Properties

Label 378.3.q.a.71.8
Level $378$
Weight $3$
Character 378.71
Analytic conductor $10.300$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(71,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.71"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 71.8
Character \(\chi\) \(=\) 378.71
Dual form 378.3.q.a.197.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(-5.20486 - 3.00503i) q^{5} +(-1.32288 - 2.29129i) q^{7} -2.82843i q^{8} -8.49950 q^{10} +(-15.5696 + 8.98910i) q^{11} +(-1.24017 + 2.14804i) q^{13} +(-3.24037 - 1.87083i) q^{14} +(-2.00000 - 3.46410i) q^{16} +26.3841i q^{17} +5.05223 q^{19} +(-10.4097 + 6.01006i) q^{20} +(-12.7125 + 22.0187i) q^{22} +(-29.8982 - 17.2617i) q^{23} +(5.56039 + 9.63088i) q^{25} +3.50774i q^{26} -5.29150 q^{28} +(17.4418 - 10.0700i) q^{29} +(0.457601 - 0.792588i) q^{31} +(-4.89898 - 2.82843i) q^{32} +(18.6564 + 32.3138i) q^{34} +15.9011i q^{35} -69.8690 q^{37} +(6.18769 - 3.57247i) q^{38} +(-8.49950 + 14.7216i) q^{40} +(-43.6552 - 25.2043i) q^{41} +(1.22348 + 2.11914i) q^{43} +35.9564i q^{44} -48.8235 q^{46} +(45.5238 - 26.2832i) q^{47} +(-3.50000 + 6.06218i) q^{49} +(13.6201 + 7.86358i) q^{50} +(2.48035 + 4.29609i) q^{52} -91.2148i q^{53} +108.050 q^{55} +(-6.48074 + 3.74166i) q^{56} +(14.2412 - 24.6664i) q^{58} +(-13.6502 - 7.88092i) q^{59} +(39.3826 + 68.2126i) q^{61} -1.29429i q^{62} -8.00000 q^{64} +(12.9099 - 7.45351i) q^{65} +(-1.52405 + 2.63973i) q^{67} +(45.6987 + 26.3841i) q^{68} +(11.2438 + 19.4748i) q^{70} -58.7927i q^{71} -8.20759 q^{73} +(-85.5717 + 49.4049i) q^{74} +(5.05223 - 8.75072i) q^{76} +(41.1932 + 23.7829i) q^{77} +(-23.0285 - 39.8865i) q^{79} +24.0402i q^{80} -71.2887 q^{82} +(-33.1885 + 19.1614i) q^{83} +(79.2851 - 137.326i) q^{85} +(2.99691 + 1.73027i) q^{86} +(25.4250 + 44.0374i) q^{88} +88.0689i q^{89} +6.56238 q^{91} +(-59.7964 + 34.5235i) q^{92} +(37.1700 - 64.3804i) q^{94} +(-26.2962 - 15.1821i) q^{95} +(2.91032 + 5.04083i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 36 q^{5} - 48 q^{16} + 24 q^{19} - 72 q^{20} + 24 q^{22} + 72 q^{23} + 72 q^{25} + 108 q^{29} - 60 q^{31} - 48 q^{34} - 168 q^{37} - 144 q^{38} - 108 q^{41} + 60 q^{43} + 324 q^{47} - 84 q^{49}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) −5.20486 3.00503i −1.04097 0.601006i −0.120864 0.992669i \(-0.538566\pi\)
−0.920109 + 0.391663i \(0.871900\pi\)
\(6\) 0 0
\(7\) −1.32288 2.29129i −0.188982 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −8.49950 −0.849950
\(11\) −15.5696 + 8.98910i −1.41542 + 0.817191i −0.995892 0.0905531i \(-0.971137\pi\)
−0.419525 + 0.907744i \(0.637803\pi\)
\(12\) 0 0
\(13\) −1.24017 + 2.14804i −0.0953979 + 0.165234i −0.909775 0.415103i \(-0.863746\pi\)
0.814377 + 0.580337i \(0.197079\pi\)
\(14\) −3.24037 1.87083i −0.231455 0.133631i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 26.3841i 1.55201i 0.630728 + 0.776004i \(0.282756\pi\)
−0.630728 + 0.776004i \(0.717244\pi\)
\(18\) 0 0
\(19\) 5.05223 0.265907 0.132953 0.991122i \(-0.457554\pi\)
0.132953 + 0.991122i \(0.457554\pi\)
\(20\) −10.4097 + 6.01006i −0.520486 + 0.300503i
\(21\) 0 0
\(22\) −12.7125 + 22.0187i −0.577841 + 1.00085i
\(23\) −29.8982 17.2617i −1.29992 0.750510i −0.319531 0.947576i \(-0.603525\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(24\) 0 0
\(25\) 5.56039 + 9.63088i 0.222416 + 0.385235i
\(26\) 3.50774i 0.134913i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) 17.4418 10.0700i 0.601442 0.347243i −0.168167 0.985759i \(-0.553785\pi\)
0.769609 + 0.638516i \(0.220451\pi\)
\(30\) 0 0
\(31\) 0.457601 0.792588i 0.0147613 0.0255673i −0.858550 0.512729i \(-0.828634\pi\)
0.873312 + 0.487162i \(0.161968\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 18.6564 + 32.3138i 0.548718 + 0.950407i
\(35\) 15.9011i 0.454318i
\(36\) 0 0
\(37\) −69.8690 −1.88835 −0.944176 0.329441i \(-0.893140\pi\)
−0.944176 + 0.329441i \(0.893140\pi\)
\(38\) 6.18769 3.57247i 0.162834 0.0940123i
\(39\) 0 0
\(40\) −8.49950 + 14.7216i −0.212488 + 0.368039i
\(41\) −43.6552 25.2043i −1.06476 0.614740i −0.138016 0.990430i \(-0.544072\pi\)
−0.926745 + 0.375690i \(0.877406\pi\)
\(42\) 0 0
\(43\) 1.22348 + 2.11914i 0.0284531 + 0.0492823i 0.879901 0.475156i \(-0.157609\pi\)
−0.851448 + 0.524439i \(0.824275\pi\)
\(44\) 35.9564i 0.817191i
\(45\) 0 0
\(46\) −48.8235 −1.06138
\(47\) 45.5238 26.2832i 0.968592 0.559217i 0.0697853 0.997562i \(-0.477769\pi\)
0.898807 + 0.438345i \(0.144435\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.0714286 + 0.123718i
\(50\) 13.6201 + 7.86358i 0.272402 + 0.157272i
\(51\) 0 0
\(52\) 2.48035 + 4.29609i 0.0476990 + 0.0826170i
\(53\) 91.2148i 1.72103i −0.509421 0.860517i \(-0.670140\pi\)
0.509421 0.860517i \(-0.329860\pi\)
\(54\) 0 0
\(55\) 108.050 1.96455
\(56\) −6.48074 + 3.74166i −0.115728 + 0.0668153i
\(57\) 0 0
\(58\) 14.2412 24.6664i 0.245538 0.425284i
\(59\) −13.6502 7.88092i −0.231359 0.133575i 0.379840 0.925052i \(-0.375979\pi\)
−0.611199 + 0.791477i \(0.709312\pi\)
\(60\) 0 0
\(61\) 39.3826 + 68.2126i 0.645616 + 1.11824i 0.984159 + 0.177289i \(0.0567327\pi\)
−0.338543 + 0.940951i \(0.609934\pi\)
\(62\) 1.29429i 0.0208757i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 12.9099 7.45351i 0.198613 0.114669i
\(66\) 0 0
\(67\) −1.52405 + 2.63973i −0.0227470 + 0.0393990i −0.877175 0.480171i \(-0.840575\pi\)
0.854428 + 0.519570i \(0.173908\pi\)
\(68\) 45.6987 + 26.3841i 0.672039 + 0.388002i
\(69\) 0 0
\(70\) 11.2438 + 19.4748i 0.160626 + 0.278212i
\(71\) 58.7927i 0.828066i −0.910262 0.414033i \(-0.864120\pi\)
0.910262 0.414033i \(-0.135880\pi\)
\(72\) 0 0
\(73\) −8.20759 −0.112433 −0.0562164 0.998419i \(-0.517904\pi\)
−0.0562164 + 0.998419i \(0.517904\pi\)
\(74\) −85.5717 + 49.4049i −1.15637 + 0.667633i
\(75\) 0 0
\(76\) 5.05223 8.75072i 0.0664767 0.115141i
\(77\) 41.1932 + 23.7829i 0.534977 + 0.308869i
\(78\) 0 0
\(79\) −23.0285 39.8865i −0.291500 0.504892i 0.682665 0.730732i \(-0.260821\pi\)
−0.974165 + 0.225839i \(0.927488\pi\)
\(80\) 24.0402i 0.300503i
\(81\) 0 0
\(82\) −71.2887 −0.869374
\(83\) −33.1885 + 19.1614i −0.399861 + 0.230860i −0.686424 0.727202i \(-0.740821\pi\)
0.286563 + 0.958061i \(0.407487\pi\)
\(84\) 0 0
\(85\) 79.2851 137.326i 0.932765 1.61560i
\(86\) 2.99691 + 1.73027i 0.0348478 + 0.0201194i
\(87\) 0 0
\(88\) 25.4250 + 44.0374i 0.288921 + 0.500425i
\(89\) 88.0689i 0.989538i 0.869025 + 0.494769i \(0.164747\pi\)
−0.869025 + 0.494769i \(0.835253\pi\)
\(90\) 0 0
\(91\) 6.56238 0.0721141
\(92\) −59.7964 + 34.5235i −0.649961 + 0.375255i
\(93\) 0 0
\(94\) 37.1700 64.3804i 0.395426 0.684898i
\(95\) −26.2962 15.1821i −0.276802 0.159812i
\(96\) 0 0
\(97\) 2.91032 + 5.04083i 0.0300033 + 0.0519673i 0.880637 0.473791i \(-0.157115\pi\)
−0.850634 + 0.525759i \(0.823782\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) 22.2416 0.222416
\(101\) 49.6443 28.6621i 0.491528 0.283784i −0.233680 0.972313i \(-0.575077\pi\)
0.725208 + 0.688530i \(0.241744\pi\)
\(102\) 0 0
\(103\) 2.65907 4.60565i 0.0258162 0.0447150i −0.852829 0.522191i \(-0.825115\pi\)
0.878645 + 0.477476i \(0.158448\pi\)
\(104\) 6.07558 + 3.50774i 0.0584191 + 0.0337283i
\(105\) 0 0
\(106\) −64.4986 111.715i −0.608478 1.05391i
\(107\) 9.07038i 0.0847699i 0.999101 + 0.0423850i \(0.0134956\pi\)
−0.999101 + 0.0423850i \(0.986504\pi\)
\(108\) 0 0
\(109\) −137.837 −1.26456 −0.632281 0.774739i \(-0.717881\pi\)
−0.632281 + 0.774739i \(0.717881\pi\)
\(110\) 132.334 76.4029i 1.20303 0.694572i
\(111\) 0 0
\(112\) −5.29150 + 9.16515i −0.0472456 + 0.0818317i
\(113\) 172.652 + 99.6806i 1.52789 + 0.882129i 0.999450 + 0.0331605i \(0.0105573\pi\)
0.528443 + 0.848969i \(0.322776\pi\)
\(114\) 0 0
\(115\) 103.744 + 179.690i 0.902122 + 1.56252i
\(116\) 40.2801i 0.347243i
\(117\) 0 0
\(118\) −22.2906 −0.188903
\(119\) 60.4536 34.9029i 0.508014 0.293302i
\(120\) 0 0
\(121\) 101.108 175.124i 0.835602 1.44731i
\(122\) 96.4672 + 55.6954i 0.790715 + 0.456520i
\(123\) 0 0
\(124\) −0.915201 1.58518i −0.00738066 0.0127837i
\(125\) 83.4149i 0.667319i
\(126\) 0 0
\(127\) 28.7480 0.226362 0.113181 0.993574i \(-0.463896\pi\)
0.113181 + 0.993574i \(0.463896\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 10.5409 18.2573i 0.0810835 0.140441i
\(131\) −213.887 123.488i −1.63272 0.942654i −0.983248 0.182272i \(-0.941655\pi\)
−0.649476 0.760382i \(-0.725012\pi\)
\(132\) 0 0
\(133\) −6.68347 11.5761i −0.0502517 0.0870385i
\(134\) 4.31066i 0.0321691i
\(135\) 0 0
\(136\) 74.6256 0.548718
\(137\) 170.567 98.4768i 1.24501 0.718809i 0.274903 0.961472i \(-0.411354\pi\)
0.970111 + 0.242663i \(0.0780209\pi\)
\(138\) 0 0
\(139\) 113.493 196.575i 0.816496 1.41421i −0.0917531 0.995782i \(-0.529247\pi\)
0.908249 0.418430i \(-0.137420\pi\)
\(140\) 27.5415 + 15.9011i 0.196725 + 0.113579i
\(141\) 0 0
\(142\) −41.5727 72.0061i −0.292766 0.507085i
\(143\) 44.5922i 0.311833i
\(144\) 0 0
\(145\) −121.043 −0.834779
\(146\) −10.0522 + 5.80364i −0.0688507 + 0.0397510i
\(147\) 0 0
\(148\) −69.8690 + 121.017i −0.472088 + 0.817681i
\(149\) −130.827 75.5330i −0.878034 0.506933i −0.00802404 0.999968i \(-0.502554\pi\)
−0.870010 + 0.493035i \(0.835887\pi\)
\(150\) 0 0
\(151\) −42.0460 72.8259i −0.278451 0.482291i 0.692549 0.721371i \(-0.256488\pi\)
−0.971000 + 0.239080i \(0.923154\pi\)
\(152\) 14.2899i 0.0940123i
\(153\) 0 0
\(154\) 67.2683 0.436807
\(155\) −4.76350 + 2.75021i −0.0307322 + 0.0177433i
\(156\) 0 0
\(157\) −11.6141 + 20.1162i −0.0739751 + 0.128129i −0.900640 0.434566i \(-0.856902\pi\)
0.826665 + 0.562694i \(0.190235\pi\)
\(158\) −56.4080 32.5672i −0.357013 0.206121i
\(159\) 0 0
\(160\) 16.9990 + 29.4431i 0.106244 + 0.184020i
\(161\) 91.3405i 0.567332i
\(162\) 0 0
\(163\) −244.894 −1.50242 −0.751209 0.660064i \(-0.770529\pi\)
−0.751209 + 0.660064i \(0.770529\pi\)
\(164\) −87.3104 + 50.4087i −0.532381 + 0.307370i
\(165\) 0 0
\(166\) −27.0983 + 46.9356i −0.163243 + 0.282744i
\(167\) 80.3710 + 46.4022i 0.481263 + 0.277858i 0.720943 0.692995i \(-0.243709\pi\)
−0.239679 + 0.970852i \(0.577042\pi\)
\(168\) 0 0
\(169\) 81.4239 + 141.030i 0.481798 + 0.834499i
\(170\) 224.252i 1.31913i
\(171\) 0 0
\(172\) 4.89394 0.0284531
\(173\) −155.555 + 89.8099i −0.899164 + 0.519132i −0.876929 0.480620i \(-0.840412\pi\)
−0.0222350 + 0.999753i \(0.507078\pi\)
\(174\) 0 0
\(175\) 14.7114 25.4809i 0.0840652 0.145605i
\(176\) 62.2783 + 35.9564i 0.353854 + 0.204298i
\(177\) 0 0
\(178\) 62.2741 + 107.862i 0.349854 + 0.605966i
\(179\) 62.3812i 0.348498i −0.984702 0.174249i \(-0.944250\pi\)
0.984702 0.174249i \(-0.0557498\pi\)
\(180\) 0 0
\(181\) 128.060 0.707513 0.353756 0.935338i \(-0.384904\pi\)
0.353756 + 0.935338i \(0.384904\pi\)
\(182\) 8.03724 4.64030i 0.0441607 0.0254962i
\(183\) 0 0
\(184\) −48.8235 + 84.5649i −0.265345 + 0.459592i
\(185\) 363.659 + 209.958i 1.96572 + 1.13491i
\(186\) 0 0
\(187\) −237.170 410.790i −1.26829 2.19674i
\(188\) 105.133i 0.559217i
\(189\) 0 0
\(190\) −42.9415 −0.226008
\(191\) 126.673 73.1348i 0.663210 0.382904i −0.130289 0.991476i \(-0.541591\pi\)
0.793499 + 0.608572i \(0.208257\pi\)
\(192\) 0 0
\(193\) −112.684 + 195.175i −0.583856 + 1.01127i 0.411161 + 0.911563i \(0.365123\pi\)
−0.995017 + 0.0997058i \(0.968210\pi\)
\(194\) 7.12881 + 4.11582i 0.0367464 + 0.0212156i
\(195\) 0 0
\(196\) 7.00000 + 12.1244i 0.0357143 + 0.0618590i
\(197\) 219.974i 1.11662i 0.829632 + 0.558311i \(0.188550\pi\)
−0.829632 + 0.558311i \(0.811450\pi\)
\(198\) 0 0
\(199\) 168.217 0.845309 0.422655 0.906291i \(-0.361098\pi\)
0.422655 + 0.906291i \(0.361098\pi\)
\(200\) 27.2402 15.7272i 0.136201 0.0786358i
\(201\) 0 0
\(202\) 40.5344 70.2076i 0.200665 0.347563i
\(203\) −46.1467 26.6428i −0.227324 0.131245i
\(204\) 0 0
\(205\) 151.480 + 262.370i 0.738925 + 1.27986i
\(206\) 7.52099i 0.0365097i
\(207\) 0 0
\(208\) 9.92138 0.0476990
\(209\) −78.6611 + 45.4150i −0.376369 + 0.217297i
\(210\) 0 0
\(211\) −61.5985 + 106.692i −0.291936 + 0.505648i −0.974268 0.225395i \(-0.927633\pi\)
0.682331 + 0.731043i \(0.260966\pi\)
\(212\) −157.989 91.2148i −0.745230 0.430259i
\(213\) 0 0
\(214\) 6.41373 + 11.1089i 0.0299707 + 0.0519108i
\(215\) 14.7064i 0.0684020i
\(216\) 0 0
\(217\) −2.42140 −0.0111585
\(218\) −168.815 + 97.4657i −0.774383 + 0.447090i
\(219\) 0 0
\(220\) 108.050 187.148i 0.491136 0.850673i
\(221\) −56.6742 32.7209i −0.256445 0.148058i
\(222\) 0 0
\(223\) −63.4424 109.886i −0.284495 0.492760i 0.687991 0.725719i \(-0.258493\pi\)
−0.972487 + 0.232959i \(0.925159\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 281.939 1.24752
\(227\) −230.462 + 133.058i −1.01525 + 0.586156i −0.912725 0.408574i \(-0.866026\pi\)
−0.102527 + 0.994730i \(0.532693\pi\)
\(228\) 0 0
\(229\) −165.524 + 286.696i −0.722813 + 1.25195i 0.237055 + 0.971496i \(0.423818\pi\)
−0.959868 + 0.280452i \(0.909515\pi\)
\(230\) 254.120 + 146.716i 1.10487 + 0.637896i
\(231\) 0 0
\(232\) −28.4824 49.3329i −0.122769 0.212642i
\(233\) 3.85475i 0.0165440i 0.999966 + 0.00827199i \(0.00263309\pi\)
−0.999966 + 0.00827199i \(0.997367\pi\)
\(234\) 0 0
\(235\) −315.927 −1.34437
\(236\) −27.3003 + 15.7618i −0.115679 + 0.0667875i
\(237\) 0 0
\(238\) 49.3602 85.4943i 0.207396 0.359220i
\(239\) −321.568 185.657i −1.34547 0.776808i −0.357867 0.933772i \(-0.616496\pi\)
−0.987604 + 0.156964i \(0.949829\pi\)
\(240\) 0 0
\(241\) 75.9784 + 131.598i 0.315263 + 0.546051i 0.979493 0.201476i \(-0.0645739\pi\)
−0.664230 + 0.747528i \(0.731241\pi\)
\(242\) 285.976i 1.18172i
\(243\) 0 0
\(244\) 157.530 0.645616
\(245\) 36.4340 21.0352i 0.148710 0.0858580i
\(246\) 0 0
\(247\) −6.26564 + 10.8524i −0.0253670 + 0.0439369i
\(248\) −2.24178 1.29429i −0.00903942 0.00521891i
\(249\) 0 0
\(250\) 58.9832 + 102.162i 0.235933 + 0.408648i
\(251\) 225.897i 0.899989i 0.893031 + 0.449995i \(0.148574\pi\)
−0.893031 + 0.449995i \(0.851426\pi\)
\(252\) 0 0
\(253\) 620.670 2.45324
\(254\) 35.2089 20.3279i 0.138618 0.0800310i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −168.244 97.1359i −0.654647 0.377961i 0.135587 0.990765i \(-0.456708\pi\)
−0.790234 + 0.612805i \(0.790041\pi\)
\(258\) 0 0
\(259\) 92.4281 + 160.090i 0.356865 + 0.618108i
\(260\) 29.8140i 0.114669i
\(261\) 0 0
\(262\) −349.276 −1.33311
\(263\) −199.675 + 115.282i −0.759219 + 0.438335i −0.829015 0.559226i \(-0.811098\pi\)
0.0697963 + 0.997561i \(0.477765\pi\)
\(264\) 0 0
\(265\) −274.103 + 474.761i −1.03435 + 1.79155i
\(266\) −16.3711 9.45186i −0.0615455 0.0355333i
\(267\) 0 0
\(268\) 3.04810 + 5.27946i 0.0113735 + 0.0196995i
\(269\) 32.2412i 0.119856i 0.998203 + 0.0599279i \(0.0190871\pi\)
−0.998203 + 0.0599279i \(0.980913\pi\)
\(270\) 0 0
\(271\) 216.052 0.797238 0.398619 0.917117i \(-0.369490\pi\)
0.398619 + 0.917117i \(0.369490\pi\)
\(272\) 91.3973 52.7683i 0.336019 0.194001i
\(273\) 0 0
\(274\) 139.267 241.218i 0.508275 0.880358i
\(275\) −173.146 99.9658i −0.629621 0.363512i
\(276\) 0 0
\(277\) −106.959 185.258i −0.386132 0.668801i 0.605793 0.795622i \(-0.292856\pi\)
−0.991926 + 0.126821i \(0.959523\pi\)
\(278\) 321.006i 1.15470i
\(279\) 0 0
\(280\) 44.9751 0.160626
\(281\) 57.3099 33.0879i 0.203950 0.117750i −0.394547 0.918876i \(-0.629098\pi\)
0.598497 + 0.801125i \(0.295765\pi\)
\(282\) 0 0
\(283\) 74.7213 129.421i 0.264033 0.457318i −0.703277 0.710916i \(-0.748281\pi\)
0.967310 + 0.253598i \(0.0816140\pi\)
\(284\) −101.832 58.7927i −0.358563 0.207017i
\(285\) 0 0
\(286\) −31.5314 54.6140i −0.110250 0.190958i
\(287\) 133.369i 0.464700i
\(288\) 0 0
\(289\) −407.122 −1.40873
\(290\) −148.247 + 85.5903i −0.511196 + 0.295139i
\(291\) 0 0
\(292\) −8.20759 + 14.2160i −0.0281082 + 0.0486848i
\(293\) 305.978 + 176.657i 1.04430 + 0.602924i 0.921047 0.389452i \(-0.127336\pi\)
0.123248 + 0.992376i \(0.460669\pi\)
\(294\) 0 0
\(295\) 47.3648 + 82.0382i 0.160559 + 0.278096i
\(296\) 197.619i 0.667633i
\(297\) 0 0
\(298\) −213.640 −0.716911
\(299\) 74.1579 42.8151i 0.248020 0.143194i
\(300\) 0 0
\(301\) 3.23704 5.60671i 0.0107543 0.0186269i
\(302\) −102.991 59.4621i −0.341031 0.196894i
\(303\) 0 0
\(304\) −10.1045 17.5014i −0.0332384 0.0575705i
\(305\) 473.383i 1.55208i
\(306\) 0 0
\(307\) −534.432 −1.74082 −0.870410 0.492328i \(-0.836146\pi\)
−0.870410 + 0.492328i \(0.836146\pi\)
\(308\) 82.3865 47.5658i 0.267489 0.154435i
\(309\) 0 0
\(310\) −3.88938 + 6.73660i −0.0125464 + 0.0217310i
\(311\) 258.459 + 149.221i 0.831057 + 0.479811i 0.854215 0.519921i \(-0.174038\pi\)
−0.0231572 + 0.999732i \(0.507372\pi\)
\(312\) 0 0
\(313\) −26.7197 46.2799i −0.0853664 0.147859i 0.820181 0.572104i \(-0.193873\pi\)
−0.905547 + 0.424245i \(0.860539\pi\)
\(314\) 32.8496i 0.104617i
\(315\) 0 0
\(316\) −92.1139 −0.291500
\(317\) −220.308 + 127.195i −0.694978 + 0.401246i −0.805474 0.592631i \(-0.798089\pi\)
0.110496 + 0.993877i \(0.464756\pi\)
\(318\) 0 0
\(319\) −181.041 + 313.572i −0.567527 + 0.982986i
\(320\) 41.6389 + 24.0402i 0.130122 + 0.0751257i
\(321\) 0 0
\(322\) 64.5875 + 111.869i 0.200582 + 0.347419i
\(323\) 133.299i 0.412690i
\(324\) 0 0
\(325\) −27.5834 −0.0848720
\(326\) −299.933 + 173.166i −0.920040 + 0.531185i
\(327\) 0 0
\(328\) −71.2887 + 123.476i −0.217343 + 0.376450i
\(329\) −120.445 69.5388i −0.366093 0.211364i
\(330\) 0 0
\(331\) −72.6094 125.763i −0.219364 0.379949i 0.735250 0.677796i \(-0.237065\pi\)
−0.954614 + 0.297847i \(0.903731\pi\)
\(332\) 76.6455i 0.230860i
\(333\) 0 0
\(334\) 131.245 0.392950
\(335\) 15.8649 9.15963i 0.0473580 0.0273422i
\(336\) 0 0
\(337\) −262.373 + 454.444i −0.778555 + 1.34850i 0.154219 + 0.988037i \(0.450714\pi\)
−0.932774 + 0.360460i \(0.882620\pi\)
\(338\) 199.447 + 115.151i 0.590080 + 0.340683i
\(339\) 0 0
\(340\) −158.570 274.651i −0.466383 0.807798i
\(341\) 16.4537i 0.0482512i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 5.99383 3.46054i 0.0174239 0.0100597i
\(345\) 0 0
\(346\) −127.010 + 219.988i −0.367082 + 0.635805i
\(347\) −447.751 258.509i −1.29035 0.744983i −0.311632 0.950203i \(-0.600876\pi\)
−0.978716 + 0.205220i \(0.934209\pi\)
\(348\) 0 0
\(349\) 26.3750 + 45.6828i 0.0755731 + 0.130896i 0.901335 0.433122i \(-0.142588\pi\)
−0.825762 + 0.564018i \(0.809255\pi\)
\(350\) 41.6102i 0.118886i
\(351\) 0 0
\(352\) 101.700 0.288921
\(353\) 422.969 244.201i 1.19821 0.691788i 0.238055 0.971252i \(-0.423490\pi\)
0.960156 + 0.279464i \(0.0901567\pi\)
\(354\) 0 0
\(355\) −176.674 + 306.008i −0.497673 + 0.861994i
\(356\) 152.540 + 88.0689i 0.428482 + 0.247384i
\(357\) 0 0
\(358\) −44.1101 76.4010i −0.123213 0.213411i
\(359\) 255.794i 0.712518i 0.934387 + 0.356259i \(0.115948\pi\)
−0.934387 + 0.356259i \(0.884052\pi\)
\(360\) 0 0
\(361\) −335.475 −0.929294
\(362\) 156.841 90.5520i 0.433261 0.250144i
\(363\) 0 0
\(364\) 6.56238 11.3664i 0.0180285 0.0312263i
\(365\) 42.7194 + 24.6640i 0.117039 + 0.0675727i
\(366\) 0 0
\(367\) −298.529 517.067i −0.813429 1.40890i −0.910450 0.413619i \(-0.864265\pi\)
0.0970209 0.995282i \(-0.469069\pi\)
\(368\) 138.094i 0.375255i
\(369\) 0 0
\(370\) 593.852 1.60501
\(371\) −208.999 + 120.666i −0.563341 + 0.325245i
\(372\) 0 0
\(373\) 50.3910 87.2798i 0.135097 0.233994i −0.790538 0.612413i \(-0.790199\pi\)
0.925634 + 0.378419i \(0.123532\pi\)
\(374\) −580.944 335.408i −1.55333 0.896814i
\(375\) 0 0
\(376\) −74.3401 128.761i −0.197713 0.342449i
\(377\) 49.9543i 0.132505i
\(378\) 0 0
\(379\) 547.449 1.44446 0.722228 0.691655i \(-0.243118\pi\)
0.722228 + 0.691655i \(0.243118\pi\)
\(380\) −52.5923 + 30.3642i −0.138401 + 0.0799058i
\(381\) 0 0
\(382\) 103.428 179.143i 0.270754 0.468960i
\(383\) −74.4535 42.9858i −0.194396 0.112234i 0.399643 0.916671i \(-0.369134\pi\)
−0.594039 + 0.804436i \(0.702467\pi\)
\(384\) 0 0
\(385\) −142.937 247.574i −0.371264 0.643048i
\(386\) 318.719i 0.825697i
\(387\) 0 0
\(388\) 11.6413 0.0300033
\(389\) 185.712 107.221i 0.477409 0.275632i −0.241927 0.970294i \(-0.577779\pi\)
0.719336 + 0.694662i \(0.244446\pi\)
\(390\) 0 0
\(391\) 455.436 788.838i 1.16480 2.01749i
\(392\) 17.1464 + 9.89949i 0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 155.545 + 269.412i 0.394785 + 0.683788i
\(395\) 276.805i 0.700772i
\(396\) 0 0
\(397\) 552.294 1.39117 0.695585 0.718444i \(-0.255145\pi\)
0.695585 + 0.718444i \(0.255145\pi\)
\(398\) 206.022 118.947i 0.517644 0.298862i
\(399\) 0 0
\(400\) 22.2416 38.5235i 0.0556039 0.0963088i
\(401\) 140.675 + 81.2186i 0.350810 + 0.202540i 0.665042 0.746806i \(-0.268414\pi\)
−0.314232 + 0.949346i \(0.601747\pi\)
\(402\) 0 0
\(403\) 1.13501 + 1.96589i 0.00281640 + 0.00487814i
\(404\) 114.649i 0.283784i
\(405\) 0 0
\(406\) −75.3572 −0.185609
\(407\) 1087.83 628.060i 2.67280 1.54314i
\(408\) 0 0
\(409\) 229.974 398.327i 0.562284 0.973904i −0.435013 0.900424i \(-0.643256\pi\)
0.997297 0.0734799i \(-0.0234105\pi\)
\(410\) 371.048 + 214.224i 0.904994 + 0.522499i
\(411\) 0 0
\(412\) −5.31814 9.21129i −0.0129081 0.0223575i
\(413\) 41.7019i 0.100973i
\(414\) 0 0
\(415\) 230.322 0.554992
\(416\) 12.1512 7.01548i 0.0292095 0.0168641i
\(417\) 0 0
\(418\) −64.2265 + 111.244i −0.153652 + 0.266133i
\(419\) 27.2249 + 15.7183i 0.0649759 + 0.0375138i 0.532136 0.846659i \(-0.321390\pi\)
−0.467160 + 0.884173i \(0.654723\pi\)
\(420\) 0 0
\(421\) 72.8545 + 126.188i 0.173051 + 0.299733i 0.939485 0.342590i \(-0.111304\pi\)
−0.766434 + 0.642323i \(0.777971\pi\)
\(422\) 174.227i 0.412860i
\(423\) 0 0
\(424\) −257.995 −0.608478
\(425\) −254.102 + 146.706i −0.597888 + 0.345191i
\(426\) 0 0
\(427\) 104.197 180.474i 0.244020 0.422655i
\(428\) 15.7104 + 9.07038i 0.0367064 + 0.0211925i
\(429\) 0 0
\(430\) −10.3990 18.0116i −0.0241837 0.0418875i
\(431\) 348.799i 0.809278i 0.914477 + 0.404639i \(0.132603\pi\)
−0.914477 + 0.404639i \(0.867397\pi\)
\(432\) 0 0
\(433\) 570.342 1.31719 0.658594 0.752499i \(-0.271152\pi\)
0.658594 + 0.752499i \(0.271152\pi\)
\(434\) −2.96559 + 1.71219i −0.00683316 + 0.00394513i
\(435\) 0 0
\(436\) −137.837 + 238.741i −0.316141 + 0.547571i
\(437\) −151.053 87.2103i −0.345658 0.199566i
\(438\) 0 0
\(439\) −326.445 565.419i −0.743610 1.28797i −0.950841 0.309679i \(-0.899778\pi\)
0.207231 0.978292i \(-0.433555\pi\)
\(440\) 305.612i 0.694572i
\(441\) 0 0
\(442\) −92.5486 −0.209386
\(443\) 120.348 69.4828i 0.271665 0.156846i −0.357979 0.933730i \(-0.616534\pi\)
0.629644 + 0.776884i \(0.283201\pi\)
\(444\) 0 0
\(445\) 264.649 458.386i 0.594718 1.03008i
\(446\) −155.402 89.7211i −0.348434 0.201168i
\(447\) 0 0
\(448\) 10.5830 + 18.3303i 0.0236228 + 0.0409159i
\(449\) 53.0394i 0.118128i −0.998254 0.0590639i \(-0.981188\pi\)
0.998254 0.0590639i \(-0.0188116\pi\)
\(450\) 0 0
\(451\) 906.258 2.00944
\(452\) 345.304 199.361i 0.763946 0.441065i
\(453\) 0 0
\(454\) −188.172 + 325.923i −0.414475 + 0.717892i
\(455\) −34.1563 19.7201i −0.0750687 0.0433410i
\(456\) 0 0
\(457\) −93.3782 161.736i −0.204329 0.353908i 0.745590 0.666405i \(-0.232168\pi\)
−0.949919 + 0.312497i \(0.898834\pi\)
\(458\) 468.173i 1.02221i
\(459\) 0 0
\(460\) 414.976 0.902122
\(461\) −369.166 + 213.138i −0.800794 + 0.462338i −0.843749 0.536739i \(-0.819656\pi\)
0.0429550 + 0.999077i \(0.486323\pi\)
\(462\) 0 0
\(463\) 97.4829 168.845i 0.210546 0.364677i −0.741339 0.671130i \(-0.765809\pi\)
0.951886 + 0.306454i \(0.0991424\pi\)
\(464\) −69.7673 40.2801i −0.150360 0.0868107i
\(465\) 0 0
\(466\) 2.72572 + 4.72108i 0.00584918 + 0.0101311i
\(467\) 542.269i 1.16118i −0.814197 0.580588i \(-0.802823\pi\)
0.814197 0.580588i \(-0.197177\pi\)
\(468\) 0 0
\(469\) 8.06451 0.0171951
\(470\) −386.930 + 223.394i −0.823255 + 0.475307i
\(471\) 0 0
\(472\) −22.2906 + 38.6085i −0.0472259 + 0.0817976i
\(473\) −38.0983 21.9960i −0.0805460 0.0465033i
\(474\) 0 0
\(475\) 28.0924 + 48.6574i 0.0591419 + 0.102437i
\(476\) 139.612i 0.293302i
\(477\) 0 0
\(478\) −525.118 −1.09857
\(479\) 336.048 194.018i 0.701562 0.405047i −0.106367 0.994327i \(-0.533922\pi\)
0.807929 + 0.589280i \(0.200588\pi\)
\(480\) 0 0
\(481\) 86.6497 150.082i 0.180145 0.312020i
\(482\) 186.108 + 107.450i 0.386117 + 0.222925i
\(483\) 0 0
\(484\) −202.216 350.248i −0.417801 0.723653i
\(485\) 34.9824i 0.0721287i
\(486\) 0 0
\(487\) 299.064 0.614095 0.307047 0.951694i \(-0.400659\pi\)
0.307047 + 0.951694i \(0.400659\pi\)
\(488\) 192.934 111.391i 0.395358 0.228260i
\(489\) 0 0
\(490\) 29.7483 51.5255i 0.0607107 0.105154i
\(491\) 511.155 + 295.115i 1.04105 + 0.601049i 0.920130 0.391613i \(-0.128083\pi\)
0.120918 + 0.992663i \(0.461416\pi\)
\(492\) 0 0
\(493\) 265.689 + 460.187i 0.538923 + 0.933442i
\(494\) 17.7219i 0.0358743i
\(495\) 0 0
\(496\) −3.66081 −0.00738066
\(497\) −134.711 + 77.7755i −0.271048 + 0.156490i
\(498\) 0 0
\(499\) −180.064 + 311.879i −0.360849 + 0.625008i −0.988101 0.153808i \(-0.950846\pi\)
0.627252 + 0.778816i \(0.284180\pi\)
\(500\) 144.479 + 83.4149i 0.288958 + 0.166830i
\(501\) 0 0
\(502\) 159.734 + 276.667i 0.318194 + 0.551129i
\(503\) 3.65643i 0.00726925i 0.999993 + 0.00363462i \(0.00115694\pi\)
−0.999993 + 0.00363462i \(0.998843\pi\)
\(504\) 0 0
\(505\) −344.522 −0.682222
\(506\) 760.162 438.880i 1.50230 0.867351i
\(507\) 0 0
\(508\) 28.7480 49.7929i 0.0565905 0.0980175i
\(509\) 287.797 + 166.160i 0.565417 + 0.326444i 0.755317 0.655360i \(-0.227483\pi\)
−0.189900 + 0.981803i \(0.560816\pi\)
\(510\) 0 0
\(511\) 10.8576 + 18.8059i 0.0212478 + 0.0368022i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −274.742 −0.534517
\(515\) −27.6802 + 15.9812i −0.0537480 + 0.0310314i
\(516\) 0 0
\(517\) −472.525 + 818.436i −0.913974 + 1.58305i
\(518\) 226.402 + 130.713i 0.437069 + 0.252342i
\(519\) 0 0
\(520\) −21.0817 36.5146i −0.0405418 0.0702204i
\(521\) 623.260i 1.19628i −0.801393 0.598138i \(-0.795907\pi\)
0.801393 0.598138i \(-0.204093\pi\)
\(522\) 0 0
\(523\) −646.966 −1.23703 −0.618514 0.785774i \(-0.712265\pi\)
−0.618514 + 0.785774i \(0.712265\pi\)
\(524\) −427.774 + 246.975i −0.816362 + 0.471327i
\(525\) 0 0
\(526\) −163.034 + 282.383i −0.309950 + 0.536849i
\(527\) 20.9117 + 12.0734i 0.0396807 + 0.0229097i
\(528\) 0 0
\(529\) 331.435 + 574.062i 0.626531 + 1.08518i
\(530\) 775.281i 1.46279i
\(531\) 0 0
\(532\) −26.7339 −0.0502517
\(533\) 108.280 62.5155i 0.203152 0.117290i
\(534\) 0 0
\(535\) 27.2567 47.2101i 0.0509472 0.0882431i
\(536\) 7.46629 + 4.31066i 0.0139296 + 0.00804228i
\(537\) 0 0
\(538\) 22.7980 + 39.4872i 0.0423754 + 0.0733963i
\(539\) 125.847i 0.233483i
\(540\) 0 0
\(541\) 241.271 0.445972 0.222986 0.974822i \(-0.428420\pi\)
0.222986 + 0.974822i \(0.428420\pi\)
\(542\) 264.608 152.772i 0.488207 0.281866i
\(543\) 0 0
\(544\) 74.6256 129.255i 0.137179 0.237602i
\(545\) 717.424 + 414.205i 1.31637 + 0.760009i
\(546\) 0 0
\(547\) −263.904 457.095i −0.482457 0.835641i 0.517340 0.855780i \(-0.326922\pi\)
−0.999797 + 0.0201394i \(0.993589\pi\)
\(548\) 393.907i 0.718809i
\(549\) 0 0
\(550\) −282.746 −0.514084
\(551\) 88.1201 50.8762i 0.159928 0.0923342i
\(552\) 0 0
\(553\) −60.9276 + 105.530i −0.110176 + 0.190831i
\(554\) −261.994 151.262i −0.472914 0.273037i
\(555\) 0 0
\(556\) −226.986 393.151i −0.408248 0.707106i
\(557\) 449.852i 0.807634i −0.914840 0.403817i \(-0.867683\pi\)
0.914840 0.403817i \(-0.132317\pi\)
\(558\) 0 0
\(559\) −6.06933 −0.0108575
\(560\) 55.0831 31.8022i 0.0983626 0.0567897i
\(561\) 0 0
\(562\) 46.7933 81.0484i 0.0832622 0.144214i
\(563\) −751.190 433.700i −1.33426 0.770337i −0.348313 0.937378i \(-0.613245\pi\)
−0.985950 + 0.167042i \(0.946579\pi\)
\(564\) 0 0
\(565\) −599.086 1037.65i −1.06033 1.83654i
\(566\) 211.344i 0.373399i
\(567\) 0 0
\(568\) −166.291 −0.292766
\(569\) 340.603 196.647i 0.598599 0.345601i −0.169891 0.985463i \(-0.554342\pi\)
0.768490 + 0.639862i \(0.221008\pi\)
\(570\) 0 0
\(571\) 548.804 950.557i 0.961129 1.66472i 0.241454 0.970412i \(-0.422376\pi\)
0.719675 0.694311i \(-0.244291\pi\)
\(572\) −77.2359 44.5922i −0.135028 0.0779583i
\(573\) 0 0
\(574\) 94.3060 + 163.343i 0.164296 + 0.284569i
\(575\) 383.928i 0.667701i
\(576\) 0 0
\(577\) −643.623 −1.11546 −0.557732 0.830021i \(-0.688328\pi\)
−0.557732 + 0.830021i \(0.688328\pi\)
\(578\) −498.621 + 287.879i −0.862666 + 0.498060i
\(579\) 0 0
\(580\) −121.043 + 209.653i −0.208695 + 0.361470i
\(581\) 87.8084 + 50.6962i 0.151133 + 0.0872568i
\(582\) 0 0
\(583\) 819.939 + 1420.18i 1.40641 + 2.43598i
\(584\) 23.2146i 0.0397510i
\(585\) 0 0
\(586\) 499.661 0.852663
\(587\) −891.364 + 514.629i −1.51851 + 0.876711i −0.518744 + 0.854929i \(0.673600\pi\)
−0.999763 + 0.0217812i \(0.993066\pi\)
\(588\) 0 0
\(589\) 2.31190 4.00434i 0.00392514 0.00679853i
\(590\) 116.020 + 66.9839i 0.196643 + 0.113532i
\(591\) 0 0
\(592\) 139.738 + 242.033i 0.236044 + 0.408840i
\(593\) 452.693i 0.763395i 0.924287 + 0.381698i \(0.124660\pi\)
−0.924287 + 0.381698i \(0.875340\pi\)
\(594\) 0 0
\(595\) −419.537 −0.705104
\(596\) −261.654 + 151.066i −0.439017 + 0.253466i
\(597\) 0 0
\(598\) 60.5497 104.875i 0.101254 0.175376i
\(599\) 261.867 + 151.189i 0.437174 + 0.252403i 0.702398 0.711784i \(-0.252113\pi\)
−0.265224 + 0.964187i \(0.585446\pi\)
\(600\) 0 0
\(601\) −69.7673 120.841i −0.116085 0.201066i 0.802128 0.597153i \(-0.203701\pi\)
−0.918213 + 0.396087i \(0.870368\pi\)
\(602\) 9.15572i 0.0152088i
\(603\) 0 0
\(604\) −168.184 −0.278451
\(605\) −1052.50 + 607.664i −1.73968 + 1.00440i
\(606\) 0 0
\(607\) −494.708 + 856.859i −0.815004 + 1.41163i 0.0943203 + 0.995542i \(0.469932\pi\)
−0.909325 + 0.416087i \(0.863401\pi\)
\(608\) −24.7508 14.2899i −0.0407085 0.0235031i
\(609\) 0 0
\(610\) −334.732 579.774i −0.548742 0.950449i
\(611\) 130.383i 0.213393i
\(612\) 0 0
\(613\) 536.913 0.875877 0.437939 0.899005i \(-0.355709\pi\)
0.437939 + 0.899005i \(0.355709\pi\)
\(614\) −654.542 + 377.900i −1.06603 + 0.615473i
\(615\) 0 0
\(616\) 67.2683 116.512i 0.109202 0.189143i
\(617\) −434.960 251.124i −0.704959 0.407008i 0.104233 0.994553i \(-0.466761\pi\)
−0.809192 + 0.587545i \(0.800095\pi\)
\(618\) 0 0
\(619\) 112.854 + 195.468i 0.182316 + 0.315781i 0.942669 0.333730i \(-0.108307\pi\)
−0.760353 + 0.649510i \(0.774974\pi\)
\(620\) 11.0008i 0.0177433i
\(621\) 0 0
\(622\) 422.062 0.678556
\(623\) 201.791 116.504i 0.323902 0.187005i
\(624\) 0 0
\(625\) 389.674 674.935i 0.623478 1.07990i
\(626\) −65.4496 37.7874i −0.104552 0.0603632i
\(627\) 0 0
\(628\) 23.2282 + 40.2324i 0.0369876 + 0.0640643i
\(629\) 1843.43i 2.93074i
\(630\) 0 0
\(631\) −17.8821 −0.0283393 −0.0141696 0.999900i \(-0.504510\pi\)
−0.0141696 + 0.999900i \(0.504510\pi\)
\(632\) −112.816 + 65.1343i −0.178506 + 0.103061i
\(633\) 0 0
\(634\) −179.881 + 311.562i −0.283723 + 0.491423i
\(635\) −149.629 86.3884i −0.235636 0.136045i
\(636\) 0 0
\(637\) −8.68121 15.0363i −0.0136283 0.0236049i
\(638\) 512.062i 0.802604i
\(639\) 0 0
\(640\) 67.9960 0.106244
\(641\) −120.902 + 69.8031i −0.188615 + 0.108897i −0.591334 0.806427i \(-0.701399\pi\)
0.402719 + 0.915324i \(0.368065\pi\)
\(642\) 0 0
\(643\) 34.3711 59.5325i 0.0534543 0.0925855i −0.838060 0.545578i \(-0.816310\pi\)
0.891514 + 0.452992i \(0.149644\pi\)
\(644\) 158.206 + 91.3405i 0.245662 + 0.141833i
\(645\) 0 0
\(646\) 94.2564 + 163.257i 0.145908 + 0.252720i
\(647\) 965.690i 1.49257i −0.665629 0.746283i \(-0.731837\pi\)
0.665629 0.746283i \(-0.268163\pi\)
\(648\) 0 0
\(649\) 283.370 0.436625
\(650\) −33.7826 + 19.5044i −0.0519732 + 0.0300068i
\(651\) 0 0
\(652\) −244.894 + 424.169i −0.375605 + 0.650566i
\(653\) 838.665 + 484.204i 1.28433 + 0.741506i 0.977636 0.210303i \(-0.0674451\pi\)
0.306690 + 0.951809i \(0.400778\pi\)
\(654\) 0 0
\(655\) 742.168 + 1285.47i 1.13308 + 1.96255i
\(656\) 201.635i 0.307370i
\(657\) 0 0
\(658\) −196.685 −0.298914
\(659\) 406.390 234.629i 0.616676 0.356038i −0.158898 0.987295i \(-0.550794\pi\)
0.775574 + 0.631257i \(0.217461\pi\)
\(660\) 0 0
\(661\) −274.083 + 474.726i −0.414649 + 0.718193i −0.995392 0.0958941i \(-0.969429\pi\)
0.580743 + 0.814087i \(0.302762\pi\)
\(662\) −177.856 102.685i −0.268664 0.155113i
\(663\) 0 0
\(664\) 54.1965 + 93.8711i 0.0816213 + 0.141372i
\(665\) 80.3361i 0.120806i
\(666\) 0 0
\(667\) −695.305 −1.04244
\(668\) 160.742 92.8044i 0.240632 0.138929i
\(669\) 0 0
\(670\) 12.9537 22.4364i 0.0193338 0.0334872i
\(671\) −1226.34 708.028i −1.82763 1.05518i
\(672\) 0 0
\(673\) −43.8580 75.9643i −0.0651679 0.112874i 0.831601 0.555374i \(-0.187425\pi\)
−0.896768 + 0.442500i \(0.854092\pi\)
\(674\) 742.103i 1.10104i
\(675\) 0 0
\(676\) 325.696 0.481798
\(677\) −507.524 + 293.019i −0.749666 + 0.432820i −0.825573 0.564295i \(-0.809148\pi\)
0.0759074 + 0.997115i \(0.475815\pi\)
\(678\) 0 0
\(679\) 7.69999 13.3368i 0.0113402 0.0196418i
\(680\) −388.416 224.252i −0.571200 0.329782i
\(681\) 0 0
\(682\) 11.6345 + 20.1516i 0.0170594 + 0.0295477i
\(683\) 745.627i 1.09169i 0.837885 + 0.545847i \(0.183792\pi\)
−0.837885 + 0.545847i \(0.816208\pi\)
\(684\) 0 0
\(685\) −1183.70 −1.72803
\(686\) 22.6826 13.0958i 0.0330650 0.0190901i
\(687\) 0 0
\(688\) 4.89394 8.47655i 0.00711328 0.0123206i
\(689\) 195.933 + 113.122i 0.284374 + 0.164183i
\(690\) 0 0
\(691\) −166.576 288.518i −0.241065 0.417537i 0.719953 0.694023i \(-0.244163\pi\)
−0.961018 + 0.276486i \(0.910830\pi\)
\(692\) 359.240i 0.519132i
\(693\) 0 0
\(694\) −731.174 −1.05356
\(695\) −1181.43 + 682.099i −1.69990 + 0.981437i
\(696\) 0 0
\(697\) 664.995 1151.80i 0.954081 1.65252i
\(698\) 64.6053 + 37.2999i 0.0925577 + 0.0534382i
\(699\) 0 0
\(700\) −29.4228 50.9618i −0.0420326 0.0728026i
\(701\) 999.755i 1.42618i 0.701070 + 0.713092i \(0.252706\pi\)
−0.701070 + 0.713092i \(0.747294\pi\)
\(702\) 0 0
\(703\) −352.995 −0.502126
\(704\) 124.557 71.9128i 0.176927 0.102149i
\(705\) 0 0
\(706\) 345.353 598.168i 0.489168 0.847264i
\(707\) −131.346 75.8329i −0.185780 0.107260i
\(708\) 0 0
\(709\) −679.527 1176.97i −0.958430 1.66005i −0.726317 0.687360i \(-0.758769\pi\)
−0.232113 0.972689i \(-0.574564\pi\)
\(710\) 499.709i 0.703815i
\(711\) 0 0
\(712\) 249.096 0.349854
\(713\) −27.3629 + 15.7980i −0.0383771 + 0.0221570i
\(714\) 0 0
\(715\) −134.001 + 232.096i −0.187414 + 0.324610i
\(716\) −108.047 62.3812i −0.150904 0.0871245i
\(717\) 0 0
\(718\) 180.874 + 313.282i 0.251913 + 0.436326i
\(719\) 709.113i 0.986249i 0.869959 + 0.493125i \(0.164145\pi\)
−0.869959 + 0.493125i \(0.835855\pi\)
\(720\) 0 0
\(721\) −14.0705 −0.0195152
\(722\) −410.871 + 237.217i −0.569074 + 0.328555i
\(723\) 0 0
\(724\) 128.060 221.806i 0.176878 0.306362i
\(725\) 193.967 + 111.987i 0.267540 + 0.154464i
\(726\) 0 0
\(727\) 59.2031 + 102.543i 0.0814347 + 0.141049i 0.903866 0.427815i \(-0.140716\pi\)
−0.822432 + 0.568864i \(0.807383\pi\)
\(728\) 18.5612i 0.0254962i
\(729\) 0 0
\(730\) 69.7604 0.0955622
\(731\) −55.9116 + 32.2806i −0.0764864 + 0.0441595i
\(732\) 0 0
\(733\) −516.828 + 895.172i −0.705085 + 1.22124i 0.261575 + 0.965183i \(0.415758\pi\)
−0.966661 + 0.256061i \(0.917575\pi\)
\(734\) −731.243 422.183i −0.996243 0.575181i
\(735\) 0 0
\(736\) 97.6471 + 169.130i 0.132673 + 0.229796i
\(737\) 54.7993i 0.0743546i
\(738\) 0 0
\(739\) −862.977 −1.16776 −0.583882 0.811839i \(-0.698467\pi\)
−0.583882 + 0.811839i \(0.698467\pi\)
\(740\) 727.317 419.917i 0.982861 0.567455i
\(741\) 0 0
\(742\) −170.647 + 295.570i −0.229983 + 0.398342i
\(743\) −564.659 326.006i −0.759972 0.438770i 0.0693136 0.997595i \(-0.477919\pi\)
−0.829286 + 0.558825i \(0.811252\pi\)
\(744\) 0 0
\(745\) 453.958 + 786.278i 0.609339 + 1.05541i
\(746\) 142.527i 0.191055i
\(747\) 0 0
\(748\) −948.678 −1.26829
\(749\) 20.7829 11.9990i 0.0277475 0.0160200i
\(750\) 0 0
\(751\) 11.1700 19.3470i 0.0148735 0.0257617i −0.858493 0.512826i \(-0.828599\pi\)
0.873366 + 0.487064i \(0.161932\pi\)
\(752\) −182.095 105.133i −0.242148 0.139804i
\(753\) 0 0
\(754\) 35.3231 + 61.1813i 0.0468476 + 0.0811423i
\(755\) 505.398i 0.669402i
\(756\) 0 0
\(757\) 117.194 0.154813 0.0774067 0.997000i \(-0.475336\pi\)
0.0774067 + 0.997000i \(0.475336\pi\)
\(758\) 670.485 387.105i 0.884545 0.510692i
\(759\) 0 0
\(760\) −42.9415 + 74.3768i −0.0565019 + 0.0978642i
\(761\) 875.361 + 505.390i 1.15028 + 0.664113i 0.948955 0.315413i \(-0.102143\pi\)
0.201322 + 0.979525i \(0.435476\pi\)
\(762\) 0 0
\(763\) 182.342 + 315.825i 0.238980 + 0.413925i
\(764\) 292.539i 0.382904i
\(765\) 0 0
\(766\) −121.582 −0.158723
\(767\) 33.8571 19.5474i 0.0441422 0.0254855i
\(768\) 0 0
\(769\) 155.362 269.094i 0.202031 0.349928i −0.747152 0.664653i \(-0.768579\pi\)
0.949183 + 0.314726i \(0.101913\pi\)
\(770\) −350.122 202.143i −0.454704 0.262523i
\(771\) 0 0
\(772\) 225.369 + 390.350i 0.291928 + 0.505634i
\(773\) 401.803i 0.519797i −0.965636 0.259899i \(-0.916311\pi\)
0.965636 0.259899i \(-0.0836891\pi\)
\(774\) 0 0
\(775\) 10.1778 0.0131326
\(776\) 14.2576 8.23164i 0.0183732 0.0106078i
\(777\) 0 0
\(778\) 151.633 262.637i 0.194902 0.337579i
\(779\) −220.556 127.338i −0.283127 0.163464i
\(780\) 0 0
\(781\) 528.494 + 915.378i 0.676688 + 1.17206i
\(782\) 1288.17i 1.64727i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 120.900 69.8014i 0.154012 0.0889189i
\(786\) 0 0
\(787\) −274.555 + 475.543i −0.348863 + 0.604248i −0.986048 0.166463i \(-0.946765\pi\)
0.637185 + 0.770711i \(0.280099\pi\)
\(788\) 381.007 + 219.974i 0.483511 + 0.279155i
\(789\) 0 0
\(790\) 195.731 + 339.015i 0.247760 + 0.429133i
\(791\) 527.460i 0.666827i
\(792\) 0 0
\(793\) −195.365 −0.246362
\(794\) 676.420 390.531i 0.851914 0.491853i
\(795\) 0 0
\(796\) 168.217 291.360i 0.211327 0.366030i
\(797\) −1141.01 658.761i −1.43163 0.826551i −0.434384 0.900728i \(-0.643034\pi\)
−0.997245 + 0.0741765i \(0.976367\pi\)
\(798\) 0 0
\(799\) 693.459 + 1201.11i 0.867909 + 1.50326i
\(800\) 62.9086i 0.0786358i
\(801\) 0 0
\(802\) 229.721 0.286435
\(803\) 127.789 73.7788i 0.159139 0.0918790i
\(804\) 0 0
\(805\) 274.481 475.415i 0.340970 0.590577i
\(806\) 2.78019 + 1.60514i 0.00344937 + 0.00199149i
\(807\) 0 0
\(808\) −81.0688 140.415i −0.100333 0.173781i
\(809\) 383.248i 0.473731i 0.971542 + 0.236865i \(0.0761201\pi\)
−0.971542 + 0.236865i \(0.923880\pi\)
\(810\) 0 0
\(811\) 854.626 1.05379 0.526896 0.849929i \(-0.323356\pi\)
0.526896 + 0.849929i \(0.323356\pi\)
\(812\) −92.2934 + 53.2856i −0.113662 + 0.0656227i
\(813\) 0 0
\(814\) 888.211 1538.43i 1.09117 1.88996i
\(815\) 1274.64 + 735.914i 1.56398 + 0.902962i
\(816\) 0 0
\(817\) 6.18133 + 10.7064i 0.00756588 + 0.0131045i
\(818\) 650.465i 0.795189i
\(819\) 0 0
\(820\) 605.918 0.738925
\(821\) −752.077 + 434.212i −0.916050 + 0.528882i −0.882373 0.470551i \(-0.844055\pi\)
−0.0336771 + 0.999433i \(0.510722\pi\)
\(822\) 0 0
\(823\) −177.628 + 307.660i −0.215829 + 0.373828i −0.953529 0.301302i \(-0.902579\pi\)
0.737699 + 0.675129i \(0.235912\pi\)
\(824\) −13.0267 7.52099i −0.0158091 0.00912741i
\(825\) 0 0
\(826\) 29.4877 + 51.0742i 0.0356994 + 0.0618332i
\(827\) 558.661i 0.675527i −0.941231 0.337763i \(-0.890330\pi\)
0.941231 0.337763i \(-0.109670\pi\)
\(828\) 0 0
\(829\) −838.199 −1.01110 −0.505548 0.862798i \(-0.668710\pi\)
−0.505548 + 0.862798i \(0.668710\pi\)
\(830\) 282.085 162.862i 0.339862 0.196219i
\(831\) 0 0
\(832\) 9.92138 17.1843i 0.0119247 0.0206543i
\(833\) −159.945 92.3444i −0.192011 0.110858i
\(834\) 0 0
\(835\) −278.880 483.034i −0.333988 0.578484i
\(836\) 181.660i 0.217297i
\(837\) 0 0
\(838\) 44.4580 0.0530526
\(839\) 1039.44 600.120i 1.23890 0.715280i 0.270031 0.962852i \(-0.412966\pi\)
0.968870 + 0.247572i \(0.0796327\pi\)
\(840\) 0 0
\(841\) −217.689 + 377.048i −0.258845 + 0.448333i
\(842\) 178.456 + 103.032i 0.211943 + 0.122366i
\(843\) 0 0
\(844\) 123.197 + 213.384i 0.145968 + 0.252824i
\(845\) 978.725i 1.15825i
\(846\) 0 0
\(847\) −535.012 −0.631656
\(848\) −315.977 + 182.430i −0.372615 + 0.215129i
\(849\) 0 0
\(850\) −207.474 + 359.355i −0.244087 + 0.422771i
\(851\) 2088.96 + 1206.06i 2.45471 + 1.41723i
\(852\) 0 0
\(853\) −727.938 1260.83i −0.853386 1.47811i −0.878134 0.478414i \(-0.841212\pi\)
0.0247485 0.999694i \(-0.492122\pi\)
\(854\) 294.712i 0.345096i
\(855\) 0 0
\(856\) 25.6549 0.0299707
\(857\) −883.035 + 509.821i −1.03038 + 0.594890i −0.917093 0.398672i \(-0.869471\pi\)
−0.113286 + 0.993562i \(0.536138\pi\)
\(858\) 0 0
\(859\) 219.697 380.527i 0.255759 0.442988i −0.709342 0.704864i \(-0.751008\pi\)
0.965101 + 0.261876i \(0.0843413\pi\)
\(860\) −25.4723 14.7064i −0.0296189 0.0171005i
\(861\) 0 0
\(862\) 246.638 + 427.189i 0.286123 + 0.495579i
\(863\) 1307.81i 1.51542i −0.652591 0.757711i \(-0.726318\pi\)
0.652591 0.757711i \(-0.273682\pi\)
\(864\) 0 0
\(865\) 1079.53 1.24801
\(866\) 698.524 403.293i 0.806609 0.465696i
\(867\) 0 0
\(868\) −2.42140 + 4.19398i −0.00278963 + 0.00483177i
\(869\) 717.087 + 414.010i 0.825187 + 0.476422i
\(870\) 0 0
\(871\) −3.78017 6.54745i −0.00434004 0.00751716i
\(872\) 389.863i 0.447090i
\(873\) 0 0
\(874\) −246.668 −0.282229
\(875\) 191.128 110.348i 0.218431 0.126111i
\(876\) 0 0
\(877\) 442.418 766.291i 0.504468 0.873764i −0.495519 0.868597i \(-0.665022\pi\)
0.999987 0.00516691i \(-0.00164468\pi\)
\(878\) −799.624 461.663i −0.910733 0.525812i
\(879\) 0 0
\(880\) −216.100 374.296i −0.245568 0.425337i
\(881\) 1529.26i 1.73583i 0.496716 + 0.867913i \(0.334539\pi\)
−0.496716 + 0.867913i \(0.665461\pi\)
\(882\) 0 0
\(883\) 116.662 0.132120 0.0660600 0.997816i \(-0.478957\pi\)
0.0660600 + 0.997816i \(0.478957\pi\)
\(884\) −113.348 + 65.4418i −0.128222 + 0.0740292i
\(885\) 0 0
\(886\) 98.2635 170.197i 0.110907 0.192096i
\(887\) 901.733 + 520.616i 1.01661 + 0.586940i 0.913120 0.407690i \(-0.133666\pi\)
0.103490 + 0.994630i \(0.466999\pi\)
\(888\) 0 0
\(889\) −38.0300 65.8698i −0.0427784 0.0740943i
\(890\) 748.542i 0.841058i
\(891\) 0 0
\(892\) −253.770 −0.284495
\(893\) 229.997 132.789i 0.257555 0.148700i
\(894\) 0 0
\(895\) −187.457 + 324.685i −0.209449 + 0.362777i
\(896\) 25.9230 + 14.9666i 0.0289319 + 0.0167038i
\(897\) 0 0
\(898\) −37.5045 64.9598i −0.0417645 0.0723383i
\(899\) 18.4322i 0.0205030i
\(900\) 0 0
\(901\) 2406.62 2.67106
\(902\) 1109.93 640.821i 1.23053 0.710445i
\(903\) 0 0
\(904\) 281.939 488.333i 0.311880 0.540192i
\(905\) −666.534 384.823i −0.736501 0.425219i
\(906\) 0 0
\(907\) −368.077 637.528i −0.405818 0.702897i 0.588598 0.808426i \(-0.299680\pi\)
−0.994416 + 0.105528i \(0.966347\pi\)
\(908\) 532.230i 0.586156i
\(909\) 0 0
\(910\) −55.7770 −0.0612934
\(911\) 688.026 397.232i 0.755242 0.436039i −0.0723426 0.997380i \(-0.523047\pi\)
0.827585 + 0.561340i \(0.189714\pi\)
\(912\) 0 0
\(913\) 344.487 596.669i 0.377313 0.653525i
\(914\) −228.729 132.057i −0.250251 0.144482i
\(915\) 0 0
\(916\) 331.048 + 573.393i 0.361406 + 0.625974i
\(917\) 653.435i 0.712579i
\(918\) 0 0
\(919\) −623.915 −0.678907 −0.339453 0.940623i \(-0.610242\pi\)
−0.339453 + 0.940623i \(0.610242\pi\)
\(920\) 508.240 293.432i 0.552434 0.318948i
\(921\) 0 0
\(922\) −301.423 + 522.079i −0.326923 + 0.566247i
\(923\) 126.289 + 72.9131i 0.136825 + 0.0789958i
\(924\) 0 0
\(925\) −388.499 672.900i −0.419999 0.727460i
\(926\) 275.723i 0.297757i
\(927\) 0 0
\(928\) −113.929 −0.122769
\(929\) −324.127 + 187.135i −0.348899 + 0.201437i −0.664200 0.747555i \(-0.731228\pi\)
0.315301 + 0.948992i \(0.397894\pi\)
\(930\) 0 0
\(931\) −17.6828 + 30.6275i −0.0189934 + 0.0328974i
\(932\) 6.67662 + 3.85475i 0.00716376 + 0.00413600i
\(933\) 0 0
\(934\) −383.442 664.142i −0.410538 0.711073i
\(935\) 2850.81i 3.04899i
\(936\) 0 0
\(937\) −1287.98 −1.37458 −0.687288 0.726385i \(-0.741199\pi\)
−0.687288 + 0.726385i \(0.741199\pi\)
\(938\) 9.87697 5.70247i 0.0105298 0.00607939i
\(939\) 0 0
\(940\) −315.927 + 547.202i −0.336093 + 0.582129i
\(941\) 513.495 + 296.466i 0.545691 + 0.315055i 0.747382 0.664394i \(-0.231310\pi\)
−0.201691 + 0.979449i \(0.564644\pi\)
\(942\) 0 0
\(943\) 870.141 + 1507.13i 0.922737 + 1.59823i
\(944\) 63.0474i 0.0667875i
\(945\) 0 0
\(946\) −62.2142 −0.0657656
\(947\) 191.983 110.842i 0.202728 0.117045i −0.395199 0.918595i \(-0.629324\pi\)
0.597927 + 0.801550i \(0.295991\pi\)
\(948\) 0 0
\(949\) 10.1788 17.6303i 0.0107258 0.0185777i
\(950\) 68.8120 + 39.7286i 0.0724337 + 0.0418196i
\(951\) 0 0
\(952\) −98.7204 170.989i −0.103698 0.179610i
\(953\) 1153.34i 1.21022i −0.796140 0.605112i \(-0.793128\pi\)
0.796140 0.605112i \(-0.206872\pi\)
\(954\) 0 0
\(955\) −879.088 −0.920511
\(956\) −643.135 + 371.314i −0.672736 + 0.388404i
\(957\) 0 0
\(958\) 274.382 475.244i 0.286412 0.496079i
\(959\) −451.278 260.545i −0.470571 0.271684i
\(960\) 0 0
\(961\) 480.081 + 831.525i 0.499564 + 0.865271i
\(962\) 245.082i 0.254763i
\(963\) 0 0
\(964\) 303.914 0.315263
\(965\) 1173.01 677.239i 1.21556 0.701802i
\(966\) 0 0
\(967\) −120.494 + 208.702i −0.124606 + 0.215824i −0.921579 0.388191i \(-0.873100\pi\)
0.796973 + 0.604015i \(0.206433\pi\)
\(968\) −495.325 285.976i −0.511700 0.295430i
\(969\) 0 0
\(970\) −24.7363 42.8445i −0.0255013 0.0441696i
\(971\) 1829.70i 1.88434i 0.335131 + 0.942172i \(0.391220\pi\)
−0.335131 + 0.942172i \(0.608780\pi\)
\(972\) 0 0
\(973\) −600.548 −0.617213
\(974\) 366.277 211.470i 0.376055 0.217115i
\(975\) 0 0
\(976\) 157.530 272.851i 0.161404 0.279560i
\(977\) −617.992 356.798i −0.632540 0.365197i 0.149195 0.988808i \(-0.452332\pi\)
−0.781735 + 0.623610i \(0.785665\pi\)
\(978\) 0 0
\(979\) −791.660 1371.20i −0.808641 1.40061i
\(980\) 84.1408i 0.0858580i
\(981\) 0 0
\(982\) 834.712 0.850012
\(983\) 13.1289 7.57997i 0.0133559 0.00771106i −0.493307 0.869855i \(-0.664212\pi\)
0.506663 + 0.862144i \(0.330879\pi\)
\(984\) 0 0
\(985\) 661.029 1144.94i 0.671096 1.16237i
\(986\) 650.803 + 375.741i 0.660043 + 0.381076i
\(987\) 0 0
\(988\) 12.5313 + 21.7048i 0.0126835 + 0.0219684i
\(989\) 84.4778i 0.0854174i
\(990\) 0 0
\(991\) 1059.57 1.06919 0.534597 0.845107i \(-0.320463\pi\)
0.534597 + 0.845107i \(0.320463\pi\)
\(992\) −4.48355 + 2.58858i −0.00451971 + 0.00260946i
\(993\) 0 0
\(994\) −109.991 + 190.510i −0.110655 + 0.191660i
\(995\) −875.544 505.495i −0.879944 0.508036i
\(996\) 0 0
\(997\) −213.586 369.941i −0.214228 0.371054i 0.738805 0.673919i \(-0.235390\pi\)
−0.953034 + 0.302865i \(0.902057\pi\)
\(998\) 509.297i 0.510317i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.q.a.71.8 24
3.2 odd 2 126.3.q.a.113.5 yes 24
9.2 odd 6 inner 378.3.q.a.197.8 24
9.4 even 3 1134.3.b.c.323.22 24
9.5 odd 6 1134.3.b.c.323.3 24
9.7 even 3 126.3.q.a.29.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.5 24 9.7 even 3
126.3.q.a.113.5 yes 24 3.2 odd 2
378.3.q.a.71.8 24 1.1 even 1 trivial
378.3.q.a.197.8 24 9.2 odd 6 inner
1134.3.b.c.323.3 24 9.5 odd 6
1134.3.b.c.323.22 24 9.4 even 3