Properties

Label 3808.2.a.c.1.2
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3808,2,Mod(1,3808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.17557 q^{3} -2.17557 q^{5} -1.00000 q^{7} -1.61803 q^{9} +2.52015 q^{11} +4.02967 q^{13} +2.55754 q^{15} +1.00000 q^{17} -5.53077 q^{19} +1.17557 q^{21} +4.07768 q^{23} -0.266893 q^{25} +5.42882 q^{27} -4.42412 q^{29} -2.37425 q^{31} -2.96261 q^{33} +2.17557 q^{35} -6.64584 q^{37} -4.73716 q^{39} +7.85108 q^{41} +9.17848 q^{43} +3.52015 q^{45} +12.6755 q^{47} +1.00000 q^{49} -1.17557 q^{51} -3.95012 q^{53} -5.48276 q^{55} +6.50181 q^{57} -14.9655 q^{59} +13.4252 q^{61} +1.61803 q^{63} -8.76684 q^{65} -2.98751 q^{67} -4.79360 q^{69} +7.86067 q^{71} -2.32553 q^{73} +0.313752 q^{75} -2.52015 q^{77} +1.83099 q^{79} -1.52786 q^{81} +15.0912 q^{83} -2.17557 q^{85} +5.20087 q^{87} +0.541390 q^{89} -4.02967 q^{91} +2.79110 q^{93} +12.0326 q^{95} -12.2218 q^{97} -4.07768 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{7} - 2 q^{9} - 2 q^{11} - 2 q^{13} + 10 q^{15} + 4 q^{17} - 4 q^{19} + 4 q^{23} - 6 q^{25} + 6 q^{29} + 16 q^{31} + 4 q^{35} - 8 q^{37} - 10 q^{39} - 10 q^{41} - 4 q^{43} + 2 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.17557 −0.678716 −0.339358 0.940657i \(-0.610210\pi\)
−0.339358 + 0.940657i \(0.610210\pi\)
\(4\) 0 0
\(5\) −2.17557 −0.972945 −0.486472 0.873696i \(-0.661717\pi\)
−0.486472 + 0.873696i \(0.661717\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.61803 −0.539345
\(10\) 0 0
\(11\) 2.52015 0.759853 0.379926 0.925017i \(-0.375949\pi\)
0.379926 + 0.925017i \(0.375949\pi\)
\(12\) 0 0
\(13\) 4.02967 1.11763 0.558815 0.829292i \(-0.311256\pi\)
0.558815 + 0.829292i \(0.311256\pi\)
\(14\) 0 0
\(15\) 2.55754 0.660353
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −5.53077 −1.26885 −0.634423 0.772986i \(-0.718762\pi\)
−0.634423 + 0.772986i \(0.718762\pi\)
\(20\) 0 0
\(21\) 1.17557 0.256531
\(22\) 0 0
\(23\) 4.07768 0.850256 0.425128 0.905133i \(-0.360229\pi\)
0.425128 + 0.905133i \(0.360229\pi\)
\(24\) 0 0
\(25\) −0.266893 −0.0533786
\(26\) 0 0
\(27\) 5.42882 1.04478
\(28\) 0 0
\(29\) −4.42412 −0.821539 −0.410770 0.911739i \(-0.634740\pi\)
−0.410770 + 0.911739i \(0.634740\pi\)
\(30\) 0 0
\(31\) −2.37425 −0.426428 −0.213214 0.977006i \(-0.568393\pi\)
−0.213214 + 0.977006i \(0.568393\pi\)
\(32\) 0 0
\(33\) −2.96261 −0.515724
\(34\) 0 0
\(35\) 2.17557 0.367739
\(36\) 0 0
\(37\) −6.64584 −1.09257 −0.546285 0.837599i \(-0.683958\pi\)
−0.546285 + 0.837599i \(0.683958\pi\)
\(38\) 0 0
\(39\) −4.73716 −0.758553
\(40\) 0 0
\(41\) 7.85108 1.22613 0.613067 0.790031i \(-0.289936\pi\)
0.613067 + 0.790031i \(0.289936\pi\)
\(42\) 0 0
\(43\) 9.17848 1.39970 0.699852 0.714288i \(-0.253249\pi\)
0.699852 + 0.714288i \(0.253249\pi\)
\(44\) 0 0
\(45\) 3.52015 0.524753
\(46\) 0 0
\(47\) 12.6755 1.84891 0.924457 0.381287i \(-0.124519\pi\)
0.924457 + 0.381287i \(0.124519\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.17557 −0.164613
\(52\) 0 0
\(53\) −3.95012 −0.542591 −0.271296 0.962496i \(-0.587452\pi\)
−0.271296 + 0.962496i \(0.587452\pi\)
\(54\) 0 0
\(55\) −5.48276 −0.739295
\(56\) 0 0
\(57\) 6.50181 0.861186
\(58\) 0 0
\(59\) −14.9655 −1.94834 −0.974172 0.225807i \(-0.927498\pi\)
−0.974172 + 0.225807i \(0.927498\pi\)
\(60\) 0 0
\(61\) 13.4252 1.71892 0.859458 0.511206i \(-0.170801\pi\)
0.859458 + 0.511206i \(0.170801\pi\)
\(62\) 0 0
\(63\) 1.61803 0.203853
\(64\) 0 0
\(65\) −8.76684 −1.08739
\(66\) 0 0
\(67\) −2.98751 −0.364983 −0.182491 0.983207i \(-0.558416\pi\)
−0.182491 + 0.983207i \(0.558416\pi\)
\(68\) 0 0
\(69\) −4.79360 −0.577082
\(70\) 0 0
\(71\) 7.86067 0.932889 0.466445 0.884550i \(-0.345535\pi\)
0.466445 + 0.884550i \(0.345535\pi\)
\(72\) 0 0
\(73\) −2.32553 −0.272182 −0.136091 0.990696i \(-0.543454\pi\)
−0.136091 + 0.990696i \(0.543454\pi\)
\(74\) 0 0
\(75\) 0.313752 0.0362289
\(76\) 0 0
\(77\) −2.52015 −0.287197
\(78\) 0 0
\(79\) 1.83099 0.206003 0.103001 0.994681i \(-0.467155\pi\)
0.103001 + 0.994681i \(0.467155\pi\)
\(80\) 0 0
\(81\) −1.52786 −0.169763
\(82\) 0 0
\(83\) 15.0912 1.65648 0.828238 0.560377i \(-0.189344\pi\)
0.828238 + 0.560377i \(0.189344\pi\)
\(84\) 0 0
\(85\) −2.17557 −0.235974
\(86\) 0 0
\(87\) 5.20087 0.557592
\(88\) 0 0
\(89\) 0.541390 0.0573872 0.0286936 0.999588i \(-0.490865\pi\)
0.0286936 + 0.999588i \(0.490865\pi\)
\(90\) 0 0
\(91\) −4.02967 −0.422424
\(92\) 0 0
\(93\) 2.79110 0.289423
\(94\) 0 0
\(95\) 12.0326 1.23452
\(96\) 0 0
\(97\) −12.2218 −1.24093 −0.620467 0.784232i \(-0.713057\pi\)
−0.620467 + 0.784232i \(0.713057\pi\)
\(98\) 0 0
\(99\) −4.07768 −0.409823
\(100\) 0 0
\(101\) −17.9200 −1.78311 −0.891554 0.452915i \(-0.850384\pi\)
−0.891554 + 0.452915i \(0.850384\pi\)
\(102\) 0 0
\(103\) 8.82798 0.869846 0.434923 0.900468i \(-0.356776\pi\)
0.434923 + 0.900468i \(0.356776\pi\)
\(104\) 0 0
\(105\) −2.55754 −0.249590
\(106\) 0 0
\(107\) −12.9490 −1.25182 −0.625912 0.779894i \(-0.715273\pi\)
−0.625912 + 0.779894i \(0.715273\pi\)
\(108\) 0 0
\(109\) −11.3783 −1.08984 −0.544922 0.838487i \(-0.683441\pi\)
−0.544922 + 0.838487i \(0.683441\pi\)
\(110\) 0 0
\(111\) 7.81266 0.741544
\(112\) 0 0
\(113\) −16.4797 −1.55028 −0.775142 0.631787i \(-0.782322\pi\)
−0.775142 + 0.631787i \(0.782322\pi\)
\(114\) 0 0
\(115\) −8.87129 −0.827252
\(116\) 0 0
\(117\) −6.52015 −0.602788
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −4.64886 −0.422624
\(122\) 0 0
\(123\) −9.22950 −0.832196
\(124\) 0 0
\(125\) 11.4585 1.02488
\(126\) 0 0
\(127\) 5.22139 0.463323 0.231662 0.972796i \(-0.425584\pi\)
0.231662 + 0.972796i \(0.425584\pi\)
\(128\) 0 0
\(129\) −10.7899 −0.950002
\(130\) 0 0
\(131\) −6.72725 −0.587763 −0.293881 0.955842i \(-0.594947\pi\)
−0.293881 + 0.955842i \(0.594947\pi\)
\(132\) 0 0
\(133\) 5.53077 0.479578
\(134\) 0 0
\(135\) −11.8108 −1.01651
\(136\) 0 0
\(137\) −16.2243 −1.38613 −0.693067 0.720873i \(-0.743741\pi\)
−0.693067 + 0.720873i \(0.743741\pi\)
\(138\) 0 0
\(139\) −15.4358 −1.30925 −0.654623 0.755955i \(-0.727173\pi\)
−0.654623 + 0.755955i \(0.727173\pi\)
\(140\) 0 0
\(141\) −14.9010 −1.25489
\(142\) 0 0
\(143\) 10.1554 0.849234
\(144\) 0 0
\(145\) 9.62500 0.799312
\(146\) 0 0
\(147\) −1.17557 −0.0969594
\(148\) 0 0
\(149\) −16.4544 −1.34800 −0.674000 0.738731i \(-0.735425\pi\)
−0.674000 + 0.738731i \(0.735425\pi\)
\(150\) 0 0
\(151\) −12.4064 −1.00962 −0.504810 0.863230i \(-0.668438\pi\)
−0.504810 + 0.863230i \(0.668438\pi\)
\(152\) 0 0
\(153\) −1.61803 −0.130810
\(154\) 0 0
\(155\) 5.16535 0.414891
\(156\) 0 0
\(157\) −16.1155 −1.28615 −0.643077 0.765801i \(-0.722343\pi\)
−0.643077 + 0.765801i \(0.722343\pi\)
\(158\) 0 0
\(159\) 4.64365 0.368265
\(160\) 0 0
\(161\) −4.07768 −0.321366
\(162\) 0 0
\(163\) 3.92992 0.307815 0.153908 0.988085i \(-0.450814\pi\)
0.153908 + 0.988085i \(0.450814\pi\)
\(164\) 0 0
\(165\) 6.44537 0.501771
\(166\) 0 0
\(167\) 9.61333 0.743902 0.371951 0.928252i \(-0.378689\pi\)
0.371951 + 0.928252i \(0.378689\pi\)
\(168\) 0 0
\(169\) 3.23826 0.249097
\(170\) 0 0
\(171\) 8.94897 0.684345
\(172\) 0 0
\(173\) −13.9259 −1.05876 −0.529382 0.848384i \(-0.677576\pi\)
−0.529382 + 0.848384i \(0.677576\pi\)
\(174\) 0 0
\(175\) 0.266893 0.0201752
\(176\) 0 0
\(177\) 17.5930 1.32237
\(178\) 0 0
\(179\) −20.8654 −1.55956 −0.779778 0.626056i \(-0.784668\pi\)
−0.779778 + 0.626056i \(0.784668\pi\)
\(180\) 0 0
\(181\) 13.4046 0.996353 0.498177 0.867076i \(-0.334003\pi\)
0.498177 + 0.867076i \(0.334003\pi\)
\(182\) 0 0
\(183\) −15.7822 −1.16666
\(184\) 0 0
\(185\) 14.4585 1.06301
\(186\) 0 0
\(187\) 2.52015 0.184291
\(188\) 0 0
\(189\) −5.42882 −0.394889
\(190\) 0 0
\(191\) 5.66727 0.410069 0.205035 0.978755i \(-0.434269\pi\)
0.205035 + 0.978755i \(0.434269\pi\)
\(192\) 0 0
\(193\) 8.50181 0.611974 0.305987 0.952036i \(-0.401014\pi\)
0.305987 + 0.952036i \(0.401014\pi\)
\(194\) 0 0
\(195\) 10.3060 0.738030
\(196\) 0 0
\(197\) −25.3214 −1.80407 −0.902036 0.431661i \(-0.857928\pi\)
−0.902036 + 0.431661i \(0.857928\pi\)
\(198\) 0 0
\(199\) 9.41756 0.667593 0.333797 0.942645i \(-0.391670\pi\)
0.333797 + 0.942645i \(0.391670\pi\)
\(200\) 0 0
\(201\) 3.51203 0.247720
\(202\) 0 0
\(203\) 4.42412 0.310513
\(204\) 0 0
\(205\) −17.0806 −1.19296
\(206\) 0 0
\(207\) −6.59783 −0.458581
\(208\) 0 0
\(209\) −13.9383 −0.964136
\(210\) 0 0
\(211\) −6.23826 −0.429460 −0.214730 0.976673i \(-0.568887\pi\)
−0.214730 + 0.976673i \(0.568887\pi\)
\(212\) 0 0
\(213\) −9.24077 −0.633167
\(214\) 0 0
\(215\) −19.9684 −1.36183
\(216\) 0 0
\(217\) 2.37425 0.161175
\(218\) 0 0
\(219\) 2.73382 0.184734
\(220\) 0 0
\(221\) 4.02967 0.271065
\(222\) 0 0
\(223\) 3.24128 0.217052 0.108526 0.994094i \(-0.465387\pi\)
0.108526 + 0.994094i \(0.465387\pi\)
\(224\) 0 0
\(225\) 0.431842 0.0287895
\(226\) 0 0
\(227\) −19.3529 −1.28450 −0.642248 0.766497i \(-0.721998\pi\)
−0.642248 + 0.766497i \(0.721998\pi\)
\(228\) 0 0
\(229\) −24.1263 −1.59431 −0.797155 0.603774i \(-0.793663\pi\)
−0.797155 + 0.603774i \(0.793663\pi\)
\(230\) 0 0
\(231\) 2.96261 0.194925
\(232\) 0 0
\(233\) 4.00290 0.262239 0.131119 0.991367i \(-0.458143\pi\)
0.131119 + 0.991367i \(0.458143\pi\)
\(234\) 0 0
\(235\) −27.5765 −1.79889
\(236\) 0 0
\(237\) −2.15246 −0.139817
\(238\) 0 0
\(239\) 23.0575 1.49146 0.745732 0.666246i \(-0.232100\pi\)
0.745732 + 0.666246i \(0.232100\pi\)
\(240\) 0 0
\(241\) 27.0009 1.73928 0.869641 0.493684i \(-0.164350\pi\)
0.869641 + 0.493684i \(0.164350\pi\)
\(242\) 0 0
\(243\) −14.4904 −0.929557
\(244\) 0 0
\(245\) −2.17557 −0.138992
\(246\) 0 0
\(247\) −22.2872 −1.41810
\(248\) 0 0
\(249\) −17.7408 −1.12428
\(250\) 0 0
\(251\) −2.77997 −0.175470 −0.0877349 0.996144i \(-0.527963\pi\)
−0.0877349 + 0.996144i \(0.527963\pi\)
\(252\) 0 0
\(253\) 10.2764 0.646069
\(254\) 0 0
\(255\) 2.55754 0.160159
\(256\) 0 0
\(257\) −12.7206 −0.793491 −0.396745 0.917929i \(-0.629860\pi\)
−0.396745 + 0.917929i \(0.629860\pi\)
\(258\) 0 0
\(259\) 6.64584 0.412953
\(260\) 0 0
\(261\) 7.15838 0.443093
\(262\) 0 0
\(263\) −4.92303 −0.303567 −0.151783 0.988414i \(-0.548502\pi\)
−0.151783 + 0.988414i \(0.548502\pi\)
\(264\) 0 0
\(265\) 8.59377 0.527911
\(266\) 0 0
\(267\) −0.636442 −0.0389496
\(268\) 0 0
\(269\) 20.9845 1.27944 0.639722 0.768606i \(-0.279049\pi\)
0.639722 + 0.768606i \(0.279049\pi\)
\(270\) 0 0
\(271\) −0.0814132 −0.00494550 −0.00247275 0.999997i \(-0.500787\pi\)
−0.00247275 + 0.999997i \(0.500787\pi\)
\(272\) 0 0
\(273\) 4.73716 0.286706
\(274\) 0 0
\(275\) −0.672610 −0.0405599
\(276\) 0 0
\(277\) 33.0028 1.98295 0.991473 0.130314i \(-0.0415985\pi\)
0.991473 + 0.130314i \(0.0415985\pi\)
\(278\) 0 0
\(279\) 3.84162 0.229992
\(280\) 0 0
\(281\) −30.8965 −1.84313 −0.921565 0.388225i \(-0.873088\pi\)
−0.921565 + 0.388225i \(0.873088\pi\)
\(282\) 0 0
\(283\) 10.6294 0.631850 0.315925 0.948784i \(-0.397685\pi\)
0.315925 + 0.948784i \(0.397685\pi\)
\(284\) 0 0
\(285\) −14.1451 −0.837886
\(286\) 0 0
\(287\) −7.85108 −0.463435
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 14.3676 0.842242
\(292\) 0 0
\(293\) −5.78819 −0.338150 −0.169075 0.985603i \(-0.554078\pi\)
−0.169075 + 0.985603i \(0.554078\pi\)
\(294\) 0 0
\(295\) 32.5585 1.89563
\(296\) 0 0
\(297\) 13.6814 0.793877
\(298\) 0 0
\(299\) 16.4317 0.950271
\(300\) 0 0
\(301\) −9.17848 −0.529039
\(302\) 0 0
\(303\) 21.0662 1.21022
\(304\) 0 0
\(305\) −29.2074 −1.67241
\(306\) 0 0
\(307\) 20.3889 1.16366 0.581829 0.813311i \(-0.302337\pi\)
0.581829 + 0.813311i \(0.302337\pi\)
\(308\) 0 0
\(309\) −10.3779 −0.590379
\(310\) 0 0
\(311\) −14.6981 −0.833453 −0.416727 0.909032i \(-0.636823\pi\)
−0.416727 + 0.909032i \(0.636823\pi\)
\(312\) 0 0
\(313\) −24.0685 −1.36043 −0.680216 0.733012i \(-0.738114\pi\)
−0.680216 + 0.733012i \(0.738114\pi\)
\(314\) 0 0
\(315\) −3.52015 −0.198338
\(316\) 0 0
\(317\) 23.4037 1.31448 0.657242 0.753679i \(-0.271723\pi\)
0.657242 + 0.753679i \(0.271723\pi\)
\(318\) 0 0
\(319\) −11.1494 −0.624249
\(320\) 0 0
\(321\) 15.2224 0.849633
\(322\) 0 0
\(323\) −5.53077 −0.307740
\(324\) 0 0
\(325\) −1.07549 −0.0596575
\(326\) 0 0
\(327\) 13.3760 0.739695
\(328\) 0 0
\(329\) −12.6755 −0.698824
\(330\) 0 0
\(331\) 10.7359 0.590098 0.295049 0.955482i \(-0.404664\pi\)
0.295049 + 0.955482i \(0.404664\pi\)
\(332\) 0 0
\(333\) 10.7532 0.589272
\(334\) 0 0
\(335\) 6.49955 0.355108
\(336\) 0 0
\(337\) 24.4398 1.33132 0.665662 0.746254i \(-0.268149\pi\)
0.665662 + 0.746254i \(0.268149\pi\)
\(338\) 0 0
\(339\) 19.3731 1.05220
\(340\) 0 0
\(341\) −5.98346 −0.324022
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 10.4288 0.561469
\(346\) 0 0
\(347\) −9.29772 −0.499128 −0.249564 0.968358i \(-0.580287\pi\)
−0.249564 + 0.968358i \(0.580287\pi\)
\(348\) 0 0
\(349\) 25.6240 1.37162 0.685810 0.727781i \(-0.259448\pi\)
0.685810 + 0.727781i \(0.259448\pi\)
\(350\) 0 0
\(351\) 21.8764 1.16768
\(352\) 0 0
\(353\) −0.389753 −0.0207444 −0.0103722 0.999946i \(-0.503302\pi\)
−0.0103722 + 0.999946i \(0.503302\pi\)
\(354\) 0 0
\(355\) −17.1014 −0.907650
\(356\) 0 0
\(357\) 1.17557 0.0622178
\(358\) 0 0
\(359\) −25.9258 −1.36831 −0.684154 0.729337i \(-0.739829\pi\)
−0.684154 + 0.729337i \(0.739829\pi\)
\(360\) 0 0
\(361\) 11.5894 0.609968
\(362\) 0 0
\(363\) 5.46506 0.286841
\(364\) 0 0
\(365\) 5.05934 0.264818
\(366\) 0 0
\(367\) 0.430802 0.0224877 0.0112438 0.999937i \(-0.496421\pi\)
0.0112438 + 0.999937i \(0.496421\pi\)
\(368\) 0 0
\(369\) −12.7033 −0.661309
\(370\) 0 0
\(371\) 3.95012 0.205080
\(372\) 0 0
\(373\) −14.8730 −0.770097 −0.385048 0.922896i \(-0.625815\pi\)
−0.385048 + 0.922896i \(0.625815\pi\)
\(374\) 0 0
\(375\) −13.4703 −0.695602
\(376\) 0 0
\(377\) −17.8278 −0.918177
\(378\) 0 0
\(379\) −10.4504 −0.536800 −0.268400 0.963308i \(-0.586495\pi\)
−0.268400 + 0.963308i \(0.586495\pi\)
\(380\) 0 0
\(381\) −6.13811 −0.314465
\(382\) 0 0
\(383\) 14.9425 0.763525 0.381762 0.924260i \(-0.375317\pi\)
0.381762 + 0.924260i \(0.375317\pi\)
\(384\) 0 0
\(385\) 5.48276 0.279427
\(386\) 0 0
\(387\) −14.8511 −0.754923
\(388\) 0 0
\(389\) 36.4058 1.84585 0.922924 0.384983i \(-0.125793\pi\)
0.922924 + 0.384983i \(0.125793\pi\)
\(390\) 0 0
\(391\) 4.07768 0.206217
\(392\) 0 0
\(393\) 7.90836 0.398924
\(394\) 0 0
\(395\) −3.98346 −0.200429
\(396\) 0 0
\(397\) 22.7225 1.14041 0.570204 0.821503i \(-0.306864\pi\)
0.570204 + 0.821503i \(0.306864\pi\)
\(398\) 0 0
\(399\) −6.50181 −0.325498
\(400\) 0 0
\(401\) −12.1845 −0.608466 −0.304233 0.952598i \(-0.598400\pi\)
−0.304233 + 0.952598i \(0.598400\pi\)
\(402\) 0 0
\(403\) −9.56745 −0.476588
\(404\) 0 0
\(405\) 3.32398 0.165170
\(406\) 0 0
\(407\) −16.7485 −0.830192
\(408\) 0 0
\(409\) −21.0211 −1.03943 −0.519714 0.854340i \(-0.673961\pi\)
−0.519714 + 0.854340i \(0.673961\pi\)
\(410\) 0 0
\(411\) 19.0728 0.940792
\(412\) 0 0
\(413\) 14.9655 0.736405
\(414\) 0 0
\(415\) −32.8320 −1.61166
\(416\) 0 0
\(417\) 18.1459 0.888606
\(418\) 0 0
\(419\) −37.3931 −1.82677 −0.913386 0.407095i \(-0.866542\pi\)
−0.913386 + 0.407095i \(0.866542\pi\)
\(420\) 0 0
\(421\) −9.79464 −0.477362 −0.238681 0.971098i \(-0.576715\pi\)
−0.238681 + 0.971098i \(0.576715\pi\)
\(422\) 0 0
\(423\) −20.5094 −0.997202
\(424\) 0 0
\(425\) −0.266893 −0.0129462
\(426\) 0 0
\(427\) −13.4252 −0.649689
\(428\) 0 0
\(429\) −11.9383 −0.576389
\(430\) 0 0
\(431\) −34.6036 −1.66680 −0.833399 0.552671i \(-0.813609\pi\)
−0.833399 + 0.552671i \(0.813609\pi\)
\(432\) 0 0
\(433\) −15.9460 −0.766314 −0.383157 0.923683i \(-0.625163\pi\)
−0.383157 + 0.923683i \(0.625163\pi\)
\(434\) 0 0
\(435\) −11.3149 −0.542506
\(436\) 0 0
\(437\) −22.5527 −1.07884
\(438\) 0 0
\(439\) 18.0832 0.863062 0.431531 0.902098i \(-0.357973\pi\)
0.431531 + 0.902098i \(0.357973\pi\)
\(440\) 0 0
\(441\) −1.61803 −0.0770492
\(442\) 0 0
\(443\) −11.2442 −0.534227 −0.267114 0.963665i \(-0.586070\pi\)
−0.267114 + 0.963665i \(0.586070\pi\)
\(444\) 0 0
\(445\) −1.17783 −0.0558346
\(446\) 0 0
\(447\) 19.3434 0.914909
\(448\) 0 0
\(449\) −8.94086 −0.421945 −0.210973 0.977492i \(-0.567663\pi\)
−0.210973 + 0.977492i \(0.567663\pi\)
\(450\) 0 0
\(451\) 19.7859 0.931681
\(452\) 0 0
\(453\) 14.5846 0.685246
\(454\) 0 0
\(455\) 8.76684 0.410996
\(456\) 0 0
\(457\) −18.6795 −0.873788 −0.436894 0.899513i \(-0.643922\pi\)
−0.436894 + 0.899513i \(0.643922\pi\)
\(458\) 0 0
\(459\) 5.42882 0.253396
\(460\) 0 0
\(461\) −18.8427 −0.877593 −0.438797 0.898586i \(-0.644595\pi\)
−0.438797 + 0.898586i \(0.644595\pi\)
\(462\) 0 0
\(463\) −21.7443 −1.01054 −0.505272 0.862960i \(-0.668608\pi\)
−0.505272 + 0.862960i \(0.668608\pi\)
\(464\) 0 0
\(465\) −6.07223 −0.281593
\(466\) 0 0
\(467\) −2.80821 −0.129949 −0.0649743 0.997887i \(-0.520697\pi\)
−0.0649743 + 0.997887i \(0.520697\pi\)
\(468\) 0 0
\(469\) 2.98751 0.137951
\(470\) 0 0
\(471\) 18.9449 0.872934
\(472\) 0 0
\(473\) 23.1311 1.06357
\(474\) 0 0
\(475\) 1.47612 0.0677292
\(476\) 0 0
\(477\) 6.39144 0.292644
\(478\) 0 0
\(479\) 32.6476 1.49171 0.745853 0.666110i \(-0.232042\pi\)
0.745853 + 0.666110i \(0.232042\pi\)
\(480\) 0 0
\(481\) −26.7806 −1.22109
\(482\) 0 0
\(483\) 4.79360 0.218117
\(484\) 0 0
\(485\) 26.5894 1.20736
\(486\) 0 0
\(487\) 0.454307 0.0205866 0.0102933 0.999947i \(-0.496723\pi\)
0.0102933 + 0.999947i \(0.496723\pi\)
\(488\) 0 0
\(489\) −4.61990 −0.208919
\(490\) 0 0
\(491\) −14.4214 −0.650830 −0.325415 0.945571i \(-0.605504\pi\)
−0.325415 + 0.945571i \(0.605504\pi\)
\(492\) 0 0
\(493\) −4.42412 −0.199253
\(494\) 0 0
\(495\) 8.87129 0.398735
\(496\) 0 0
\(497\) −7.86067 −0.352599
\(498\) 0 0
\(499\) 27.9216 1.24994 0.624971 0.780648i \(-0.285111\pi\)
0.624971 + 0.780648i \(0.285111\pi\)
\(500\) 0 0
\(501\) −11.3012 −0.504898
\(502\) 0 0
\(503\) −7.62718 −0.340079 −0.170039 0.985437i \(-0.554390\pi\)
−0.170039 + 0.985437i \(0.554390\pi\)
\(504\) 0 0
\(505\) 38.9862 1.73487
\(506\) 0 0
\(507\) −3.80680 −0.169066
\(508\) 0 0
\(509\) 15.7129 0.696462 0.348231 0.937409i \(-0.386782\pi\)
0.348231 + 0.937409i \(0.386782\pi\)
\(510\) 0 0
\(511\) 2.32553 0.102875
\(512\) 0 0
\(513\) −30.0256 −1.32566
\(514\) 0 0
\(515\) −19.2059 −0.846312
\(516\) 0 0
\(517\) 31.9442 1.40490
\(518\) 0 0
\(519\) 16.3708 0.718600
\(520\) 0 0
\(521\) 30.5865 1.34002 0.670008 0.742353i \(-0.266290\pi\)
0.670008 + 0.742353i \(0.266290\pi\)
\(522\) 0 0
\(523\) −41.3364 −1.80752 −0.903758 0.428044i \(-0.859203\pi\)
−0.903758 + 0.428044i \(0.859203\pi\)
\(524\) 0 0
\(525\) −0.313752 −0.0136932
\(526\) 0 0
\(527\) −2.37425 −0.103424
\(528\) 0 0
\(529\) −6.37250 −0.277065
\(530\) 0 0
\(531\) 24.2147 1.05083
\(532\) 0 0
\(533\) 31.6373 1.37036
\(534\) 0 0
\(535\) 28.1714 1.21796
\(536\) 0 0
\(537\) 24.5288 1.05850
\(538\) 0 0
\(539\) 2.52015 0.108550
\(540\) 0 0
\(541\) −20.0312 −0.861210 −0.430605 0.902540i \(-0.641700\pi\)
−0.430605 + 0.902540i \(0.641700\pi\)
\(542\) 0 0
\(543\) −15.7580 −0.676241
\(544\) 0 0
\(545\) 24.7543 1.06036
\(546\) 0 0
\(547\) 27.7371 1.18595 0.592975 0.805221i \(-0.297953\pi\)
0.592975 + 0.805221i \(0.297953\pi\)
\(548\) 0 0
\(549\) −21.7224 −0.927088
\(550\) 0 0
\(551\) 24.4688 1.04241
\(552\) 0 0
\(553\) −1.83099 −0.0778618
\(554\) 0 0
\(555\) −16.9970 −0.721482
\(556\) 0 0
\(557\) −13.9444 −0.590843 −0.295421 0.955367i \(-0.595460\pi\)
−0.295421 + 0.955367i \(0.595460\pi\)
\(558\) 0 0
\(559\) 36.9862 1.56435
\(560\) 0 0
\(561\) −2.96261 −0.125082
\(562\) 0 0
\(563\) 7.89034 0.332538 0.166269 0.986080i \(-0.446828\pi\)
0.166269 + 0.986080i \(0.446828\pi\)
\(564\) 0 0
\(565\) 35.8528 1.50834
\(566\) 0 0
\(567\) 1.52786 0.0641643
\(568\) 0 0
\(569\) 0.961968 0.0403278 0.0201639 0.999797i \(-0.493581\pi\)
0.0201639 + 0.999797i \(0.493581\pi\)
\(570\) 0 0
\(571\) −15.5389 −0.650282 −0.325141 0.945666i \(-0.605412\pi\)
−0.325141 + 0.945666i \(0.605412\pi\)
\(572\) 0 0
\(573\) −6.66227 −0.278320
\(574\) 0 0
\(575\) −1.08831 −0.0453855
\(576\) 0 0
\(577\) 32.5245 1.35401 0.677006 0.735978i \(-0.263277\pi\)
0.677006 + 0.735978i \(0.263277\pi\)
\(578\) 0 0
\(579\) −9.99448 −0.415356
\(580\) 0 0
\(581\) −15.0912 −0.626089
\(582\) 0 0
\(583\) −9.95489 −0.412290
\(584\) 0 0
\(585\) 14.1850 0.586479
\(586\) 0 0
\(587\) −39.9568 −1.64919 −0.824596 0.565722i \(-0.808598\pi\)
−0.824596 + 0.565722i \(0.808598\pi\)
\(588\) 0 0
\(589\) 13.1314 0.541071
\(590\) 0 0
\(591\) 29.7670 1.22445
\(592\) 0 0
\(593\) 20.7726 0.853030 0.426515 0.904480i \(-0.359741\pi\)
0.426515 + 0.904480i \(0.359741\pi\)
\(594\) 0 0
\(595\) 2.17557 0.0891897
\(596\) 0 0
\(597\) −11.0710 −0.453106
\(598\) 0 0
\(599\) −3.41839 −0.139671 −0.0698357 0.997559i \(-0.522248\pi\)
−0.0698357 + 0.997559i \(0.522248\pi\)
\(600\) 0 0
\(601\) 29.0130 1.18347 0.591733 0.806134i \(-0.298444\pi\)
0.591733 + 0.806134i \(0.298444\pi\)
\(602\) 0 0
\(603\) 4.83390 0.196852
\(604\) 0 0
\(605\) 10.1139 0.411189
\(606\) 0 0
\(607\) −30.1536 −1.22390 −0.611949 0.790897i \(-0.709614\pi\)
−0.611949 + 0.790897i \(0.709614\pi\)
\(608\) 0 0
\(609\) −5.20087 −0.210750
\(610\) 0 0
\(611\) 51.0782 2.06640
\(612\) 0 0
\(613\) 3.95385 0.159695 0.0798473 0.996807i \(-0.474557\pi\)
0.0798473 + 0.996807i \(0.474557\pi\)
\(614\) 0 0
\(615\) 20.0794 0.809681
\(616\) 0 0
\(617\) −15.0610 −0.606334 −0.303167 0.952937i \(-0.598044\pi\)
−0.303167 + 0.952937i \(0.598044\pi\)
\(618\) 0 0
\(619\) 31.4922 1.26578 0.632890 0.774242i \(-0.281868\pi\)
0.632890 + 0.774242i \(0.281868\pi\)
\(620\) 0 0
\(621\) 22.1370 0.888328
\(622\) 0 0
\(623\) −0.541390 −0.0216903
\(624\) 0 0
\(625\) −23.5943 −0.943772
\(626\) 0 0
\(627\) 16.3855 0.654374
\(628\) 0 0
\(629\) −6.64584 −0.264987
\(630\) 0 0
\(631\) −26.8663 −1.06953 −0.534765 0.845001i \(-0.679600\pi\)
−0.534765 + 0.845001i \(0.679600\pi\)
\(632\) 0 0
\(633\) 7.33351 0.291481
\(634\) 0 0
\(635\) −11.3595 −0.450788
\(636\) 0 0
\(637\) 4.02967 0.159661
\(638\) 0 0
\(639\) −12.7188 −0.503149
\(640\) 0 0
\(641\) 24.0224 0.948826 0.474413 0.880302i \(-0.342660\pi\)
0.474413 + 0.880302i \(0.342660\pi\)
\(642\) 0 0
\(643\) −30.8396 −1.21620 −0.608098 0.793862i \(-0.708067\pi\)
−0.608098 + 0.793862i \(0.708067\pi\)
\(644\) 0 0
\(645\) 23.4743 0.924299
\(646\) 0 0
\(647\) −5.14996 −0.202466 −0.101233 0.994863i \(-0.532279\pi\)
−0.101233 + 0.994863i \(0.532279\pi\)
\(648\) 0 0
\(649\) −37.7153 −1.48045
\(650\) 0 0
\(651\) −2.79110 −0.109392
\(652\) 0 0
\(653\) −29.1906 −1.14232 −0.571159 0.820839i \(-0.693506\pi\)
−0.571159 + 0.820839i \(0.693506\pi\)
\(654\) 0 0
\(655\) 14.6356 0.571861
\(656\) 0 0
\(657\) 3.76278 0.146800
\(658\) 0 0
\(659\) 9.65041 0.375927 0.187963 0.982176i \(-0.439811\pi\)
0.187963 + 0.982176i \(0.439811\pi\)
\(660\) 0 0
\(661\) 26.8629 1.04484 0.522422 0.852687i \(-0.325029\pi\)
0.522422 + 0.852687i \(0.325029\pi\)
\(662\) 0 0
\(663\) −4.73716 −0.183976
\(664\) 0 0
\(665\) −12.0326 −0.466603
\(666\) 0 0
\(667\) −18.0402 −0.698519
\(668\) 0 0
\(669\) −3.81035 −0.147317
\(670\) 0 0
\(671\) 33.8334 1.30612
\(672\) 0 0
\(673\) −34.6136 −1.33426 −0.667129 0.744942i \(-0.732477\pi\)
−0.667129 + 0.744942i \(0.732477\pi\)
\(674\) 0 0
\(675\) −1.44892 −0.0557688
\(676\) 0 0
\(677\) −26.8266 −1.03103 −0.515516 0.856880i \(-0.672400\pi\)
−0.515516 + 0.856880i \(0.672400\pi\)
\(678\) 0 0
\(679\) 12.2218 0.469029
\(680\) 0 0
\(681\) 22.7507 0.871808
\(682\) 0 0
\(683\) 25.0616 0.958956 0.479478 0.877554i \(-0.340826\pi\)
0.479478 + 0.877554i \(0.340826\pi\)
\(684\) 0 0
\(685\) 35.2971 1.34863
\(686\) 0 0
\(687\) 28.3622 1.08208
\(688\) 0 0
\(689\) −15.9177 −0.606416
\(690\) 0 0
\(691\) −14.8332 −0.564281 −0.282140 0.959373i \(-0.591044\pi\)
−0.282140 + 0.959373i \(0.591044\pi\)
\(692\) 0 0
\(693\) 4.07768 0.154898
\(694\) 0 0
\(695\) 33.5816 1.27382
\(696\) 0 0
\(697\) 7.85108 0.297381
\(698\) 0 0
\(699\) −4.70570 −0.177986
\(700\) 0 0
\(701\) −30.8526 −1.16529 −0.582644 0.812728i \(-0.697982\pi\)
−0.582644 + 0.812728i \(0.697982\pi\)
\(702\) 0 0
\(703\) 36.7566 1.38630
\(704\) 0 0
\(705\) 32.4181 1.22094
\(706\) 0 0
\(707\) 17.9200 0.673951
\(708\) 0 0
\(709\) 26.7378 1.00416 0.502079 0.864822i \(-0.332569\pi\)
0.502079 + 0.864822i \(0.332569\pi\)
\(710\) 0 0
\(711\) −2.96261 −0.111107
\(712\) 0 0
\(713\) −9.68144 −0.362573
\(714\) 0 0
\(715\) −22.0937 −0.826258
\(716\) 0 0
\(717\) −27.1057 −1.01228
\(718\) 0 0
\(719\) 34.0545 1.27002 0.635009 0.772505i \(-0.280997\pi\)
0.635009 + 0.772505i \(0.280997\pi\)
\(720\) 0 0
\(721\) −8.82798 −0.328771
\(722\) 0 0
\(723\) −31.7415 −1.18048
\(724\) 0 0
\(725\) 1.18077 0.0438526
\(726\) 0 0
\(727\) −3.66296 −0.135852 −0.0679258 0.997690i \(-0.521638\pi\)
−0.0679258 + 0.997690i \(0.521638\pi\)
\(728\) 0 0
\(729\) 21.6180 0.800668
\(730\) 0 0
\(731\) 9.17848 0.339478
\(732\) 0 0
\(733\) 10.2365 0.378092 0.189046 0.981968i \(-0.439460\pi\)
0.189046 + 0.981968i \(0.439460\pi\)
\(734\) 0 0
\(735\) 2.55754 0.0943362
\(736\) 0 0
\(737\) −7.52897 −0.277333
\(738\) 0 0
\(739\) −40.2175 −1.47942 −0.739712 0.672924i \(-0.765038\pi\)
−0.739712 + 0.672924i \(0.765038\pi\)
\(740\) 0 0
\(741\) 26.2002 0.962487
\(742\) 0 0
\(743\) 6.00709 0.220379 0.110189 0.993911i \(-0.464854\pi\)
0.110189 + 0.993911i \(0.464854\pi\)
\(744\) 0 0
\(745\) 35.7978 1.31153
\(746\) 0 0
\(747\) −24.4181 −0.893411
\(748\) 0 0
\(749\) 12.9490 0.473145
\(750\) 0 0
\(751\) 13.5938 0.496046 0.248023 0.968754i \(-0.420219\pi\)
0.248023 + 0.968754i \(0.420219\pi\)
\(752\) 0 0
\(753\) 3.26805 0.119094
\(754\) 0 0
\(755\) 26.9911 0.982305
\(756\) 0 0
\(757\) −24.7793 −0.900620 −0.450310 0.892872i \(-0.648686\pi\)
−0.450310 + 0.892872i \(0.648686\pi\)
\(758\) 0 0
\(759\) −12.0806 −0.438498
\(760\) 0 0
\(761\) 16.9499 0.614435 0.307217 0.951639i \(-0.400602\pi\)
0.307217 + 0.951639i \(0.400602\pi\)
\(762\) 0 0
\(763\) 11.3783 0.411922
\(764\) 0 0
\(765\) 3.52015 0.127271
\(766\) 0 0
\(767\) −60.3061 −2.17753
\(768\) 0 0
\(769\) −15.1183 −0.545180 −0.272590 0.962130i \(-0.587880\pi\)
−0.272590 + 0.962130i \(0.587880\pi\)
\(770\) 0 0
\(771\) 14.9540 0.538555
\(772\) 0 0
\(773\) 6.71800 0.241630 0.120815 0.992675i \(-0.461449\pi\)
0.120815 + 0.992675i \(0.461449\pi\)
\(774\) 0 0
\(775\) 0.633670 0.0227621
\(776\) 0 0
\(777\) −7.81266 −0.280277
\(778\) 0 0
\(779\) −43.4225 −1.55577
\(780\) 0 0
\(781\) 19.8100 0.708859
\(782\) 0 0
\(783\) −24.0178 −0.858326
\(784\) 0 0
\(785\) 35.0603 1.25136
\(786\) 0 0
\(787\) 45.8812 1.63549 0.817745 0.575581i \(-0.195224\pi\)
0.817745 + 0.575581i \(0.195224\pi\)
\(788\) 0 0
\(789\) 5.78737 0.206036
\(790\) 0 0
\(791\) 16.4797 0.585952
\(792\) 0 0
\(793\) 54.0990 1.92111
\(794\) 0 0
\(795\) −10.1026 −0.358302
\(796\) 0 0
\(797\) −13.0889 −0.463633 −0.231816 0.972760i \(-0.574467\pi\)
−0.231816 + 0.972760i \(0.574467\pi\)
\(798\) 0 0
\(799\) 12.6755 0.448427
\(800\) 0 0
\(801\) −0.875988 −0.0309515
\(802\) 0 0
\(803\) −5.86067 −0.206818
\(804\) 0 0
\(805\) 8.87129 0.312672
\(806\) 0 0
\(807\) −24.6687 −0.868380
\(808\) 0 0
\(809\) −42.4362 −1.49198 −0.745989 0.665959i \(-0.768023\pi\)
−0.745989 + 0.665959i \(0.768023\pi\)
\(810\) 0 0
\(811\) 27.2657 0.957428 0.478714 0.877971i \(-0.341103\pi\)
0.478714 + 0.877971i \(0.341103\pi\)
\(812\) 0 0
\(813\) 0.0957070 0.00335659
\(814\) 0 0
\(815\) −8.54982 −0.299487
\(816\) 0 0
\(817\) −50.7640 −1.77601
\(818\) 0 0
\(819\) 6.52015 0.227832
\(820\) 0 0
\(821\) −17.4287 −0.608266 −0.304133 0.952630i \(-0.598367\pi\)
−0.304133 + 0.952630i \(0.598367\pi\)
\(822\) 0 0
\(823\) 35.4081 1.23425 0.617124 0.786866i \(-0.288298\pi\)
0.617124 + 0.786866i \(0.288298\pi\)
\(824\) 0 0
\(825\) 0.790700 0.0275286
\(826\) 0 0
\(827\) 11.3274 0.393892 0.196946 0.980414i \(-0.436898\pi\)
0.196946 + 0.980414i \(0.436898\pi\)
\(828\) 0 0
\(829\) 34.4437 1.19628 0.598139 0.801392i \(-0.295907\pi\)
0.598139 + 0.801392i \(0.295907\pi\)
\(830\) 0 0
\(831\) −38.7971 −1.34586
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −20.9145 −0.723776
\(836\) 0 0
\(837\) −12.8894 −0.445522
\(838\) 0 0
\(839\) −5.61657 −0.193905 −0.0969527 0.995289i \(-0.530910\pi\)
−0.0969527 + 0.995289i \(0.530910\pi\)
\(840\) 0 0
\(841\) −9.42712 −0.325073
\(842\) 0 0
\(843\) 36.3210 1.25096
\(844\) 0 0
\(845\) −7.04506 −0.242358
\(846\) 0 0
\(847\) 4.64886 0.159737
\(848\) 0 0
\(849\) −12.4956 −0.428847
\(850\) 0 0
\(851\) −27.0996 −0.928964
\(852\) 0 0
\(853\) −13.7807 −0.471841 −0.235921 0.971772i \(-0.575811\pi\)
−0.235921 + 0.971772i \(0.575811\pi\)
\(854\) 0 0
\(855\) −19.4691 −0.665830
\(856\) 0 0
\(857\) −15.2314 −0.520296 −0.260148 0.965569i \(-0.583771\pi\)
−0.260148 + 0.965569i \(0.583771\pi\)
\(858\) 0 0
\(859\) −26.3088 −0.897645 −0.448822 0.893621i \(-0.648156\pi\)
−0.448822 + 0.893621i \(0.648156\pi\)
\(860\) 0 0
\(861\) 9.22950 0.314541
\(862\) 0 0
\(863\) −18.2580 −0.621508 −0.310754 0.950490i \(-0.600582\pi\)
−0.310754 + 0.950490i \(0.600582\pi\)
\(864\) 0 0
\(865\) 30.2967 1.03012
\(866\) 0 0
\(867\) −1.17557 −0.0399245
\(868\) 0 0
\(869\) 4.61437 0.156532
\(870\) 0 0
\(871\) −12.0387 −0.407916
\(872\) 0 0
\(873\) 19.7753 0.669291
\(874\) 0 0
\(875\) −11.4585 −0.387368
\(876\) 0 0
\(877\) 48.2333 1.62872 0.814362 0.580357i \(-0.197087\pi\)
0.814362 + 0.580357i \(0.197087\pi\)
\(878\) 0 0
\(879\) 6.80443 0.229508
\(880\) 0 0
\(881\) 23.6432 0.796560 0.398280 0.917264i \(-0.369607\pi\)
0.398280 + 0.917264i \(0.369607\pi\)
\(882\) 0 0
\(883\) 16.3388 0.549843 0.274922 0.961467i \(-0.411348\pi\)
0.274922 + 0.961467i \(0.411348\pi\)
\(884\) 0 0
\(885\) −38.2749 −1.28660
\(886\) 0 0
\(887\) −51.2333 −1.72025 −0.860123 0.510086i \(-0.829614\pi\)
−0.860123 + 0.510086i \(0.829614\pi\)
\(888\) 0 0
\(889\) −5.22139 −0.175120
\(890\) 0 0
\(891\) −3.85044 −0.128995
\(892\) 0 0
\(893\) −70.1053 −2.34599
\(894\) 0 0
\(895\) 45.3942 1.51736
\(896\) 0 0
\(897\) −19.3167 −0.644964
\(898\) 0 0
\(899\) 10.5040 0.350327
\(900\) 0 0
\(901\) −3.95012 −0.131598
\(902\) 0 0
\(903\) 10.7899 0.359067
\(904\) 0 0
\(905\) −29.1626 −0.969397
\(906\) 0 0
\(907\) −24.1841 −0.803019 −0.401509 0.915855i \(-0.631514\pi\)
−0.401509 + 0.915855i \(0.631514\pi\)
\(908\) 0 0
\(909\) 28.9952 0.961710
\(910\) 0 0
\(911\) 26.2366 0.869256 0.434628 0.900610i \(-0.356880\pi\)
0.434628 + 0.900610i \(0.356880\pi\)
\(912\) 0 0
\(913\) 38.0321 1.25868
\(914\) 0 0
\(915\) 34.3353 1.13509
\(916\) 0 0
\(917\) 6.72725 0.222154
\(918\) 0 0
\(919\) 50.3065 1.65946 0.829728 0.558167i \(-0.188495\pi\)
0.829728 + 0.558167i \(0.188495\pi\)
\(920\) 0 0
\(921\) −23.9686 −0.789793
\(922\) 0 0
\(923\) 31.6759 1.04263
\(924\) 0 0
\(925\) 1.77373 0.0583198
\(926\) 0 0
\(927\) −14.2840 −0.469147
\(928\) 0 0
\(929\) −27.6357 −0.906700 −0.453350 0.891333i \(-0.649771\pi\)
−0.453350 + 0.891333i \(0.649771\pi\)
\(930\) 0 0
\(931\) −5.53077 −0.181264
\(932\) 0 0
\(933\) 17.2787 0.565678
\(934\) 0 0
\(935\) −5.48276 −0.179305
\(936\) 0 0
\(937\) −43.3450 −1.41602 −0.708010 0.706203i \(-0.750407\pi\)
−0.708010 + 0.706203i \(0.750407\pi\)
\(938\) 0 0
\(939\) 28.2942 0.923347
\(940\) 0 0
\(941\) 37.6971 1.22889 0.614446 0.788959i \(-0.289380\pi\)
0.614446 + 0.788959i \(0.289380\pi\)
\(942\) 0 0
\(943\) 32.0142 1.04253
\(944\) 0 0
\(945\) 11.8108 0.384205
\(946\) 0 0
\(947\) 39.4813 1.28297 0.641485 0.767136i \(-0.278319\pi\)
0.641485 + 0.767136i \(0.278319\pi\)
\(948\) 0 0
\(949\) −9.37111 −0.304199
\(950\) 0 0
\(951\) −27.5127 −0.892162
\(952\) 0 0
\(953\) −2.13405 −0.0691288 −0.0345644 0.999402i \(-0.511004\pi\)
−0.0345644 + 0.999402i \(0.511004\pi\)
\(954\) 0 0
\(955\) −12.3295 −0.398975
\(956\) 0 0
\(957\) 13.1070 0.423688
\(958\) 0 0
\(959\) 16.2243 0.523910
\(960\) 0 0
\(961\) −25.3629 −0.818159
\(962\) 0 0
\(963\) 20.9519 0.675165
\(964\) 0 0
\(965\) −18.4963 −0.595416
\(966\) 0 0
\(967\) −2.45495 −0.0789459 −0.0394729 0.999221i \(-0.512568\pi\)
−0.0394729 + 0.999221i \(0.512568\pi\)
\(968\) 0 0
\(969\) 6.50181 0.208868
\(970\) 0 0
\(971\) −37.5190 −1.20404 −0.602021 0.798480i \(-0.705638\pi\)
−0.602021 + 0.798480i \(0.705638\pi\)
\(972\) 0 0
\(973\) 15.4358 0.494849
\(974\) 0 0
\(975\) 1.26432 0.0404905
\(976\) 0 0
\(977\) 17.0841 0.546570 0.273285 0.961933i \(-0.411890\pi\)
0.273285 + 0.961933i \(0.411890\pi\)
\(978\) 0 0
\(979\) 1.36438 0.0436059
\(980\) 0 0
\(981\) 18.4105 0.587802
\(982\) 0 0
\(983\) −20.0052 −0.638068 −0.319034 0.947743i \(-0.603358\pi\)
−0.319034 + 0.947743i \(0.603358\pi\)
\(984\) 0 0
\(985\) 55.0884 1.75526
\(986\) 0 0
\(987\) 14.9010 0.474303
\(988\) 0 0
\(989\) 37.4269 1.19011
\(990\) 0 0
\(991\) 12.8254 0.407411 0.203705 0.979032i \(-0.434702\pi\)
0.203705 + 0.979032i \(0.434702\pi\)
\(992\) 0 0
\(993\) −12.6208 −0.400509
\(994\) 0 0
\(995\) −20.4886 −0.649531
\(996\) 0 0
\(997\) −35.0182 −1.10904 −0.554518 0.832171i \(-0.687098\pi\)
−0.554518 + 0.832171i \(0.687098\pi\)
\(998\) 0 0
\(999\) −36.0791 −1.14149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.c.1.2 4
4.3 odd 2 3808.2.a.d.1.3 yes 4
8.3 odd 2 7616.2.a.bm.1.2 4
8.5 even 2 7616.2.a.bl.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.c.1.2 4 1.1 even 1 trivial
3808.2.a.d.1.3 yes 4 4.3 odd 2
7616.2.a.bl.1.3 4 8.5 even 2
7616.2.a.bm.1.2 4 8.3 odd 2