Properties

Label 378.3.s.b
Level $378$
Weight $3$
Character orbit 378.s
Analytic conductor $10.300$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(53,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 2 \beta_{2} q^{4} + 3 \beta_1 q^{5} + ( - 5 \beta_{2} + 8) q^{7} + 2 \beta_{3} q^{8} + 6 \beta_{2} q^{10} + 8 q^{13} + ( - 5 \beta_{3} + 8 \beta_1) q^{14} + (4 \beta_{2} - 4) q^{16}+ \cdots + ( - 55 \beta_{3} + 39 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 22 q^{7} + 12 q^{10} + 32 q^{13} - 8 q^{16} - 10 q^{19} - 14 q^{25} + 52 q^{28} - 58 q^{31} + 24 q^{34} - 16 q^{37} - 24 q^{40} - 52 q^{43} + 60 q^{46} + 46 q^{49} + 32 q^{52} - 84 q^{58}+ \cdots - 412 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(-1\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i 0 1.00000 1.73205i −3.67423 + 2.12132i 0 5.50000 + 4.33013i 2.82843i 0 3.00000 5.19615i
53.2 1.22474 0.707107i 0 1.00000 1.73205i 3.67423 2.12132i 0 5.50000 + 4.33013i 2.82843i 0 3.00000 5.19615i
107.1 −1.22474 0.707107i 0 1.00000 + 1.73205i −3.67423 2.12132i 0 5.50000 4.33013i 2.82843i 0 3.00000 + 5.19615i
107.2 1.22474 + 0.707107i 0 1.00000 + 1.73205i 3.67423 + 2.12132i 0 5.50000 4.33013i 2.82843i 0 3.00000 + 5.19615i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 378.3.s.b 4
3.b odd 2 1 inner 378.3.s.b 4
7.c even 3 1 inner 378.3.s.b 4
21.h odd 6 1 inner 378.3.s.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.3.s.b 4 1.a even 1 1 trivial
378.3.s.b 4 3.b odd 2 1 inner
378.3.s.b 4 7.c even 3 1 inner
378.3.s.b 4 21.h odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 18T_{5}^{2} + 324 \) acting on \(S_{3}^{\mathrm{new}}(378, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 18T^{2} + 324 \) Copy content Toggle raw display
$7$ \( (T^{2} - 11 T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T - 8)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 18T^{2} + 324 \) Copy content Toggle raw display
$19$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 450 T^{2} + 202500 \) Copy content Toggle raw display
$29$ \( (T^{2} + 882)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 29 T + 841)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 5202)^{2} \) Copy content Toggle raw display
$43$ \( (T + 13)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 450 T^{2} + 202500 \) Copy content Toggle raw display
$53$ \( T^{4} - 4050 T^{2} + 16402500 \) Copy content Toggle raw display
$59$ \( T^{4} - 1152 T^{2} + 1327104 \) Copy content Toggle raw display
$61$ \( (T^{2} + 41 T + 1681)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 128 T + 16384)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 18432)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 65 T + 4225)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 14 T + 196)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 4608)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 11250 T^{2} + 126562500 \) Copy content Toggle raw display
$97$ \( (T + 103)^{4} \) Copy content Toggle raw display
show more
show less