Properties

Label 378.3.r.a.233.10
Level $378$
Weight $3$
Character 378.233
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(233,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.233"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 233.10
Character \(\chi\) \(=\) 378.233
Dual form 378.3.r.a.305.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +(-5.46142 + 3.15315i) q^{5} +(-3.23416 - 6.20807i) q^{7} -2.82843i q^{8} +(-4.45923 - 7.72361i) q^{10} +(4.22055 + 2.43674i) q^{11} +(-1.62436 + 2.81348i) q^{13} +(8.77954 - 4.57380i) q^{14} +4.00000 q^{16} +(17.6988 - 10.2184i) q^{17} +(14.7381 - 25.5272i) q^{19} +(10.9228 - 6.30630i) q^{20} +(-3.44607 + 5.96876i) q^{22} +(5.47592 - 3.16152i) q^{23} +(7.38470 - 12.7907i) q^{25} +(-3.97886 - 2.29720i) q^{26} +(6.46833 + 12.4161i) q^{28} +(-23.6013 + 13.6262i) q^{29} +46.9819 q^{31} +5.65685i q^{32} +(14.4510 + 25.0299i) q^{34} +(37.2381 + 23.7071i) q^{35} +(25.7193 - 44.5471i) q^{37} +(36.1009 + 20.8429i) q^{38} +(8.91845 + 15.4472i) q^{40} +(-29.7417 - 17.1714i) q^{41} +(-34.9190 - 60.4815i) q^{43} +(-8.44110 - 4.87347i) q^{44} +(4.47107 + 7.74412i) q^{46} +12.1442i q^{47} +(-28.0804 + 40.1559i) q^{49} +(18.0888 + 10.4435i) q^{50} +(3.24873 - 5.62696i) q^{52} +(-2.78077 + 1.60548i) q^{53} -30.7336 q^{55} +(-17.5591 + 9.14759i) q^{56} +(-19.2704 - 33.3773i) q^{58} -105.505i q^{59} +67.7403 q^{61} +66.4424i q^{62} -8.00000 q^{64} -20.4875i q^{65} +26.7086 q^{67} +(-35.3976 + 20.4368i) q^{68} +(-33.5269 + 52.6626i) q^{70} +59.5162i q^{71} +(17.7882 + 30.8100i) q^{73} +(62.9991 + 36.3725i) q^{74} +(-29.4763 + 51.0544i) q^{76} +(1.47749 - 34.0823i) q^{77} -72.2749 q^{79} +(-21.8457 + 12.6126i) q^{80} +(24.2840 - 42.0611i) q^{82} +(110.071 - 63.5495i) q^{83} +(-64.4403 + 111.614i) q^{85} +(85.5338 - 49.3830i) q^{86} +(6.89213 - 11.9375i) q^{88} +(-35.7487 - 20.6395i) q^{89} +(22.7198 + 0.984917i) q^{91} +(-10.9518 + 6.32305i) q^{92} -17.1745 q^{94} +185.886i q^{95} +(-73.4338 - 127.191i) q^{97} +(-56.7889 - 39.7117i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 2 q^{7} + 36 q^{11} + 10 q^{13} - 36 q^{14} + 128 q^{16} + 54 q^{17} + 28 q^{19} + 126 q^{23} + 80 q^{25} + 72 q^{26} - 4 q^{28} - 36 q^{29} + 16 q^{31} + 90 q^{35} + 22 q^{37} - 72 q^{41}+ \cdots - 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) −5.46142 + 3.15315i −1.09228 + 0.630630i −0.934183 0.356793i \(-0.883870\pi\)
−0.158100 + 0.987423i \(0.550537\pi\)
\(6\) 0 0
\(7\) −3.23416 6.20807i −0.462023 0.886868i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −4.45923 7.72361i −0.445923 0.772361i
\(11\) 4.22055 + 2.43674i 0.383687 + 0.221522i 0.679421 0.733749i \(-0.262231\pi\)
−0.295734 + 0.955270i \(0.595564\pi\)
\(12\) 0 0
\(13\) −1.62436 + 2.81348i −0.124951 + 0.216422i −0.921714 0.387871i \(-0.873211\pi\)
0.796763 + 0.604292i \(0.206544\pi\)
\(14\) 8.77954 4.57380i 0.627110 0.326700i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 17.6988 10.2184i 1.04111 0.601083i 0.120959 0.992657i \(-0.461403\pi\)
0.920146 + 0.391575i \(0.128070\pi\)
\(18\) 0 0
\(19\) 14.7381 25.5272i 0.775691 1.34354i −0.158714 0.987325i \(-0.550735\pi\)
0.934405 0.356212i \(-0.115932\pi\)
\(20\) 10.9228 6.30630i 0.546142 0.315315i
\(21\) 0 0
\(22\) −3.44607 + 5.96876i −0.156639 + 0.271307i
\(23\) 5.47592 3.16152i 0.238084 0.137458i −0.376212 0.926534i \(-0.622774\pi\)
0.614296 + 0.789076i \(0.289440\pi\)
\(24\) 0 0
\(25\) 7.38470 12.7907i 0.295388 0.511627i
\(26\) −3.97886 2.29720i −0.153033 0.0883538i
\(27\) 0 0
\(28\) 6.46833 + 12.4161i 0.231012 + 0.443434i
\(29\) −23.6013 + 13.6262i −0.813838 + 0.469870i −0.848287 0.529537i \(-0.822366\pi\)
0.0344489 + 0.999406i \(0.489032\pi\)
\(30\) 0 0
\(31\) 46.9819 1.51554 0.757772 0.652519i \(-0.226288\pi\)
0.757772 + 0.652519i \(0.226288\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 14.4510 + 25.0299i 0.425030 + 0.736173i
\(35\) 37.2381 + 23.7071i 1.06395 + 0.677345i
\(36\) 0 0
\(37\) 25.7193 44.5471i 0.695115 1.20398i −0.275026 0.961437i \(-0.588687\pi\)
0.970142 0.242539i \(-0.0779801\pi\)
\(38\) 36.1009 + 20.8429i 0.950024 + 0.548497i
\(39\) 0 0
\(40\) 8.91845 + 15.4472i 0.222961 + 0.386180i
\(41\) −29.7417 17.1714i −0.725408 0.418814i 0.0913320 0.995821i \(-0.470888\pi\)
−0.816740 + 0.577006i \(0.804221\pi\)
\(42\) 0 0
\(43\) −34.9190 60.4815i −0.812070 1.40655i −0.911413 0.411494i \(-0.865007\pi\)
0.0993422 0.995053i \(-0.468326\pi\)
\(44\) −8.44110 4.87347i −0.191843 0.110761i
\(45\) 0 0
\(46\) 4.47107 + 7.74412i 0.0971972 + 0.168350i
\(47\) 12.1442i 0.258387i 0.991619 + 0.129194i \(0.0412388\pi\)
−0.991619 + 0.129194i \(0.958761\pi\)
\(48\) 0 0
\(49\) −28.0804 + 40.1559i −0.573069 + 0.819507i
\(50\) 18.0888 + 10.4435i 0.361775 + 0.208871i
\(51\) 0 0
\(52\) 3.24873 5.62696i 0.0624756 0.108211i
\(53\) −2.78077 + 1.60548i −0.0524674 + 0.0302921i −0.526004 0.850482i \(-0.676310\pi\)
0.473537 + 0.880774i \(0.342977\pi\)
\(54\) 0 0
\(55\) −30.7336 −0.558792
\(56\) −17.5591 + 9.14759i −0.313555 + 0.163350i
\(57\) 0 0
\(58\) −19.2704 33.3773i −0.332248 0.575470i
\(59\) 105.505i 1.78821i −0.447854 0.894107i \(-0.647811\pi\)
0.447854 0.894107i \(-0.352189\pi\)
\(60\) 0 0
\(61\) 67.7403 1.11050 0.555248 0.831685i \(-0.312623\pi\)
0.555248 + 0.831685i \(0.312623\pi\)
\(62\) 66.4424i 1.07165i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 20.4875i 0.315192i
\(66\) 0 0
\(67\) 26.7086 0.398636 0.199318 0.979935i \(-0.436127\pi\)
0.199318 + 0.979935i \(0.436127\pi\)
\(68\) −35.3976 + 20.4368i −0.520553 + 0.300541i
\(69\) 0 0
\(70\) −33.5269 + 52.6626i −0.478955 + 0.752323i
\(71\) 59.5162i 0.838257i 0.907927 + 0.419128i \(0.137664\pi\)
−0.907927 + 0.419128i \(0.862336\pi\)
\(72\) 0 0
\(73\) 17.7882 + 30.8100i 0.243674 + 0.422055i 0.961758 0.273901i \(-0.0883141\pi\)
−0.718084 + 0.695956i \(0.754981\pi\)
\(74\) 62.9991 + 36.3725i 0.851339 + 0.491521i
\(75\) 0 0
\(76\) −29.4763 + 51.0544i −0.387846 + 0.671768i
\(77\) 1.47749 34.0823i 0.0191882 0.442627i
\(78\) 0 0
\(79\) −72.2749 −0.914872 −0.457436 0.889243i \(-0.651232\pi\)
−0.457436 + 0.889243i \(0.651232\pi\)
\(80\) −21.8457 + 12.6126i −0.273071 + 0.157657i
\(81\) 0 0
\(82\) 24.2840 42.0611i 0.296147 0.512941i
\(83\) 110.071 63.5495i 1.32616 0.765656i 0.341453 0.939899i \(-0.389081\pi\)
0.984703 + 0.174242i \(0.0557476\pi\)
\(84\) 0 0
\(85\) −64.4403 + 111.614i −0.758121 + 1.31310i
\(86\) 85.5338 49.3830i 0.994579 0.574220i
\(87\) 0 0
\(88\) 6.89213 11.9375i 0.0783197 0.135654i
\(89\) −35.7487 20.6395i −0.401671 0.231905i 0.285534 0.958369i \(-0.407829\pi\)
−0.687205 + 0.726464i \(0.741162\pi\)
\(90\) 0 0
\(91\) 22.7198 + 0.984917i 0.249668 + 0.0108233i
\(92\) −10.9518 + 6.32305i −0.119042 + 0.0687288i
\(93\) 0 0
\(94\) −17.1745 −0.182707
\(95\) 185.886i 1.95670i
\(96\) 0 0
\(97\) −73.4338 127.191i −0.757050 1.31125i −0.944349 0.328945i \(-0.893307\pi\)
0.187299 0.982303i \(-0.440027\pi\)
\(98\) −56.7889 39.7117i −0.579479 0.405221i
\(99\) 0 0
\(100\) −14.7694 + 25.5814i −0.147694 + 0.255814i
\(101\) −17.0117 9.82170i −0.168433 0.0972446i 0.413414 0.910543i \(-0.364336\pi\)
−0.581847 + 0.813299i \(0.697670\pi\)
\(102\) 0 0
\(103\) 42.1011 + 72.9212i 0.408749 + 0.707973i 0.994750 0.102337i \(-0.0326320\pi\)
−0.586001 + 0.810310i \(0.699299\pi\)
\(104\) 7.95773 + 4.59440i 0.0765166 + 0.0441769i
\(105\) 0 0
\(106\) −2.27049 3.93261i −0.0214197 0.0371001i
\(107\) −86.7767 50.1006i −0.810997 0.468229i 0.0363048 0.999341i \(-0.488441\pi\)
−0.847302 + 0.531111i \(0.821775\pi\)
\(108\) 0 0
\(109\) 41.1176 + 71.2177i 0.377225 + 0.653373i 0.990657 0.136374i \(-0.0435449\pi\)
−0.613432 + 0.789747i \(0.710212\pi\)
\(110\) 43.4639i 0.395126i
\(111\) 0 0
\(112\) −12.9367 24.8323i −0.115506 0.221717i
\(113\) −83.9806 48.4862i −0.743191 0.429081i 0.0800375 0.996792i \(-0.474496\pi\)
−0.823228 + 0.567710i \(0.807829\pi\)
\(114\) 0 0
\(115\) −19.9375 + 34.5328i −0.173370 + 0.300285i
\(116\) 47.2026 27.2524i 0.406919 0.234935i
\(117\) 0 0
\(118\) 149.206 1.26446
\(119\) −120.677 76.8274i −1.01410 0.645609i
\(120\) 0 0
\(121\) −48.6246 84.2203i −0.401856 0.696036i
\(122\) 95.7992i 0.785240i
\(123\) 0 0
\(124\) −93.9638 −0.757772
\(125\) 64.5172i 0.516137i
\(126\) 0 0
\(127\) 30.6055 0.240988 0.120494 0.992714i \(-0.461552\pi\)
0.120494 + 0.992714i \(0.461552\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 28.9736 0.222874
\(131\) −194.881 + 112.515i −1.48764 + 0.858892i −0.999901 0.0140952i \(-0.995513\pi\)
−0.487744 + 0.872987i \(0.662180\pi\)
\(132\) 0 0
\(133\) −206.140 8.93632i −1.54993 0.0671904i
\(134\) 37.7717i 0.281878i
\(135\) 0 0
\(136\) −28.9020 50.0597i −0.212515 0.368086i
\(137\) −111.484 64.3655i −0.813754 0.469821i 0.0345035 0.999405i \(-0.489015\pi\)
−0.848258 + 0.529583i \(0.822348\pi\)
\(138\) 0 0
\(139\) 84.8478 146.961i 0.610416 1.05727i −0.380755 0.924676i \(-0.624336\pi\)
0.991170 0.132595i \(-0.0423309\pi\)
\(140\) −74.4762 47.4141i −0.531973 0.338672i
\(141\) 0 0
\(142\) −84.1686 −0.592737
\(143\) −13.7114 + 7.91630i −0.0958841 + 0.0553587i
\(144\) 0 0
\(145\) 85.9310 148.837i 0.592628 1.02646i
\(146\) −43.5720 + 25.1563i −0.298438 + 0.172303i
\(147\) 0 0
\(148\) −51.4385 + 89.0942i −0.347558 + 0.601988i
\(149\) 188.801 109.004i 1.26712 0.731573i 0.292679 0.956211i \(-0.405453\pi\)
0.974442 + 0.224637i \(0.0721198\pi\)
\(150\) 0 0
\(151\) −65.8810 + 114.109i −0.436298 + 0.755690i −0.997401 0.0720560i \(-0.977044\pi\)
0.561103 + 0.827746i \(0.310377\pi\)
\(152\) −72.2018 41.6857i −0.475012 0.274248i
\(153\) 0 0
\(154\) 48.1997 + 2.08949i 0.312985 + 0.0135681i
\(155\) −256.588 + 148.141i −1.65540 + 0.955748i
\(156\) 0 0
\(157\) 113.010 0.719807 0.359904 0.932990i \(-0.382810\pi\)
0.359904 + 0.932990i \(0.382810\pi\)
\(158\) 102.212i 0.646912i
\(159\) 0 0
\(160\) −17.8369 30.8944i −0.111481 0.193090i
\(161\) −37.3370 23.7700i −0.231907 0.147640i
\(162\) 0 0
\(163\) −99.9004 + 173.032i −0.612886 + 1.06155i 0.377866 + 0.925860i \(0.376658\pi\)
−0.990752 + 0.135689i \(0.956675\pi\)
\(164\) 59.4834 + 34.3428i 0.362704 + 0.209407i
\(165\) 0 0
\(166\) 89.8725 + 155.664i 0.541401 + 0.937734i
\(167\) 78.9503 + 45.5820i 0.472756 + 0.272946i 0.717393 0.696669i \(-0.245335\pi\)
−0.244637 + 0.969615i \(0.578669\pi\)
\(168\) 0 0
\(169\) 79.2229 + 137.218i 0.468774 + 0.811941i
\(170\) −157.846 91.1323i −0.928505 0.536073i
\(171\) 0 0
\(172\) 69.8381 + 120.963i 0.406035 + 0.703274i
\(173\) 215.803i 1.24742i −0.781656 0.623709i \(-0.785625\pi\)
0.781656 0.623709i \(-0.214375\pi\)
\(174\) 0 0
\(175\) −103.289 4.47764i −0.590222 0.0255865i
\(176\) 16.8822 + 9.74695i 0.0959216 + 0.0553804i
\(177\) 0 0
\(178\) 29.1887 50.5563i 0.163981 0.284024i
\(179\) 275.249 158.915i 1.53770 0.887793i 0.538729 0.842479i \(-0.318905\pi\)
0.998973 0.0453139i \(-0.0144288\pi\)
\(180\) 0 0
\(181\) 112.737 0.622859 0.311429 0.950269i \(-0.399192\pi\)
0.311429 + 0.950269i \(0.399192\pi\)
\(182\) −1.39288 + 32.1306i −0.00765320 + 0.176542i
\(183\) 0 0
\(184\) −8.94214 15.4882i −0.0485986 0.0841752i
\(185\) 324.387i 1.75344i
\(186\) 0 0
\(187\) 99.5982 0.532611
\(188\) 24.2884i 0.129194i
\(189\) 0 0
\(190\) −262.883 −1.38359
\(191\) 112.048i 0.586639i 0.956014 + 0.293320i \(0.0947600\pi\)
−0.956014 + 0.293320i \(0.905240\pi\)
\(192\) 0 0
\(193\) −99.1203 −0.513577 −0.256788 0.966468i \(-0.582664\pi\)
−0.256788 + 0.966468i \(0.582664\pi\)
\(194\) 179.875 103.851i 0.927193 0.535315i
\(195\) 0 0
\(196\) 56.1608 80.3117i 0.286534 0.409754i
\(197\) 58.3155i 0.296018i 0.988986 + 0.148009i \(0.0472864\pi\)
−0.988986 + 0.148009i \(0.952714\pi\)
\(198\) 0 0
\(199\) 2.72114 + 4.71315i 0.0136741 + 0.0236842i 0.872781 0.488111i \(-0.162314\pi\)
−0.859107 + 0.511795i \(0.828981\pi\)
\(200\) −36.1775 20.8871i −0.180888 0.104435i
\(201\) 0 0
\(202\) 13.8900 24.0582i 0.0687623 0.119100i
\(203\) 160.923 + 102.449i 0.792724 + 0.504676i
\(204\) 0 0
\(205\) 216.576 1.05647
\(206\) −103.126 + 59.5400i −0.500613 + 0.289029i
\(207\) 0 0
\(208\) −6.49746 + 11.2539i −0.0312378 + 0.0541054i
\(209\) 124.406 71.8259i 0.595245 0.343665i
\(210\) 0 0
\(211\) −142.592 + 246.976i −0.675791 + 1.17050i 0.300447 + 0.953799i \(0.402864\pi\)
−0.976237 + 0.216705i \(0.930469\pi\)
\(212\) 5.56155 3.21096i 0.0262337 0.0151460i
\(213\) 0 0
\(214\) 70.8529 122.721i 0.331088 0.573462i
\(215\) 381.415 + 220.210i 1.77402 + 1.02423i
\(216\) 0 0
\(217\) −151.947 291.667i −0.700217 1.34409i
\(218\) −100.717 + 58.1490i −0.462005 + 0.266739i
\(219\) 0 0
\(220\) 61.4672 0.279396
\(221\) 66.3936i 0.300424i
\(222\) 0 0
\(223\) 51.3114 + 88.8739i 0.230096 + 0.398538i 0.957836 0.287315i \(-0.0927627\pi\)
−0.727740 + 0.685853i \(0.759429\pi\)
\(224\) 35.1182 18.2952i 0.156778 0.0816750i
\(225\) 0 0
\(226\) 68.5698 118.766i 0.303406 0.525515i
\(227\) 296.905 + 171.418i 1.30795 + 0.755146i 0.981754 0.190155i \(-0.0608992\pi\)
0.326198 + 0.945302i \(0.394233\pi\)
\(228\) 0 0
\(229\) −57.3196 99.2805i −0.250304 0.433539i 0.713305 0.700853i \(-0.247197\pi\)
−0.963610 + 0.267314i \(0.913864\pi\)
\(230\) −48.8367 28.1959i −0.212334 0.122591i
\(231\) 0 0
\(232\) 38.5408 + 66.7546i 0.166124 + 0.287735i
\(233\) 145.507 + 84.0086i 0.624494 + 0.360552i 0.778617 0.627500i \(-0.215922\pi\)
−0.154122 + 0.988052i \(0.549255\pi\)
\(234\) 0 0
\(235\) −38.2925 66.3245i −0.162947 0.282232i
\(236\) 211.009i 0.894107i
\(237\) 0 0
\(238\) 108.650 170.664i 0.456514 0.717074i
\(239\) −73.8958 42.6638i −0.309187 0.178509i 0.337375 0.941370i \(-0.390461\pi\)
−0.646563 + 0.762861i \(0.723794\pi\)
\(240\) 0 0
\(241\) 112.846 195.455i 0.468240 0.811016i −0.531101 0.847309i \(-0.678222\pi\)
0.999341 + 0.0362927i \(0.0115549\pi\)
\(242\) 119.106 68.7656i 0.492172 0.284155i
\(243\) 0 0
\(244\) −135.481 −0.555248
\(245\) 26.7412 307.849i 0.109148 1.25653i
\(246\) 0 0
\(247\) 47.8802 + 82.9310i 0.193847 + 0.335753i
\(248\) 132.885i 0.535826i
\(249\) 0 0
\(250\) 91.2411 0.364964
\(251\) 125.182i 0.498731i −0.968409 0.249366i \(-0.919778\pi\)
0.968409 0.249366i \(-0.0802221\pi\)
\(252\) 0 0
\(253\) 30.8152 0.121799
\(254\) 43.2828i 0.170405i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −227.633 + 131.424i −0.885732 + 0.511378i −0.872544 0.488535i \(-0.837531\pi\)
−0.0131879 + 0.999913i \(0.504198\pi\)
\(258\) 0 0
\(259\) −359.732 15.5946i −1.38893 0.0602109i
\(260\) 40.9749i 0.157596i
\(261\) 0 0
\(262\) −159.120 275.604i −0.607328 1.05192i
\(263\) 301.267 + 173.936i 1.14550 + 0.661355i 0.947787 0.318904i \(-0.103315\pi\)
0.197714 + 0.980260i \(0.436648\pi\)
\(264\) 0 0
\(265\) 10.1246 17.5364i 0.0382062 0.0661751i
\(266\) 12.6379 291.526i 0.0475108 1.09596i
\(267\) 0 0
\(268\) −53.4172 −0.199318
\(269\) 22.9715 13.2626i 0.0853960 0.0493034i −0.456694 0.889624i \(-0.650967\pi\)
0.542090 + 0.840320i \(0.317633\pi\)
\(270\) 0 0
\(271\) −207.625 + 359.618i −0.766145 + 1.32700i 0.173494 + 0.984835i \(0.444494\pi\)
−0.939639 + 0.342167i \(0.888839\pi\)
\(272\) 70.7952 40.8736i 0.260276 0.150271i
\(273\) 0 0
\(274\) 91.0266 157.663i 0.332214 0.575411i
\(275\) 62.3350 35.9892i 0.226673 0.130870i
\(276\) 0 0
\(277\) 147.756 255.921i 0.533415 0.923902i −0.465823 0.884878i \(-0.654242\pi\)
0.999238 0.0390240i \(-0.0124249\pi\)
\(278\) 207.834 + 119.993i 0.747603 + 0.431629i
\(279\) 0 0
\(280\) 67.0537 105.325i 0.239478 0.376162i
\(281\) −253.233 + 146.204i −0.901185 + 0.520300i −0.877585 0.479422i \(-0.840846\pi\)
−0.0236007 + 0.999721i \(0.507513\pi\)
\(282\) 0 0
\(283\) 450.482 1.59181 0.795905 0.605422i \(-0.206996\pi\)
0.795905 + 0.605422i \(0.206996\pi\)
\(284\) 119.032i 0.419128i
\(285\) 0 0
\(286\) −11.1953 19.3909i −0.0391445 0.0678003i
\(287\) −10.4117 + 240.174i −0.0362777 + 0.836843i
\(288\) 0 0
\(289\) 64.3315 111.425i 0.222600 0.385555i
\(290\) 210.487 + 121.525i 0.725818 + 0.419051i
\(291\) 0 0
\(292\) −35.5764 61.6201i −0.121837 0.211028i
\(293\) 53.2835 + 30.7632i 0.181855 + 0.104994i 0.588164 0.808742i \(-0.299851\pi\)
−0.406309 + 0.913736i \(0.633184\pi\)
\(294\) 0 0
\(295\) 332.672 + 576.204i 1.12770 + 1.95324i
\(296\) −125.998 72.7451i −0.425670 0.245760i
\(297\) 0 0
\(298\) 154.156 + 267.005i 0.517300 + 0.895990i
\(299\) 20.5419i 0.0687019i
\(300\) 0 0
\(301\) −262.540 + 412.387i −0.872226 + 1.37006i
\(302\) −161.375 93.1698i −0.534354 0.308509i
\(303\) 0 0
\(304\) 58.9525 102.109i 0.193923 0.335884i
\(305\) −369.958 + 213.595i −1.21298 + 0.700312i
\(306\) 0 0
\(307\) 202.030 0.658079 0.329040 0.944316i \(-0.393275\pi\)
0.329040 + 0.944316i \(0.393275\pi\)
\(308\) −2.95498 + 68.1646i −0.00959409 + 0.221314i
\(309\) 0 0
\(310\) −209.503 362.870i −0.675816 1.17055i
\(311\) 246.199i 0.791635i −0.918329 0.395818i \(-0.870461\pi\)
0.918329 0.395818i \(-0.129539\pi\)
\(312\) 0 0
\(313\) 52.4657 0.167622 0.0838111 0.996482i \(-0.473291\pi\)
0.0838111 + 0.996482i \(0.473291\pi\)
\(314\) 159.820i 0.508980i
\(315\) 0 0
\(316\) 144.550 0.457436
\(317\) 439.574i 1.38667i −0.720616 0.693334i \(-0.756141\pi\)
0.720616 0.693334i \(-0.243859\pi\)
\(318\) 0 0
\(319\) −132.814 −0.416345
\(320\) 43.6913 25.2252i 0.136535 0.0788287i
\(321\) 0 0
\(322\) 33.6159 52.8025i 0.104397 0.163983i
\(323\) 602.401i 1.86502i
\(324\) 0 0
\(325\) 23.9909 + 41.5535i 0.0738182 + 0.127857i
\(326\) −244.705 141.280i −0.750629 0.433376i
\(327\) 0 0
\(328\) −48.5680 + 84.1223i −0.148073 + 0.256470i
\(329\) 75.3921 39.2763i 0.229155 0.119381i
\(330\) 0 0
\(331\) 87.1114 0.263177 0.131588 0.991304i \(-0.457992\pi\)
0.131588 + 0.991304i \(0.457992\pi\)
\(332\) −220.142 + 127.099i −0.663078 + 0.382828i
\(333\) 0 0
\(334\) −64.4626 + 111.653i −0.193002 + 0.334289i
\(335\) −145.867 + 84.2162i −0.435423 + 0.251392i
\(336\) 0 0
\(337\) 196.987 341.192i 0.584531 1.01244i −0.410402 0.911905i \(-0.634612\pi\)
0.994934 0.100533i \(-0.0320549\pi\)
\(338\) −194.056 + 112.038i −0.574129 + 0.331474i
\(339\) 0 0
\(340\) 128.881 223.228i 0.379061 0.656552i
\(341\) 198.289 + 114.482i 0.581494 + 0.335726i
\(342\) 0 0
\(343\) 340.107 + 44.4545i 0.991566 + 0.129605i
\(344\) −171.068 + 98.7659i −0.497290 + 0.287110i
\(345\) 0 0
\(346\) 305.192 0.882058
\(347\) 92.0389i 0.265242i 0.991167 + 0.132621i \(0.0423393\pi\)
−0.991167 + 0.132621i \(0.957661\pi\)
\(348\) 0 0
\(349\) 21.2427 + 36.7935i 0.0608674 + 0.105425i 0.894853 0.446360i \(-0.147280\pi\)
−0.833986 + 0.551786i \(0.813947\pi\)
\(350\) 6.33234 146.072i 0.0180924 0.417350i
\(351\) 0 0
\(352\) −13.7843 + 23.8750i −0.0391598 + 0.0678268i
\(353\) 359.759 + 207.707i 1.01915 + 0.588404i 0.913857 0.406037i \(-0.133090\pi\)
0.105290 + 0.994442i \(0.466423\pi\)
\(354\) 0 0
\(355\) −187.664 325.043i −0.528630 0.915613i
\(356\) 71.4974 + 41.2790i 0.200835 + 0.115952i
\(357\) 0 0
\(358\) 224.740 + 389.260i 0.627764 + 1.08732i
\(359\) −71.5463 41.3072i −0.199293 0.115062i 0.397033 0.917805i \(-0.370040\pi\)
−0.596326 + 0.802743i \(0.703373\pi\)
\(360\) 0 0
\(361\) −253.925 439.812i −0.703394 1.21831i
\(362\) 159.435i 0.440428i
\(363\) 0 0
\(364\) −45.4395 1.96983i −0.124834 0.00541163i
\(365\) −194.297 112.178i −0.532321 0.307336i
\(366\) 0 0
\(367\) 14.1032 24.4275i 0.0384284 0.0665599i −0.846172 0.532911i \(-0.821098\pi\)
0.884600 + 0.466351i \(0.154432\pi\)
\(368\) 21.9037 12.6461i 0.0595209 0.0343644i
\(369\) 0 0
\(370\) −458.752 −1.23987
\(371\) 18.9604 + 12.0709i 0.0511063 + 0.0325360i
\(372\) 0 0
\(373\) −349.936 606.107i −0.938166 1.62495i −0.768888 0.639383i \(-0.779190\pi\)
−0.169278 0.985568i \(-0.554144\pi\)
\(374\) 140.853i 0.376613i
\(375\) 0 0
\(376\) 34.3490 0.0913536
\(377\) 88.5358i 0.234843i
\(378\) 0 0
\(379\) −278.543 −0.734942 −0.367471 0.930035i \(-0.619776\pi\)
−0.367471 + 0.930035i \(0.619776\pi\)
\(380\) 371.772i 0.978348i
\(381\) 0 0
\(382\) −158.460 −0.414817
\(383\) 113.186 65.3482i 0.295526 0.170622i −0.344905 0.938637i \(-0.612089\pi\)
0.640431 + 0.768015i \(0.278756\pi\)
\(384\) 0 0
\(385\) 99.3974 + 190.796i 0.258175 + 0.495575i
\(386\) 140.177i 0.363154i
\(387\) 0 0
\(388\) 146.868 + 254.382i 0.378525 + 0.655624i
\(389\) −275.095 158.826i −0.707186 0.408294i 0.102833 0.994699i \(-0.467209\pi\)
−0.810018 + 0.586405i \(0.800543\pi\)
\(390\) 0 0
\(391\) 64.6115 111.910i 0.165247 0.286216i
\(392\) 113.578 + 79.4233i 0.289740 + 0.202610i
\(393\) 0 0
\(394\) −82.4705 −0.209316
\(395\) 394.723 227.893i 0.999299 0.576945i
\(396\) 0 0
\(397\) −336.916 + 583.555i −0.848654 + 1.46991i 0.0337554 + 0.999430i \(0.489253\pi\)
−0.882410 + 0.470482i \(0.844080\pi\)
\(398\) −6.66540 + 3.84827i −0.0167472 + 0.00966902i
\(399\) 0 0
\(400\) 29.5388 51.1627i 0.0738470 0.127907i
\(401\) −228.933 + 132.174i −0.570905 + 0.329612i −0.757511 0.652823i \(-0.773585\pi\)
0.186606 + 0.982435i \(0.440251\pi\)
\(402\) 0 0
\(403\) −76.3157 + 132.183i −0.189369 + 0.327997i
\(404\) 34.0234 + 19.6434i 0.0842163 + 0.0486223i
\(405\) 0 0
\(406\) −144.885 + 227.580i −0.356860 + 0.560541i
\(407\) 217.099 125.342i 0.533413 0.307966i
\(408\) 0 0
\(409\) 336.832 0.823551 0.411775 0.911285i \(-0.364909\pi\)
0.411775 + 0.911285i \(0.364909\pi\)
\(410\) 306.285i 0.747035i
\(411\) 0 0
\(412\) −84.2022 145.842i −0.204374 0.353987i
\(413\) −654.980 + 341.219i −1.58591 + 0.826196i
\(414\) 0 0
\(415\) −400.762 + 694.140i −0.965692 + 1.67263i
\(416\) −15.9155 9.18879i −0.0382583 0.0220884i
\(417\) 0 0
\(418\) 101.577 + 175.937i 0.243008 + 0.420902i
\(419\) 81.8382 + 47.2493i 0.195318 + 0.112767i 0.594470 0.804118i \(-0.297362\pi\)
−0.399152 + 0.916885i \(0.630695\pi\)
\(420\) 0 0
\(421\) −125.288 217.004i −0.297595 0.515450i 0.677990 0.735071i \(-0.262851\pi\)
−0.975585 + 0.219621i \(0.929518\pi\)
\(422\) −349.277 201.655i −0.827671 0.477856i
\(423\) 0 0
\(424\) 4.54099 + 7.86522i 0.0107099 + 0.0185500i
\(425\) 301.839i 0.710211i
\(426\) 0 0
\(427\) −219.083 420.537i −0.513075 0.984864i
\(428\) 173.553 + 100.201i 0.405499 + 0.234115i
\(429\) 0 0
\(430\) −311.424 + 539.402i −0.724241 + 1.25442i
\(431\) −393.894 + 227.415i −0.913908 + 0.527645i −0.881686 0.471836i \(-0.843591\pi\)
−0.0322213 + 0.999481i \(0.510258\pi\)
\(432\) 0 0
\(433\) 8.44112 0.0194945 0.00974725 0.999952i \(-0.496897\pi\)
0.00974725 + 0.999952i \(0.496897\pi\)
\(434\) 412.479 214.886i 0.950413 0.495128i
\(435\) 0 0
\(436\) −82.2351 142.435i −0.188613 0.326687i
\(437\) 186.380i 0.426499i
\(438\) 0 0
\(439\) −394.400 −0.898406 −0.449203 0.893430i \(-0.648292\pi\)
−0.449203 + 0.893430i \(0.648292\pi\)
\(440\) 86.9277i 0.197563i
\(441\) 0 0
\(442\) −93.8948 −0.212432
\(443\) 477.093i 1.07696i 0.842638 + 0.538480i \(0.181001\pi\)
−0.842638 + 0.538480i \(0.818999\pi\)
\(444\) 0 0
\(445\) 260.318 0.584984
\(446\) −125.687 + 72.5653i −0.281809 + 0.162702i
\(447\) 0 0
\(448\) 25.8733 + 49.6646i 0.0577529 + 0.110858i
\(449\) 346.215i 0.771081i 0.922691 + 0.385540i \(0.125985\pi\)
−0.922691 + 0.385540i \(0.874015\pi\)
\(450\) 0 0
\(451\) −83.6843 144.946i −0.185553 0.321387i
\(452\) 167.961 + 96.9724i 0.371595 + 0.214541i
\(453\) 0 0
\(454\) −242.422 + 419.887i −0.533969 + 0.924861i
\(455\) −127.188 + 66.2598i −0.279533 + 0.145626i
\(456\) 0 0
\(457\) 595.267 1.30255 0.651277 0.758840i \(-0.274234\pi\)
0.651277 + 0.758840i \(0.274234\pi\)
\(458\) 140.404 81.0622i 0.306559 0.176992i
\(459\) 0 0
\(460\) 39.8750 69.0656i 0.0866849 0.150143i
\(461\) −506.009 + 292.145i −1.09763 + 0.633719i −0.935599 0.353066i \(-0.885139\pi\)
−0.162035 + 0.986785i \(0.551806\pi\)
\(462\) 0 0
\(463\) −196.286 + 339.977i −0.423943 + 0.734291i −0.996321 0.0856990i \(-0.972688\pi\)
0.572378 + 0.819990i \(0.306021\pi\)
\(464\) −94.4052 + 54.5049i −0.203460 + 0.117467i
\(465\) 0 0
\(466\) −118.806 + 205.778i −0.254949 + 0.441584i
\(467\) −637.126 367.845i −1.36430 0.787677i −0.374104 0.927387i \(-0.622050\pi\)
−0.990192 + 0.139710i \(0.955383\pi\)
\(468\) 0 0
\(469\) −86.3800 165.809i −0.184179 0.353537i
\(470\) 93.7970 54.1537i 0.199568 0.115221i
\(471\) 0 0
\(472\) −298.412 −0.632229
\(473\) 340.354i 0.719564i
\(474\) 0 0
\(475\) −217.674 377.022i −0.458260 0.793730i
\(476\) 241.355 + 153.655i 0.507048 + 0.322804i
\(477\) 0 0
\(478\) 60.3357 104.504i 0.126225 0.218629i
\(479\) −376.726 217.503i −0.786485 0.454077i 0.0522388 0.998635i \(-0.483364\pi\)
−0.838724 + 0.544557i \(0.816698\pi\)
\(480\) 0 0
\(481\) 83.5549 + 144.721i 0.173711 + 0.300876i
\(482\) 276.415 + 159.588i 0.573475 + 0.331096i
\(483\) 0 0
\(484\) 97.2493 + 168.441i 0.200928 + 0.348018i
\(485\) 802.105 + 463.096i 1.65382 + 0.954836i
\(486\) 0 0
\(487\) 61.2233 + 106.042i 0.125715 + 0.217745i 0.922012 0.387161i \(-0.126544\pi\)
−0.796297 + 0.604906i \(0.793211\pi\)
\(488\) 191.598i 0.392620i
\(489\) 0 0
\(490\) 435.365 + 37.8178i 0.888500 + 0.0771791i
\(491\) 269.718 + 155.722i 0.549324 + 0.317153i 0.748849 0.662740i \(-0.230607\pi\)
−0.199525 + 0.979893i \(0.563940\pi\)
\(492\) 0 0
\(493\) −278.476 + 482.335i −0.564861 + 0.978368i
\(494\) −117.282 + 67.7129i −0.237413 + 0.137071i
\(495\) 0 0
\(496\) 187.928 0.378886
\(497\) 369.481 192.485i 0.743423 0.387294i
\(498\) 0 0
\(499\) 6.65537 + 11.5274i 0.0133374 + 0.0231011i 0.872617 0.488405i \(-0.162421\pi\)
−0.859280 + 0.511506i \(0.829088\pi\)
\(500\) 129.034i 0.258069i
\(501\) 0 0
\(502\) 177.033 0.352656
\(503\) 386.747i 0.768881i −0.923150 0.384440i \(-0.874394\pi\)
0.923150 0.384440i \(-0.125606\pi\)
\(504\) 0 0
\(505\) 123.877 0.245301
\(506\) 43.5793i 0.0861251i
\(507\) 0 0
\(508\) −61.2111 −0.120494
\(509\) −522.282 + 301.540i −1.02610 + 0.592416i −0.915864 0.401490i \(-0.868493\pi\)
−0.110232 + 0.993906i \(0.535159\pi\)
\(510\) 0 0
\(511\) 133.741 210.075i 0.261724 0.411106i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −185.862 321.922i −0.361599 0.626307i
\(515\) −459.863 265.502i −0.892938 0.515538i
\(516\) 0 0
\(517\) −29.5922 + 51.2552i −0.0572383 + 0.0991397i
\(518\) 22.0541 508.738i 0.0425755 0.982119i
\(519\) 0 0
\(520\) −57.9473 −0.111437
\(521\) −362.474 + 209.274i −0.695727 + 0.401678i −0.805754 0.592250i \(-0.798240\pi\)
0.110027 + 0.993929i \(0.464906\pi\)
\(522\) 0 0
\(523\) 230.619 399.444i 0.440955 0.763756i −0.556806 0.830643i \(-0.687973\pi\)
0.997761 + 0.0668867i \(0.0213066\pi\)
\(524\) 389.763 225.030i 0.743822 0.429446i
\(525\) 0 0
\(526\) −245.983 + 426.056i −0.467649 + 0.809992i
\(527\) 831.522 480.080i 1.57784 0.910967i
\(528\) 0 0
\(529\) −244.510 + 423.503i −0.462211 + 0.800573i
\(530\) 24.8002 + 14.3184i 0.0467928 + 0.0270159i
\(531\) 0 0
\(532\) 412.281 + 17.8726i 0.774964 + 0.0335952i
\(533\) 96.6228 55.7852i 0.181281 0.104663i
\(534\) 0 0
\(535\) 631.898 1.18112
\(536\) 75.5433i 0.140939i
\(537\) 0 0
\(538\) 18.7562 + 32.4866i 0.0348628 + 0.0603841i
\(539\) −216.364 + 101.055i −0.401417 + 0.187487i
\(540\) 0 0
\(541\) −420.654 + 728.594i −0.777549 + 1.34675i 0.155801 + 0.987788i \(0.450204\pi\)
−0.933351 + 0.358966i \(0.883129\pi\)
\(542\) −508.576 293.626i −0.938332 0.541746i
\(543\) 0 0
\(544\) 57.8040 + 100.119i 0.106257 + 0.184043i
\(545\) −449.120 259.300i −0.824074 0.475779i
\(546\) 0 0
\(547\) −183.875 318.481i −0.336151 0.582231i 0.647554 0.762020i \(-0.275792\pi\)
−0.983705 + 0.179788i \(0.942459\pi\)
\(548\) 222.969 + 128.731i 0.406877 + 0.234911i
\(549\) 0 0
\(550\) 50.8964 + 88.1551i 0.0925388 + 0.160282i
\(551\) 803.300i 1.45790i
\(552\) 0 0
\(553\) 233.749 + 448.688i 0.422692 + 0.811370i
\(554\) 361.927 + 208.958i 0.653297 + 0.377181i
\(555\) 0 0
\(556\) −169.696 + 293.921i −0.305208 + 0.528635i
\(557\) 134.947 77.9118i 0.242275 0.139877i −0.373947 0.927450i \(-0.621996\pi\)
0.616222 + 0.787573i \(0.288662\pi\)
\(558\) 0 0
\(559\) 226.885 0.405876
\(560\) 148.952 + 94.8283i 0.265986 + 0.169336i
\(561\) 0 0
\(562\) −206.764 358.126i −0.367907 0.637234i
\(563\) 55.8041i 0.0991192i 0.998771 + 0.0495596i \(0.0157818\pi\)
−0.998771 + 0.0495596i \(0.984218\pi\)
\(564\) 0 0
\(565\) 611.537 1.08237
\(566\) 637.078i 1.12558i
\(567\) 0 0
\(568\) 168.337 0.296368
\(569\) 650.955i 1.14403i −0.820242 0.572017i \(-0.806161\pi\)
0.820242 0.572017i \(-0.193839\pi\)
\(570\) 0 0
\(571\) −392.937 −0.688156 −0.344078 0.938941i \(-0.611808\pi\)
−0.344078 + 0.938941i \(0.611808\pi\)
\(572\) 27.4229 15.8326i 0.0479421 0.0276794i
\(573\) 0 0
\(574\) −339.657 14.7244i −0.591737 0.0256522i
\(575\) 93.3877i 0.162413i
\(576\) 0 0
\(577\) −285.333 494.212i −0.494512 0.856520i 0.505468 0.862845i \(-0.331320\pi\)
−0.999980 + 0.00632539i \(0.997987\pi\)
\(578\) 157.579 + 90.9785i 0.272629 + 0.157402i
\(579\) 0 0
\(580\) −171.862 + 297.674i −0.296314 + 0.513231i
\(581\) −750.507 477.799i −1.29175 0.822374i
\(582\) 0 0
\(583\) −15.6485 −0.0268414
\(584\) 87.1439 50.3126i 0.149219 0.0861517i
\(585\) 0 0
\(586\) −43.5058 + 75.3542i −0.0742420 + 0.128591i
\(587\) −561.273 + 324.051i −0.956172 + 0.552046i −0.894993 0.446081i \(-0.852819\pi\)
−0.0611794 + 0.998127i \(0.519486\pi\)
\(588\) 0 0
\(589\) 692.425 1199.32i 1.17559 2.03619i
\(590\) −814.876 + 470.469i −1.38115 + 0.797405i
\(591\) 0 0
\(592\) 102.877 178.188i 0.173779 0.300994i
\(593\) 130.961 + 75.6105i 0.220845 + 0.127505i 0.606342 0.795204i \(-0.292636\pi\)
−0.385496 + 0.922709i \(0.625970\pi\)
\(594\) 0 0
\(595\) 901.318 + 39.0727i 1.51482 + 0.0656684i
\(596\) −377.602 + 218.009i −0.633561 + 0.365787i
\(597\) 0 0
\(598\) −29.0506 −0.0485796
\(599\) 249.992i 0.417349i −0.977985 0.208674i \(-0.933085\pi\)
0.977985 0.208674i \(-0.0669149\pi\)
\(600\) 0 0
\(601\) −251.801 436.133i −0.418970 0.725678i 0.576866 0.816839i \(-0.304276\pi\)
−0.995836 + 0.0911609i \(0.970942\pi\)
\(602\) −583.203 371.288i −0.968776 0.616757i
\(603\) 0 0
\(604\) 131.762 228.218i 0.218149 0.377845i
\(605\) 531.119 + 306.641i 0.877882 + 0.506845i
\(606\) 0 0
\(607\) −126.223 218.625i −0.207946 0.360173i 0.743121 0.669157i \(-0.233344\pi\)
−0.951067 + 0.308984i \(0.900011\pi\)
\(608\) 144.404 + 83.3715i 0.237506 + 0.137124i
\(609\) 0 0
\(610\) −302.069 523.199i −0.495196 0.857704i
\(611\) −34.1675 19.7266i −0.0559206 0.0322858i
\(612\) 0 0
\(613\) −130.589 226.186i −0.213032 0.368982i 0.739630 0.673014i \(-0.235001\pi\)
−0.952662 + 0.304032i \(0.901667\pi\)
\(614\) 285.714i 0.465332i
\(615\) 0 0
\(616\) −96.3993 4.17897i −0.156492 0.00678405i
\(617\) 92.8353 + 53.5985i 0.150462 + 0.0868695i 0.573341 0.819317i \(-0.305647\pi\)
−0.422879 + 0.906186i \(0.638980\pi\)
\(618\) 0 0
\(619\) −122.170 + 211.605i −0.197367 + 0.341850i −0.947674 0.319240i \(-0.896572\pi\)
0.750307 + 0.661090i \(0.229906\pi\)
\(620\) 513.175 296.282i 0.827702 0.477874i
\(621\) 0 0
\(622\) 348.177 0.559771
\(623\) −12.5146 + 288.682i −0.0200876 + 0.463374i
\(624\) 0 0
\(625\) 388.050 + 672.122i 0.620880 + 1.07540i
\(626\) 74.1978i 0.118527i
\(627\) 0 0
\(628\) −226.019 −0.359904
\(629\) 1051.24i 1.67129i
\(630\) 0 0
\(631\) −593.344 −0.940323 −0.470161 0.882580i \(-0.655804\pi\)
−0.470161 + 0.882580i \(0.655804\pi\)
\(632\) 204.424i 0.323456i
\(633\) 0 0
\(634\) 621.651 0.980522
\(635\) −167.150 + 96.5038i −0.263228 + 0.151975i
\(636\) 0 0
\(637\) −67.3650 144.231i −0.105754 0.226423i
\(638\) 187.827i 0.294400i
\(639\) 0 0
\(640\) 35.6738 + 61.7889i 0.0557403 + 0.0965451i
\(641\) 650.284 + 375.442i 1.01448 + 0.585713i 0.912502 0.409073i \(-0.134148\pi\)
0.101983 + 0.994786i \(0.467481\pi\)
\(642\) 0 0
\(643\) 142.353 246.563i 0.221390 0.383458i −0.733841 0.679322i \(-0.762274\pi\)
0.955230 + 0.295864i \(0.0956075\pi\)
\(644\) 74.6740 + 47.5401i 0.115953 + 0.0738200i
\(645\) 0 0
\(646\) 851.924 1.31877
\(647\) −15.0136 + 8.66810i −0.0232049 + 0.0133974i −0.511558 0.859249i \(-0.670931\pi\)
0.488353 + 0.872646i \(0.337598\pi\)
\(648\) 0 0
\(649\) 257.087 445.288i 0.396128 0.686114i
\(650\) −58.7655 + 33.9283i −0.0904084 + 0.0521973i
\(651\) 0 0
\(652\) 199.801 346.065i 0.306443 0.530775i
\(653\) 832.106 480.417i 1.27428 0.735707i 0.298491 0.954412i \(-0.403517\pi\)
0.975791 + 0.218705i \(0.0701832\pi\)
\(654\) 0 0
\(655\) 709.552 1228.98i 1.08329 1.87631i
\(656\) −118.967 68.6856i −0.181352 0.104704i
\(657\) 0 0
\(658\) 55.5451 + 106.620i 0.0844150 + 0.162037i
\(659\) 679.097 392.077i 1.03050 0.594957i 0.113369 0.993553i \(-0.463836\pi\)
0.917127 + 0.398596i \(0.130502\pi\)
\(660\) 0 0
\(661\) −966.338 −1.46193 −0.730967 0.682413i \(-0.760931\pi\)
−0.730967 + 0.682413i \(0.760931\pi\)
\(662\) 123.194i 0.186094i
\(663\) 0 0
\(664\) −179.745 311.328i −0.270700 0.468867i
\(665\) 1154.00 601.186i 1.73533 0.904040i
\(666\) 0 0
\(667\) −86.1592 + 149.232i −0.129174 + 0.223736i
\(668\) −157.901 91.1639i −0.236378 0.136473i
\(669\) 0 0
\(670\) −119.100 206.287i −0.177761 0.307891i
\(671\) 285.901 + 165.065i 0.426083 + 0.245999i
\(672\) 0 0
\(673\) −142.389 246.625i −0.211574 0.366457i 0.740633 0.671909i \(-0.234526\pi\)
−0.952207 + 0.305453i \(0.901192\pi\)
\(674\) 482.518 + 278.582i 0.715902 + 0.413326i
\(675\) 0 0
\(676\) −158.446 274.436i −0.234387 0.405971i
\(677\) 790.920i 1.16827i −0.811656 0.584136i \(-0.801434\pi\)
0.811656 0.584136i \(-0.198566\pi\)
\(678\) 0 0
\(679\) −552.115 + 867.239i −0.813129 + 1.27723i
\(680\) 315.692 + 182.265i 0.464253 + 0.268036i
\(681\) 0 0
\(682\) −161.903 + 280.424i −0.237394 + 0.411178i
\(683\) −495.712 + 286.200i −0.725787 + 0.419033i −0.816879 0.576809i \(-0.804298\pi\)
0.0910922 + 0.995842i \(0.470964\pi\)
\(684\) 0 0
\(685\) 811.817 1.18513
\(686\) −62.8682 + 480.984i −0.0916446 + 0.701143i
\(687\) 0 0
\(688\) −139.676 241.926i −0.203018 0.351637i
\(689\) 10.4315i 0.0151401i
\(690\) 0 0
\(691\) 1017.46 1.47245 0.736223 0.676739i \(-0.236607\pi\)
0.736223 + 0.676739i \(0.236607\pi\)
\(692\) 431.607i 0.623709i
\(693\) 0 0
\(694\) −130.163 −0.187554
\(695\) 1070.15i 1.53979i
\(696\) 0 0
\(697\) −701.857 −1.00697
\(698\) −52.0338 + 30.0417i −0.0745470 + 0.0430398i
\(699\) 0 0
\(700\) 206.578 + 8.95528i 0.295111 + 0.0127933i
\(701\) 123.911i 0.176763i 0.996087 + 0.0883815i \(0.0281695\pi\)
−0.996087 + 0.0883815i \(0.971831\pi\)
\(702\) 0 0
\(703\) −758.108 1313.08i −1.07839 1.86783i
\(704\) −33.7644 19.4939i −0.0479608 0.0276902i
\(705\) 0 0
\(706\) −293.742 + 508.776i −0.416065 + 0.720645i
\(707\) −5.95529 + 137.375i −0.00842332 + 0.194307i
\(708\) 0 0
\(709\) 117.698 0.166006 0.0830029 0.996549i \(-0.473549\pi\)
0.0830029 + 0.996549i \(0.473549\pi\)
\(710\) 459.680 265.396i 0.647436 0.373798i
\(711\) 0 0
\(712\) −58.3773 + 101.113i −0.0819907 + 0.142012i
\(713\) 257.269 148.534i 0.360826 0.208323i
\(714\) 0 0
\(715\) 49.9225 86.4684i 0.0698217 0.120935i
\(716\) −550.497 + 317.830i −0.768851 + 0.443896i
\(717\) 0 0
\(718\) 58.4173 101.182i 0.0813611 0.140922i
\(719\) 622.294 + 359.281i 0.865499 + 0.499696i 0.865850 0.500304i \(-0.166778\pi\)
−0.000350873 1.00000i \(0.500112\pi\)
\(720\) 0 0
\(721\) 316.539 497.206i 0.439027 0.689606i
\(722\) 621.988 359.105i 0.861479 0.497375i
\(723\) 0 0
\(724\) −225.475 −0.311429
\(725\) 402.502i 0.555176i
\(726\) 0 0
\(727\) −264.639 458.367i −0.364015 0.630492i 0.624603 0.780942i \(-0.285261\pi\)
−0.988617 + 0.150451i \(0.951927\pi\)
\(728\) 2.78577 64.2612i 0.00382660 0.0882709i
\(729\) 0 0
\(730\) 158.643 274.778i 0.217319 0.376408i
\(731\) −1236.05 713.633i −1.69090 0.976243i
\(732\) 0 0
\(733\) 215.715 + 373.630i 0.294291 + 0.509727i 0.974820 0.222995i \(-0.0715833\pi\)
−0.680529 + 0.732721i \(0.738250\pi\)
\(734\) 34.5457 + 19.9450i 0.0470650 + 0.0271730i
\(735\) 0 0
\(736\) 17.8843 + 30.9765i 0.0242993 + 0.0420876i
\(737\) 112.725 + 65.0818i 0.152951 + 0.0883064i
\(738\) 0 0
\(739\) 254.964 + 441.611i 0.345012 + 0.597579i 0.985356 0.170510i \(-0.0545414\pi\)
−0.640344 + 0.768088i \(0.721208\pi\)
\(740\) 648.774i 0.876721i
\(741\) 0 0
\(742\) −17.0708 + 26.8141i −0.0230064 + 0.0361376i
\(743\) 1168.43 + 674.592i 1.57258 + 0.907929i 0.995851 + 0.0909936i \(0.0290043\pi\)
0.576729 + 0.816936i \(0.304329\pi\)
\(744\) 0 0
\(745\) −687.414 + 1190.64i −0.922704 + 1.59817i
\(746\) 857.165 494.884i 1.14901 0.663384i
\(747\) 0 0
\(748\) −199.196 −0.266305
\(749\) −30.3780 + 700.750i −0.0405580 + 0.935580i
\(750\) 0 0
\(751\) 716.351 + 1240.76i 0.953863 + 1.65214i 0.736949 + 0.675948i \(0.236266\pi\)
0.216914 + 0.976191i \(0.430401\pi\)
\(752\) 48.5768i 0.0645968i
\(753\) 0 0
\(754\) 125.209 0.166059
\(755\) 830.930i 1.10057i
\(756\) 0 0
\(757\) −118.907 −0.157077 −0.0785386 0.996911i \(-0.525025\pi\)
−0.0785386 + 0.996911i \(0.525025\pi\)
\(758\) 393.919i 0.519682i
\(759\) 0 0
\(760\) 525.766 0.691797
\(761\) 675.903 390.233i 0.888177 0.512789i 0.0148312 0.999890i \(-0.495279\pi\)
0.873346 + 0.487101i \(0.161946\pi\)
\(762\) 0 0
\(763\) 309.144 485.591i 0.405169 0.636423i
\(764\) 224.096i 0.293320i
\(765\) 0 0
\(766\) 92.4164 + 160.070i 0.120648 + 0.208968i
\(767\) 296.835 + 171.378i 0.387008 + 0.223439i
\(768\) 0 0
\(769\) −293.677 + 508.663i −0.381894 + 0.661460i −0.991333 0.131373i \(-0.958061\pi\)
0.609439 + 0.792833i \(0.291395\pi\)
\(770\) −269.827 + 140.569i −0.350424 + 0.182557i
\(771\) 0 0
\(772\) 198.241 0.256788
\(773\) 148.903 85.9691i 0.192630 0.111215i −0.400583 0.916260i \(-0.631192\pi\)
0.593213 + 0.805045i \(0.297859\pi\)
\(774\) 0 0
\(775\) 346.947 600.930i 0.447674 0.775394i
\(776\) −359.751 + 207.702i −0.463596 + 0.267657i
\(777\) 0 0
\(778\) 224.614 389.043i 0.288707 0.500056i
\(779\) −876.675 + 506.149i −1.12539 + 0.649742i
\(780\) 0 0
\(781\) −145.025 + 251.191i −0.185692 + 0.321628i
\(782\) 158.265 + 91.3744i 0.202385 + 0.116847i
\(783\) 0 0
\(784\) −112.322 + 160.623i −0.143267 + 0.204877i
\(785\) −617.193 + 356.336i −0.786233 + 0.453932i
\(786\) 0 0
\(787\) 569.839 0.724065 0.362032 0.932165i \(-0.382083\pi\)
0.362032 + 0.932165i \(0.382083\pi\)
\(788\) 116.631i 0.148009i
\(789\) 0 0
\(790\) 322.290 + 558.223i 0.407962 + 0.706611i
\(791\) −29.3991 + 678.170i −0.0371670 + 0.857358i
\(792\) 0 0
\(793\) −110.035 + 190.586i −0.138758 + 0.240336i
\(794\) −825.272 476.471i −1.03938 0.600089i
\(795\) 0 0
\(796\) −5.44228 9.42630i −0.00683703 0.0118421i
\(797\) 274.142 + 158.276i 0.343968 + 0.198590i 0.662025 0.749482i \(-0.269697\pi\)
−0.318058 + 0.948071i \(0.603031\pi\)
\(798\) 0 0
\(799\) 124.094 + 214.938i 0.155312 + 0.269008i
\(800\) 72.3550 + 41.7742i 0.0904438 + 0.0522177i
\(801\) 0 0
\(802\) −186.923 323.760i −0.233071 0.403691i
\(803\) 173.380i 0.215916i
\(804\) 0 0
\(805\) 278.863 + 12.0889i 0.346414 + 0.0150173i
\(806\) −186.935 107.927i −0.231929 0.133904i
\(807\) 0 0
\(808\) −27.7800 + 48.1163i −0.0343811 + 0.0595499i
\(809\) −791.083 + 456.732i −0.977853 + 0.564564i −0.901621 0.432527i \(-0.857622\pi\)
−0.0762316 + 0.997090i \(0.524289\pi\)
\(810\) 0 0
\(811\) 954.927 1.17747 0.588734 0.808327i \(-0.299626\pi\)
0.588734 + 0.808327i \(0.299626\pi\)
\(812\) −321.846 204.898i −0.396362 0.252338i
\(813\) 0 0
\(814\) 177.261 + 307.024i 0.217765 + 0.377180i
\(815\) 1260.00i 1.54602i
\(816\) 0 0
\(817\) −2058.57 −2.51966
\(818\) 476.353i 0.582338i
\(819\) 0 0
\(820\) −433.152 −0.528234
\(821\) 1228.87i 1.49679i 0.663252 + 0.748396i \(0.269176\pi\)
−0.663252 + 0.748396i \(0.730824\pi\)
\(822\) 0 0
\(823\) −329.129 −0.399914 −0.199957 0.979805i \(-0.564080\pi\)
−0.199957 + 0.979805i \(0.564080\pi\)
\(824\) 206.252 119.080i 0.250306 0.144514i
\(825\) 0 0
\(826\) −482.557 926.282i −0.584209 1.12141i
\(827\) 207.575i 0.250998i −0.992094 0.125499i \(-0.959947\pi\)
0.992094 0.125499i \(-0.0400532\pi\)
\(828\) 0 0
\(829\) 388.885 + 673.568i 0.469101 + 0.812507i 0.999376 0.0353187i \(-0.0112446\pi\)
−0.530275 + 0.847826i \(0.677911\pi\)
\(830\) −981.662 566.763i −1.18273 0.682847i
\(831\) 0 0
\(832\) 12.9949 22.5079i 0.0156189 0.0270527i
\(833\) −86.6601 + 997.647i −0.104034 + 1.19766i
\(834\) 0 0
\(835\) −574.907 −0.688511
\(836\) −248.812 + 143.652i −0.297622 + 0.171832i
\(837\) 0 0
\(838\) −66.8206 + 115.737i −0.0797382 + 0.138111i
\(839\) 92.9798 53.6819i 0.110822 0.0639832i −0.443564 0.896242i \(-0.646286\pi\)
0.554387 + 0.832259i \(0.312953\pi\)
\(840\) 0 0
\(841\) −49.1524 + 85.1344i −0.0584451 + 0.101230i
\(842\) 306.891 177.183i 0.364478 0.210432i
\(843\) 0 0
\(844\) 285.184 493.953i 0.337895 0.585252i
\(845\) −865.338 499.603i −1.02407 0.591246i
\(846\) 0 0
\(847\) −365.586 + 574.248i −0.431625 + 0.677978i
\(848\) −11.1231 + 6.42192i −0.0131169 + 0.00757302i
\(849\) 0 0
\(850\) 426.865 0.502195
\(851\) 325.248i 0.382196i
\(852\) 0 0
\(853\) 53.8779 + 93.3192i 0.0631628 + 0.109401i 0.895878 0.444301i \(-0.146548\pi\)
−0.832715 + 0.553702i \(0.813215\pi\)
\(854\) 594.729 309.830i 0.696404 0.362799i
\(855\) 0 0
\(856\) −141.706 + 245.442i −0.165544 + 0.286731i
\(857\) 858.932 + 495.904i 1.00225 + 0.578652i 0.908914 0.416983i \(-0.136912\pi\)
0.0933395 + 0.995634i \(0.470246\pi\)
\(858\) 0 0
\(859\) −601.209 1041.32i −0.699894 1.21225i −0.968503 0.249002i \(-0.919897\pi\)
0.268609 0.963249i \(-0.413436\pi\)
\(860\) −762.829 440.420i −0.887011 0.512116i
\(861\) 0 0
\(862\) −321.613 557.051i −0.373101 0.646230i
\(863\) −1030.39 594.899i −1.19397 0.689338i −0.234764 0.972052i \(-0.575432\pi\)
−0.959204 + 0.282715i \(0.908765\pi\)
\(864\) 0 0
\(865\) 680.461 + 1178.59i 0.786660 + 1.36253i
\(866\) 11.9375i 0.0137847i
\(867\) 0 0
\(868\) 303.894 + 583.334i 0.350108 + 0.672044i
\(869\) −305.040 176.115i −0.351024 0.202664i
\(870\) 0 0
\(871\) −43.3845 + 75.1442i −0.0498100 + 0.0862735i
\(872\) 201.434 116.298i 0.231002 0.133369i
\(873\) 0 0
\(874\) 263.581 0.301580
\(875\) −400.528 + 208.659i −0.457746 + 0.238468i
\(876\) 0 0
\(877\) −5.78270 10.0159i −0.00659373 0.0114207i 0.862710 0.505699i \(-0.168766\pi\)
−0.869303 + 0.494279i \(0.835432\pi\)
\(878\) 557.766i 0.635269i
\(879\) 0 0
\(880\) −122.934 −0.139698
\(881\) 1307.45i 1.48405i 0.670372 + 0.742025i \(0.266135\pi\)
−0.670372 + 0.742025i \(0.733865\pi\)
\(882\) 0 0
\(883\) 1083.73 1.22733 0.613663 0.789568i \(-0.289695\pi\)
0.613663 + 0.789568i \(0.289695\pi\)
\(884\) 132.787i 0.150212i
\(885\) 0 0
\(886\) −674.712 −0.761526
\(887\) 1087.25 627.725i 1.22576 0.707695i 0.259623 0.965710i \(-0.416402\pi\)
0.966141 + 0.258015i \(0.0830684\pi\)
\(888\) 0 0
\(889\) −98.9833 190.001i −0.111342 0.213725i
\(890\) 368.145i 0.413646i
\(891\) 0 0
\(892\) −102.623 177.748i −0.115048 0.199269i
\(893\) 310.007 + 178.983i 0.347153 + 0.200429i
\(894\) 0 0
\(895\) −1002.16 + 1735.80i −1.11974 + 1.93944i
\(896\) −70.2363 + 36.5904i −0.0783888 + 0.0408375i
\(897\) 0 0
\(898\) −489.622 −0.545237
\(899\) −1108.83 + 640.185i −1.23341 + 0.712108i
\(900\) 0 0
\(901\) −32.8109 + 56.8301i −0.0364161 + 0.0630745i
\(902\) 204.984 118.348i 0.227255 0.131206i
\(903\) 0 0
\(904\) −137.140 + 237.533i −0.151703 + 0.262758i
\(905\) −615.706 + 355.478i −0.680338 + 0.392793i
\(906\) 0 0
\(907\) −765.770 + 1326.35i −0.844289 + 1.46235i 0.0419479 + 0.999120i \(0.486644\pi\)
−0.886237 + 0.463232i \(0.846690\pi\)
\(908\) −593.810 342.836i −0.653976 0.377573i
\(909\) 0 0
\(910\) −93.7055 179.871i −0.102973 0.197660i
\(911\) 1007.21 581.512i 1.10561 0.638323i 0.167920 0.985801i \(-0.446295\pi\)
0.937688 + 0.347478i \(0.112962\pi\)
\(912\) 0 0
\(913\) 619.414 0.678438
\(914\) 841.835i 0.921044i
\(915\) 0 0
\(916\) 114.639 + 198.561i 0.125152 + 0.216770i
\(917\) 1328.78 + 845.947i 1.44905 + 0.922516i
\(918\) 0 0
\(919\) 477.282 826.676i 0.519349 0.899539i −0.480398 0.877050i \(-0.659508\pi\)
0.999747 0.0224882i \(-0.00715881\pi\)
\(920\) 97.6735 + 56.3918i 0.106167 + 0.0612955i
\(921\) 0 0
\(922\) −413.155 715.605i −0.448107 0.776144i
\(923\) −167.448 96.6760i −0.181417 0.104741i
\(924\) 0 0
\(925\) −379.858 657.934i −0.410658 0.711280i
\(926\) −480.800 277.590i −0.519222 0.299773i
\(927\) 0 0
\(928\) −77.0815 133.509i −0.0830620 0.143868i
\(929\) 1083.28i 1.16607i −0.812446 0.583037i \(-0.801864\pi\)
0.812446 0.583037i \(-0.198136\pi\)
\(930\) 0 0
\(931\) 611.214 + 1308.64i 0.656514 + 1.40562i
\(932\) −291.014 168.017i −0.312247 0.180276i
\(933\) 0 0
\(934\) 520.211 901.033i 0.556972 0.964703i
\(935\) −543.947 + 314.048i −0.581762 + 0.335880i
\(936\) 0 0
\(937\) 651.831 0.695657 0.347829 0.937558i \(-0.386919\pi\)
0.347829 + 0.937558i \(0.386919\pi\)
\(938\) 234.489 122.160i 0.249989 0.130234i
\(939\) 0 0
\(940\) 76.5849 + 132.649i 0.0814733 + 0.141116i
\(941\) 571.094i 0.606902i 0.952847 + 0.303451i \(0.0981388\pi\)
−0.952847 + 0.303451i \(0.901861\pi\)
\(942\) 0 0
\(943\) −217.151 −0.230277
\(944\) 422.018i 0.447053i
\(945\) 0 0
\(946\) 481.333 0.508809
\(947\) 878.855i 0.928041i −0.885824 0.464021i \(-0.846406\pi\)
0.885824 0.464021i \(-0.153594\pi\)
\(948\) 0 0
\(949\) −115.578 −0.121789
\(950\) 533.189 307.837i 0.561252 0.324039i
\(951\) 0 0
\(952\) −217.301 + 341.327i −0.228257 + 0.358537i
\(953\) 109.448i 0.114846i −0.998350 0.0574231i \(-0.981712\pi\)
0.998350 0.0574231i \(-0.0182884\pi\)
\(954\) 0 0
\(955\) −353.304 611.941i −0.369952 0.640776i
\(956\) 147.792 + 85.3275i 0.154594 + 0.0892547i
\(957\) 0 0
\(958\) 307.596 532.771i 0.321081 0.556129i
\(959\) −39.0274 + 900.272i −0.0406959 + 0.938761i
\(960\) 0 0
\(961\) 1246.30 1.29687
\(962\) −204.667 + 118.165i −0.212752 + 0.122832i
\(963\) 0 0
\(964\) −225.692 + 390.910i −0.234120 + 0.405508i
\(965\) 541.337 312.541i 0.560971 0.323877i
\(966\) 0 0
\(967\) 619.027 1072.19i 0.640152 1.10878i −0.345247 0.938512i \(-0.612205\pi\)
0.985399 0.170264i \(-0.0544619\pi\)
\(968\) −238.211 + 137.531i −0.246086 + 0.142078i
\(969\) 0 0
\(970\) −654.916 + 1134.35i −0.675171 + 1.16943i
\(971\) −659.604 380.823i −0.679304 0.392196i 0.120289 0.992739i \(-0.461618\pi\)
−0.799593 + 0.600543i \(0.794951\pi\)
\(972\) 0 0
\(973\) −1186.75 51.4466i −1.21969 0.0528742i
\(974\) −149.966 + 86.5828i −0.153969 + 0.0888941i
\(975\) 0 0
\(976\) 270.961 0.277624
\(977\) 1513.92i 1.54956i −0.632234 0.774778i \(-0.717862\pi\)
0.632234 0.774778i \(-0.282138\pi\)
\(978\) 0 0
\(979\) −100.586 174.220i −0.102744 0.177957i
\(980\) −53.4824 + 615.699i −0.0545739 + 0.628264i
\(981\) 0 0
\(982\) −220.224 + 381.439i −0.224261 + 0.388431i
\(983\) −341.837 197.360i −0.347749 0.200773i 0.315944 0.948778i \(-0.397679\pi\)
−0.663693 + 0.748005i \(0.731012\pi\)
\(984\) 0 0
\(985\) −183.877 318.485i −0.186678 0.323335i
\(986\) −682.125 393.825i −0.691810 0.399417i
\(987\) 0 0
\(988\) −95.7604 165.862i −0.0969235 0.167876i
\(989\) −382.428 220.795i −0.386681 0.223250i
\(990\) 0 0
\(991\) 19.0104 + 32.9271i 0.0191831 + 0.0332261i 0.875458 0.483295i \(-0.160560\pi\)
−0.856274 + 0.516521i \(0.827227\pi\)
\(992\) 265.770i 0.267913i
\(993\) 0 0
\(994\) 272.215 + 522.525i 0.273858 + 0.525679i
\(995\) −29.7225 17.1603i −0.0298719 0.0172465i
\(996\) 0 0
\(997\) −414.702 + 718.284i −0.415949 + 0.720445i −0.995528 0.0944712i \(-0.969884\pi\)
0.579578 + 0.814917i \(0.303217\pi\)
\(998\) −16.3023 + 9.41212i −0.0163349 + 0.00943098i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.r.a.233.10 32
3.2 odd 2 126.3.r.a.23.3 yes 32
7.4 even 3 378.3.i.a.179.2 32
9.2 odd 6 378.3.i.a.359.7 32
9.7 even 3 126.3.i.a.65.11 32
21.11 odd 6 126.3.i.a.95.11 yes 32
63.11 odd 6 inner 378.3.r.a.305.2 32
63.25 even 3 126.3.r.a.11.11 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.11 32 9.7 even 3
126.3.i.a.95.11 yes 32 21.11 odd 6
126.3.r.a.11.11 yes 32 63.25 even 3
126.3.r.a.23.3 yes 32 3.2 odd 2
378.3.i.a.179.2 32 7.4 even 3
378.3.i.a.359.7 32 9.2 odd 6
378.3.r.a.233.10 32 1.1 even 1 trivial
378.3.r.a.305.2 32 63.11 odd 6 inner