0862661
\(800\) 0 0
\(801\) 0 0
\(802\) −3.86143 −0.136352
\(803\) 40.4690 1.42812
\(804\) 0 0
\(805\) 0 0
\(806\) 18.2380 0.642406
\(807\) 0 0
\(808\) −2.88043 −0.101333
\(809\) −45.9885 −1.61687 −0.808434 0.588587i \(-0.799685\pi\)
−0.808434 + 0.588587i \(0.799685\pi\)
\(810\) 0 0
\(811\) 36.8574 1.29424 0.647119 0.762389i \(-0.275974\pi\)
0.647119 + 0.762389i \(0.275974\pi\)
\(812\) 3.71381 0.130329
\(813\) 0 0
\(814\) 3.14713 0.110307
\(815\) 0 0
\(816\) 0 0
\(817\) 63.2826 2.21398
\(818\) −35.8969 −1.25511
\(819\) 0 0
\(820\) 0 0
\(821\) −13.0799 −0.456493 −0.228247 0.973603i \(-0.573299\pi\)
−0.228247 + 0.973603i \(0.573299\pi\)
\(822\) 0 0
\(823\) 20.9955 0.731858 0.365929 0.930643i \(-0.380751\pi\)
0.365929 + 0.930643i \(0.380751\pi\)
\(824\) 16.7224 0.582552
\(825\) 0 0
\(826\) 23.5147 0.818181
\(827\) 25.3408 0.881186 0.440593 0.897707i \(-0.354768\pi\)
0.440593 + 0.897707i \(0.354768\pi\)
\(828\) 0 0
\(829\) 20.8372 0.723705 0.361853 0.932235i \(-0.382144\pi\)
0.361853 + 0.932235i \(0.382144\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −12.5978 −0.436751
\(833\) −4.75736 −0.164833
\(834\) 0 0
\(835\) 0 0
\(836\) 5.72720 0.198079
\(837\) 0 0
\(838\) 1.67907 0.0580026
\(839\) −25.3553 −0.875363 −0.437682 0.899130i \(-0.644200\pi\)
−0.437682 + 0.899130i \(0.644200\pi\)
\(840\) 0 0
\(841\) −7.17237 −0.247323
\(842\) −9.53161 −0.328481
\(843\) 0 0
\(844\) 5.42138 0.186612
\(845\) 0 0
\(846\) 0 0
\(847\) −43.8372 −1.50626
\(848\) 0.769681 0.0264309
\(849\) 0 0
\(850\) 0 0
\(851\) −3.64168 −0.124835
\(852\) 0 0
\(853\) 13.8931 0.475691 0.237845 0.971303i \(-0.423559\pi\)
0.237845 + 0.971303i \(0.423559\pi\)
\(854\) −48.3074 −1.65305
\(855\) 0 0
\(856\) −42.7640 −1.46164
\(857\) −19.1394 −0.653789 −0.326894 0.945061i \(-0.606002\pi\)
−0.326894 + 0.945061i \(0.606002\pi\)
\(858\) 0 0
\(859\) 32.3777 1.10471 0.552356 0.833609i \(-0.313729\pi\)
0.552356 + 0.833609i \(0.313729\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 20.3891 0.694456
\(863\) 1.39617 0.0475263 0.0237632 0.999718i \(-0.492435\pi\)
0.0237632 + 0.999718i \(0.492435\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −6.74711 −0.229276
\(867\) 0 0
\(868\) −7.52919 −0.255557
\(869\) −45.1330 −1.53103
\(870\) 0 0
\(871\) −17.3984 −0.589524
\(872\) −7.58841 −0.256976
\(873\) 0 0
\(874\) 50.5466 1.70976
\(875\) 0 0
\(876\) 0 0
\(877\) −49.8155 −1.68215 −0.841075 0.540919i \(-0.818076\pi\)
−0.841075 + 0.540919i \(0.818076\pi\)
\(878\) 23.3335 0.787468
\(879\) 0 0
\(880\) 0 0
\(881\) 1.51441 0.0510216 0.0255108 0.999675i \(-0.491879\pi\)
0.0255108 + 0.999675i \(0.491879\pi\)
\(882\) 0 0
\(883\) −32.2410 −1.08500 −0.542498 0.840057i \(-0.682522\pi\)
−0.542498 + 0.840057i \(0.682522\pi\)
\(884\) −0.335695 −0.0112906
\(885\) 0 0
\(886\) 53.2324 1.78838
\(887\) 28.7750 0.966171 0.483086 0.875573i \(-0.339516\pi\)
0.483086 + 0.875573i \(0.339516\pi\)
\(888\) 0 0
\(889\) −1.63717 −0.0549088
\(890\) 0 0
\(891\) 0 0
\(892\) −5.69870 −0.190807
\(893\) 12.3522 0.413352
\(894\) 0 0
\(895\) 0 0
\(896\) −30.7209 −1.02631
\(897\) 0 0
\(898\) −6.92098 −0.230956
\(899\) −44.2522 −1.47589
\(900\) 0 0
\(901\) 0.221007 0.00736282
\(902\) −6.24347 −0.207885
\(903\) 0 0
\(904\) −32.4608 −1.07963
\(905\) 0 0
\(906\) 0 0
\(907\) 32.7307 1.08681 0.543403 0.839472i \(-0.317136\pi\)
0.543403 + 0.839472i \(0.317136\pi\)
\(908\) −3.99753 −0.132663
\(909\) 0 0
\(910\) 0 0
\(911\) 51.9668 1.72174 0.860868 0.508829i \(-0.169921\pi\)
0.860868 + 0.508829i \(0.169921\pi\)
\(912\) 0 0
\(913\) −43.5380 −1.44090
\(914\) −19.6185 −0.648922
\(915\) 0 0
\(916\) −2.69195 −0.0889445
\(917\) −32.9053 −1.08663
\(918\) 0 0
\(919\) 49.2635 1.62505 0.812527 0.582923i \(-0.198091\pi\)
0.812527 + 0.582923i \(0.198091\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 24.3294 0.801246
\(923\) 12.7187 0.418639
\(924\) 0 0
\(925\) 0 0
\(926\) 51.9856 1.70835
\(927\) 0 0
\(928\) 6.09474 0.200070
\(929\) 55.7703 1.82976 0.914881 0.403723i \(-0.132284\pi\)
0.914881 + 0.403723i \(0.132284\pi\)
\(930\) 0 0
\(931\) 24.0990 0.789812
\(932\) −4.43453 −0.145258
\(933\) 0 0
\(934\) −5.21617 −0.170678
\(935\) 0 0
\(936\) 0 0
\(937\) 11.3594 0.371095 0.185547 0.982635i \(-0.440594\pi\)
0.185547 + 0.982635i \(0.440594\pi\)
\(938\) −54.7829 −1.78872
\(939\) 0 0
\(940\) 0 0
\(941\) −52.4988 −1.71141 −0.855706 0.517462i \(-0.826877\pi\)
−0.855706 + 0.517462i \(0.826877\pi\)
\(942\) 0 0
\(943\) 7.22457 0.235264
\(944\) 17.9608 0.584575
\(945\) 0 0
\(946\) −81.0144 −2.63400
\(947\) −41.0861 −1.33512 −0.667559 0.744557i \(-0.732661\pi\)
−0.667559 + 0.744557i \(0.732661\pi\)
\(948\) 0 0
\(949\) 12.0159 0.390053
\(950\) 0 0
\(951\) 0 0
\(952\) −10.1760 −0.329806
\(953\) −16.8354 −0.545353 −0.272676 0.962106i \(-0.587909\pi\)
−0.272676 + 0.962106i \(0.587909\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −0.974219 −0.0315085
\(957\) 0 0
\(958\) 53.6327 1.73280
\(959\) 47.0812 1.52033
\(960\) 0 0
\(961\) 58.7148 1.89402
\(962\) 0.934437 0.0301275
\(963\) 0 0
\(964\) −1.12064 −0.0360933
\(965\) 0 0
\(966\) 0 0
\(967\) −54.6685 −1.75802 −0.879010 0.476804i \(-0.841795\pi\)
−0.879010 + 0.476804i \(0.841795\pi\)
\(968\) −37.9412 −1.21948
\(969\) 0 0
\(970\) 0 0
\(971\) 5.86638 0.188261 0.0941306 0.995560i \(-0.469993\pi\)
0.0941306 + 0.995560i \(0.469993\pi\)
\(972\) 0 0
\(973\) 24.0302 0.770373
\(974\) −30.5158 −0.977790
\(975\) 0 0
\(976\) −36.8978 −1.18107
\(977\) 46.2192 1.47868 0.739342 0.673330i \(-0.235137\pi\)
0.739342 + 0.673330i \(0.235137\pi\)
\(978\) 0 0
\(979\) 53.8635 1.72149
\(980\) 0 0
\(981\) 0 0
\(982\) −9.71740 −0.310095
\(983\) −25.0422 −0.798722 −0.399361 0.916794i \(-0.630768\pi\)
−0.399361 + 0.916794i \(0.630768\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6.21249 −0.197846
\(987\) 0 0
\(988\) 1.70050 0.0541002
\(989\) 93.7450 2.98092
\(990\) 0 0
\(991\) 6.37368 0.202467 0.101233 0.994863i \(-0.467721\pi\)
0.101233 + 0.994863i \(0.467721\pi\)
\(992\) −12.3562 −0.392309
\(993\) 0 0
\(994\) 40.0475 1.27023
\(995\) 0 0
\(996\) 0 0
\(997\) 48.5144 1.53647 0.768233 0.640171i \(-0.221136\pi\)
0.768233 + 0.640171i \(0.221136\pi\)
\(998\) 5.52220 0.174802
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3825.2.a.bt.1.5 8
3.2 odd 2 3825.2.a.bs.1.3 8
5.2 odd 4 765.2.b.e.154.11 yes 16
5.3 odd 4 765.2.b.e.154.5 16
5.4 even 2 3825.2.a.bs.1.4 8
15.2 even 4 765.2.b.e.154.6 yes 16
15.8 even 4 765.2.b.e.154.12 yes 16
15.14 odd 2 inner 3825.2.a.bt.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.b.e.154.5 16 5.3 odd 4
765.2.b.e.154.6 yes 16 15.2 even 4
765.2.b.e.154.11 yes 16 5.2 odd 4
765.2.b.e.154.12 yes 16 15.8 even 4
3825.2.a.bs.1.3 8 3.2 odd 2
3825.2.a.bs.1.4 8 5.4 even 2
3825.2.a.bt.1.5 8 1.1 even 1 trivial
3825.2.a.bt.1.6 8 15.14 odd 2 inner