Properties

Label 378.3.o.a.307.7
Level $378$
Weight $3$
Character 378.307
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(181,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 307.7
Character \(\chi\) \(=\) 378.307
Dual form 378.3.o.a.181.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(4.98058 + 2.87554i) q^{5} +(5.06966 - 4.82685i) q^{7} +2.82843 q^{8} -8.13325i q^{10} +(8.66094 + 15.0012i) q^{11} +(-11.7856 - 6.80443i) q^{13} +(-9.49646 - 2.79594i) q^{14} +(-2.00000 - 3.46410i) q^{16} +10.4941i q^{17} +23.0584i q^{19} +(-9.96116 + 5.75108i) q^{20} +(12.2484 - 21.2149i) q^{22} +(13.5925 - 23.5429i) q^{23} +(4.03745 + 6.99307i) q^{25} +19.2458i q^{26} +(3.29069 + 13.6078i) q^{28} +(22.7948 + 39.4817i) q^{29} +(0.774381 + 0.447089i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(12.8526 - 7.42048i) q^{34} +(39.1297 - 9.46251i) q^{35} +51.1625 q^{37} +(28.2407 - 16.3048i) q^{38} +(14.0872 + 8.13325i) q^{40} +(-21.1730 - 12.2242i) q^{41} +(-5.94767 - 10.3017i) q^{43} -34.6438 q^{44} -38.4454 q^{46} +(14.4813 - 8.36076i) q^{47} +(2.40298 - 48.9410i) q^{49} +(5.70982 - 9.88970i) q^{50} +(23.5712 - 13.6089i) q^{52} +79.0686 q^{53} +99.6195i q^{55} +(14.3392 - 13.6524i) q^{56} +(32.2367 - 55.8355i) q^{58} +(-37.5149 - 21.6592i) q^{59} +(42.3562 - 24.4543i) q^{61} -1.26456i q^{62} +8.00000 q^{64} +(-39.1328 - 67.7800i) q^{65} +(-5.17274 + 8.95945i) q^{67} +(-18.1764 - 10.4941i) q^{68} +(-39.2580 - 41.2329i) q^{70} -42.0936 q^{71} -109.752i q^{73} +(-36.1774 - 62.6610i) q^{74} +(-39.9383 - 23.0584i) q^{76} +(116.317 + 34.2459i) q^{77} +(56.6624 + 98.1421i) q^{79} -23.0043i q^{80} +34.5753i q^{82} +(-82.8440 + 47.8300i) q^{83} +(-30.1763 + 52.2669i) q^{85} +(-8.41128 + 14.5688i) q^{86} +(24.4968 + 42.4298i) q^{88} +123.188i q^{89} +(-92.5931 + 22.3913i) q^{91} +(27.1850 + 47.0858i) q^{92} +(-20.4796 - 11.8239i) q^{94} +(-66.3053 + 114.844i) q^{95} +(-20.9168 + 12.0763i) q^{97} +(-61.6395 + 31.6635i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 12 q^{11} + 12 q^{14} - 64 q^{16} - 12 q^{23} + 80 q^{25} + 8 q^{28} + 48 q^{29} - 348 q^{35} - 88 q^{37} + 32 q^{43} - 48 q^{44} + 48 q^{46} + 50 q^{49} - 48 q^{50} + 864 q^{53}+ \cdots - 624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 4.98058 + 2.87554i 0.996116 + 0.575108i 0.907097 0.420922i \(-0.138293\pi\)
0.0890192 + 0.996030i \(0.471627\pi\)
\(6\) 0 0
\(7\) 5.06966 4.82685i 0.724238 0.689550i
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 8.13325i 0.813325i
\(11\) 8.66094 + 15.0012i 0.787358 + 1.36374i 0.927580 + 0.373625i \(0.121885\pi\)
−0.140222 + 0.990120i \(0.544782\pi\)
\(12\) 0 0
\(13\) −11.7856 6.80443i −0.906586 0.523418i −0.0272552 0.999629i \(-0.508677\pi\)
−0.879331 + 0.476211i \(0.842010\pi\)
\(14\) −9.49646 2.79594i −0.678318 0.199710i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 10.4941i 0.617302i 0.951175 + 0.308651i \(0.0998776\pi\)
−0.951175 + 0.308651i \(0.900122\pi\)
\(18\) 0 0
\(19\) 23.0584i 1.21360i 0.794855 + 0.606800i \(0.207547\pi\)
−0.794855 + 0.606800i \(0.792453\pi\)
\(20\) −9.96116 + 5.75108i −0.498058 + 0.287554i
\(21\) 0 0
\(22\) 12.2484 21.2149i 0.556746 0.964313i
\(23\) 13.5925 23.5429i 0.590978 1.02360i −0.403123 0.915146i \(-0.632075\pi\)
0.994101 0.108458i \(-0.0345912\pi\)
\(24\) 0 0
\(25\) 4.03745 + 6.99307i 0.161498 + 0.279723i
\(26\) 19.2458i 0.740225i
\(27\) 0 0
\(28\) 3.29069 + 13.6078i 0.117525 + 0.485992i
\(29\) 22.7948 + 39.4817i 0.786026 + 1.36144i 0.928384 + 0.371622i \(0.121198\pi\)
−0.142357 + 0.989815i \(0.545468\pi\)
\(30\) 0 0
\(31\) 0.774381 + 0.447089i 0.0249800 + 0.0144222i 0.512438 0.858724i \(-0.328742\pi\)
−0.487458 + 0.873146i \(0.662076\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 12.8526 7.42048i 0.378019 0.218249i
\(35\) 39.1297 9.46251i 1.11799 0.270357i
\(36\) 0 0
\(37\) 51.1625 1.38277 0.691386 0.722486i \(-0.257001\pi\)
0.691386 + 0.722486i \(0.257001\pi\)
\(38\) 28.2407 16.3048i 0.743175 0.429072i
\(39\) 0 0
\(40\) 14.0872 + 8.13325i 0.352180 + 0.203331i
\(41\) −21.1730 12.2242i −0.516413 0.298151i 0.219053 0.975713i \(-0.429703\pi\)
−0.735466 + 0.677562i \(0.763037\pi\)
\(42\) 0 0
\(43\) −5.94767 10.3017i −0.138318 0.239574i 0.788542 0.614981i \(-0.210836\pi\)
−0.926860 + 0.375407i \(0.877503\pi\)
\(44\) −34.6438 −0.787358
\(45\) 0 0
\(46\) −38.4454 −0.835769
\(47\) 14.4813 8.36076i 0.308112 0.177888i −0.337969 0.941157i \(-0.609740\pi\)
0.646081 + 0.763269i \(0.276407\pi\)
\(48\) 0 0
\(49\) 2.40298 48.9410i 0.0490403 0.998797i
\(50\) 5.70982 9.88970i 0.114196 0.197794i
\(51\) 0 0
\(52\) 23.5712 13.6089i 0.453293 0.261709i
\(53\) 79.0686 1.49186 0.745930 0.666024i \(-0.232005\pi\)
0.745930 + 0.666024i \(0.232005\pi\)
\(54\) 0 0
\(55\) 99.6195i 1.81126i
\(56\) 14.3392 13.6524i 0.256057 0.243793i
\(57\) 0 0
\(58\) 32.2367 55.8355i 0.555805 0.962682i
\(59\) −37.5149 21.6592i −0.635846 0.367106i 0.147167 0.989112i \(-0.452985\pi\)
−0.783012 + 0.622006i \(0.786318\pi\)
\(60\) 0 0
\(61\) 42.3562 24.4543i 0.694363 0.400891i −0.110881 0.993834i \(-0.535367\pi\)
0.805245 + 0.592943i \(0.202034\pi\)
\(62\) 1.26456i 0.0203961i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −39.1328 67.7800i −0.602043 1.04277i
\(66\) 0 0
\(67\) −5.17274 + 8.95945i −0.0772051 + 0.133723i −0.902043 0.431646i \(-0.857933\pi\)
0.824838 + 0.565369i \(0.191266\pi\)
\(68\) −18.1764 10.4941i −0.267300 0.154326i
\(69\) 0 0
\(70\) −39.2580 41.2329i −0.560829 0.589041i
\(71\) −42.0936 −0.592868 −0.296434 0.955053i \(-0.595797\pi\)
−0.296434 + 0.955053i \(0.595797\pi\)
\(72\) 0 0
\(73\) 109.752i 1.50345i −0.659476 0.751726i \(-0.729222\pi\)
0.659476 0.751726i \(-0.270778\pi\)
\(74\) −36.1774 62.6610i −0.488883 0.846771i
\(75\) 0 0
\(76\) −39.9383 23.0584i −0.525504 0.303400i
\(77\) 116.317 + 34.2459i 1.51061 + 0.444752i
\(78\) 0 0
\(79\) 56.6624 + 98.1421i 0.717245 + 1.24231i 0.962087 + 0.272742i \(0.0879306\pi\)
−0.244842 + 0.969563i \(0.578736\pi\)
\(80\) 23.0043i 0.287554i
\(81\) 0 0
\(82\) 34.5753i 0.421650i
\(83\) −82.8440 + 47.8300i −0.998121 + 0.576265i −0.907692 0.419638i \(-0.862157\pi\)
−0.0904289 + 0.995903i \(0.528824\pi\)
\(84\) 0 0
\(85\) −30.1763 + 52.2669i −0.355016 + 0.614905i
\(86\) −8.41128 + 14.5688i −0.0978056 + 0.169404i
\(87\) 0 0
\(88\) 24.4968 + 42.4298i 0.278373 + 0.482157i
\(89\) 123.188i 1.38414i 0.721831 + 0.692070i \(0.243301\pi\)
−0.721831 + 0.692070i \(0.756699\pi\)
\(90\) 0 0
\(91\) −92.5931 + 22.3913i −1.01751 + 0.246058i
\(92\) 27.1850 + 47.0858i 0.295489 + 0.511802i
\(93\) 0 0
\(94\) −20.4796 11.8239i −0.217868 0.125786i
\(95\) −66.3053 + 114.844i −0.697951 + 1.20889i
\(96\) 0 0
\(97\) −20.9168 + 12.0763i −0.215637 + 0.124498i −0.603929 0.797038i \(-0.706399\pi\)
0.388291 + 0.921537i \(0.373065\pi\)
\(98\) −61.6395 + 31.6635i −0.628974 + 0.323097i
\(99\) 0 0
\(100\) −16.1498 −0.161498
\(101\) 21.0830 12.1723i 0.208743 0.120518i −0.391984 0.919972i \(-0.628211\pi\)
0.600727 + 0.799454i \(0.294878\pi\)
\(102\) 0 0
\(103\) −126.643 73.1173i −1.22954 0.709876i −0.262608 0.964903i \(-0.584583\pi\)
−0.966934 + 0.255026i \(0.917916\pi\)
\(104\) −33.3348 19.2458i −0.320527 0.185056i
\(105\) 0 0
\(106\) −55.9099 96.8388i −0.527452 0.913574i
\(107\) −39.3576 −0.367828 −0.183914 0.982942i \(-0.558877\pi\)
−0.183914 + 0.982942i \(0.558877\pi\)
\(108\) 0 0
\(109\) 84.9847 0.779676 0.389838 0.920884i \(-0.372531\pi\)
0.389838 + 0.920884i \(0.372531\pi\)
\(110\) 122.008 70.4416i 1.10917 0.640378i
\(111\) 0 0
\(112\) −26.8600 7.90812i −0.239822 0.0706082i
\(113\) 25.6093 44.3566i 0.226631 0.392536i −0.730177 0.683258i \(-0.760562\pi\)
0.956807 + 0.290722i \(0.0938956\pi\)
\(114\) 0 0
\(115\) 135.397 78.1715i 1.17736 0.679752i
\(116\) −91.1791 −0.786026
\(117\) 0 0
\(118\) 61.2616i 0.519166i
\(119\) 50.6537 + 53.2018i 0.425661 + 0.447074i
\(120\) 0 0
\(121\) −89.5238 + 155.060i −0.739866 + 1.28149i
\(122\) −59.9007 34.5837i −0.490989 0.283473i
\(123\) 0 0
\(124\) −1.54876 + 0.894178i −0.0124900 + 0.00721111i
\(125\) 97.3376i 0.778700i
\(126\) 0 0
\(127\) −139.901 −1.10158 −0.550790 0.834644i \(-0.685673\pi\)
−0.550790 + 0.834644i \(0.685673\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −55.3422 + 95.8555i −0.425709 + 0.737350i
\(131\) −36.7121 21.1958i −0.280245 0.161800i 0.353289 0.935514i \(-0.385063\pi\)
−0.633534 + 0.773714i \(0.718397\pi\)
\(132\) 0 0
\(133\) 111.300 + 116.898i 0.836838 + 0.878935i
\(134\) 14.6307 0.109184
\(135\) 0 0
\(136\) 29.6819i 0.218249i
\(137\) −45.9094 79.5175i −0.335105 0.580420i 0.648400 0.761300i \(-0.275439\pi\)
−0.983505 + 0.180881i \(0.942105\pi\)
\(138\) 0 0
\(139\) 43.1971 + 24.9399i 0.310771 + 0.179423i 0.647271 0.762260i \(-0.275910\pi\)
−0.336501 + 0.941683i \(0.609243\pi\)
\(140\) −22.7401 + 77.2371i −0.162429 + 0.551693i
\(141\) 0 0
\(142\) 29.7647 + 51.5540i 0.209611 + 0.363056i
\(143\) 235.731i 1.64847i
\(144\) 0 0
\(145\) 262.189i 1.80820i
\(146\) −134.418 + 77.6063i −0.920672 + 0.531550i
\(147\) 0 0
\(148\) −51.1625 + 88.6161i −0.345693 + 0.598757i
\(149\) −35.3502 + 61.2284i −0.237250 + 0.410929i −0.959924 0.280260i \(-0.909579\pi\)
0.722674 + 0.691189i \(0.242913\pi\)
\(150\) 0 0
\(151\) −57.5780 99.7279i −0.381311 0.660450i 0.609939 0.792448i \(-0.291194\pi\)
−0.991250 + 0.131998i \(0.957861\pi\)
\(152\) 65.2190i 0.429072i
\(153\) 0 0
\(154\) −40.3058 166.674i −0.261726 1.08230i
\(155\) 2.57124 + 4.45353i 0.0165887 + 0.0287324i
\(156\) 0 0
\(157\) −177.402 102.423i −1.12995 0.652376i −0.186026 0.982545i \(-0.559561\pi\)
−0.943922 + 0.330169i \(0.892894\pi\)
\(158\) 80.1327 138.794i 0.507169 0.878442i
\(159\) 0 0
\(160\) −28.1744 + 16.2665i −0.176090 + 0.101666i
\(161\) −44.7287 184.963i −0.277818 1.14884i
\(162\) 0 0
\(163\) −200.360 −1.22920 −0.614601 0.788838i \(-0.710683\pi\)
−0.614601 + 0.788838i \(0.710683\pi\)
\(164\) 42.3459 24.4484i 0.258207 0.149076i
\(165\) 0 0
\(166\) 117.159 + 67.6418i 0.705778 + 0.407481i
\(167\) −20.5934 11.8896i −0.123314 0.0711953i 0.437074 0.899425i \(-0.356015\pi\)
−0.560388 + 0.828230i \(0.689348\pi\)
\(168\) 0 0
\(169\) 8.10061 + 14.0307i 0.0479326 + 0.0830217i
\(170\) 85.3515 0.502068
\(171\) 0 0
\(172\) 23.7907 0.138318
\(173\) −141.525 + 81.7094i −0.818062 + 0.472309i −0.849748 0.527189i \(-0.823246\pi\)
0.0316855 + 0.999498i \(0.489913\pi\)
\(174\) 0 0
\(175\) 54.2230 + 15.9643i 0.309846 + 0.0912248i
\(176\) 34.6438 60.0048i 0.196840 0.340936i
\(177\) 0 0
\(178\) 150.874 87.1074i 0.847609 0.489367i
\(179\) −189.491 −1.05861 −0.529304 0.848432i \(-0.677547\pi\)
−0.529304 + 0.848432i \(0.677547\pi\)
\(180\) 0 0
\(181\) 162.121i 0.895698i 0.894109 + 0.447849i \(0.147810\pi\)
−0.894109 + 0.447849i \(0.852190\pi\)
\(182\) 92.8969 + 97.5699i 0.510422 + 0.536099i
\(183\) 0 0
\(184\) 38.4454 66.5893i 0.208942 0.361898i
\(185\) 254.819 + 147.120i 1.37740 + 0.795243i
\(186\) 0 0
\(187\) −157.425 + 90.8892i −0.841843 + 0.486038i
\(188\) 33.4430i 0.177888i
\(189\) 0 0
\(190\) 187.540 0.987052
\(191\) −48.8766 84.6567i −0.255898 0.443229i 0.709241 0.704966i \(-0.249038\pi\)
−0.965139 + 0.261737i \(0.915705\pi\)
\(192\) 0 0
\(193\) 173.476 300.468i 0.898837 1.55683i 0.0698539 0.997557i \(-0.477747\pi\)
0.828983 0.559274i \(-0.188920\pi\)
\(194\) 29.5808 + 17.0785i 0.152479 + 0.0880335i
\(195\) 0 0
\(196\) 82.3654 + 53.1031i 0.420232 + 0.270934i
\(197\) −15.5388 −0.0788769 −0.0394385 0.999222i \(-0.512557\pi\)
−0.0394385 + 0.999222i \(0.512557\pi\)
\(198\) 0 0
\(199\) 286.352i 1.43895i −0.694516 0.719477i \(-0.744381\pi\)
0.694516 0.719477i \(-0.255619\pi\)
\(200\) 11.4196 + 19.7794i 0.0570982 + 0.0988970i
\(201\) 0 0
\(202\) −29.8159 17.2142i −0.147604 0.0852190i
\(203\) 306.134 + 90.1319i 1.50805 + 0.444000i
\(204\) 0 0
\(205\) −70.3024 121.767i −0.342938 0.593987i
\(206\) 206.807i 1.00392i
\(207\) 0 0
\(208\) 54.4355i 0.261709i
\(209\) −345.903 + 199.707i −1.65504 + 0.955538i
\(210\) 0 0
\(211\) 71.1281 123.197i 0.337100 0.583874i −0.646786 0.762672i \(-0.723887\pi\)
0.983886 + 0.178797i \(0.0572206\pi\)
\(212\) −79.0686 + 136.951i −0.372965 + 0.645994i
\(213\) 0 0
\(214\) 27.8300 + 48.2030i 0.130047 + 0.225247i
\(215\) 68.4111i 0.318191i
\(216\) 0 0
\(217\) 6.08388 1.47123i 0.0280363 0.00677987i
\(218\) −60.0932 104.085i −0.275657 0.477452i
\(219\) 0 0
\(220\) −172.546 99.6195i −0.784300 0.452816i
\(221\) 71.4067 123.680i 0.323107 0.559638i
\(222\) 0 0
\(223\) −98.4840 + 56.8598i −0.441632 + 0.254977i −0.704290 0.709913i \(-0.748734\pi\)
0.262657 + 0.964889i \(0.415401\pi\)
\(224\) 9.30748 + 38.4886i 0.0415513 + 0.171824i
\(225\) 0 0
\(226\) −72.4340 −0.320504
\(227\) 130.245 75.1969i 0.573766 0.331264i −0.184886 0.982760i \(-0.559192\pi\)
0.758652 + 0.651496i \(0.225858\pi\)
\(228\) 0 0
\(229\) 31.0059 + 17.9012i 0.135397 + 0.0781714i 0.566168 0.824290i \(-0.308425\pi\)
−0.430772 + 0.902461i \(0.641759\pi\)
\(230\) −191.480 110.551i −0.832522 0.480657i
\(231\) 0 0
\(232\) 64.4733 + 111.671i 0.277902 + 0.481341i
\(233\) 397.747 1.70707 0.853533 0.521038i \(-0.174455\pi\)
0.853533 + 0.521038i \(0.174455\pi\)
\(234\) 0 0
\(235\) 96.1668 0.409220
\(236\) 75.0298 43.3185i 0.317923 0.183553i
\(237\) 0 0
\(238\) 29.3410 99.6572i 0.123282 0.418728i
\(239\) −85.1346 + 147.458i −0.356212 + 0.616977i −0.987325 0.158714i \(-0.949265\pi\)
0.631113 + 0.775691i \(0.282599\pi\)
\(240\) 0 0
\(241\) 62.5220 36.0971i 0.259427 0.149780i −0.364646 0.931146i \(-0.618810\pi\)
0.624073 + 0.781366i \(0.285477\pi\)
\(242\) 253.212 1.04633
\(243\) 0 0
\(244\) 97.8174i 0.400891i
\(245\) 152.700 236.845i 0.623266 0.966714i
\(246\) 0 0
\(247\) 156.899 271.758i 0.635220 1.10023i
\(248\) 2.19028 + 1.26456i 0.00883177 + 0.00509903i
\(249\) 0 0
\(250\) −119.214 + 68.8280i −0.476855 + 0.275312i
\(251\) 220.918i 0.880153i 0.897960 + 0.440076i \(0.145049\pi\)
−0.897960 + 0.440076i \(0.854951\pi\)
\(252\) 0 0
\(253\) 470.895 1.86124
\(254\) 98.9246 + 171.343i 0.389467 + 0.674577i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −307.432 177.496i −1.19623 0.690645i −0.236519 0.971627i \(-0.576006\pi\)
−0.959713 + 0.280982i \(0.909340\pi\)
\(258\) 0 0
\(259\) 259.377 246.954i 1.00145 0.953490i
\(260\) 156.531 0.602043
\(261\) 0 0
\(262\) 59.9507i 0.228819i
\(263\) 107.394 + 186.012i 0.408341 + 0.707268i 0.994704 0.102781i \(-0.0327740\pi\)
−0.586363 + 0.810049i \(0.699441\pi\)
\(264\) 0 0
\(265\) 393.807 + 227.365i 1.48607 + 0.857980i
\(266\) 64.4700 218.973i 0.242368 0.823207i
\(267\) 0 0
\(268\) −10.3455 17.9189i −0.0386025 0.0668615i
\(269\) 99.1640i 0.368639i −0.982866 0.184320i \(-0.940992\pi\)
0.982866 0.184320i \(-0.0590082\pi\)
\(270\) 0 0
\(271\) 487.080i 1.79734i −0.438622 0.898672i \(-0.644533\pi\)
0.438622 0.898672i \(-0.355467\pi\)
\(272\) 36.3528 20.9883i 0.133650 0.0771628i
\(273\) 0 0
\(274\) −64.9258 + 112.455i −0.236955 + 0.410419i
\(275\) −69.9363 + 121.133i −0.254314 + 0.440484i
\(276\) 0 0
\(277\) −161.811 280.265i −0.584155 1.01179i −0.994980 0.100072i \(-0.968093\pi\)
0.410825 0.911714i \(-0.365241\pi\)
\(278\) 70.5406i 0.253743i
\(279\) 0 0
\(280\) 110.675 26.7640i 0.395269 0.0955858i
\(281\) −103.963 180.070i −0.369976 0.640817i 0.619585 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(282\) 0 0
\(283\) 235.533 + 135.985i 0.832273 + 0.480513i 0.854630 0.519237i \(-0.173784\pi\)
−0.0223573 + 0.999750i \(0.507117\pi\)
\(284\) 42.0936 72.9083i 0.148217 0.256719i
\(285\) 0 0
\(286\) −288.711 + 166.687i −1.00948 + 0.582822i
\(287\) −166.344 + 40.2261i −0.579597 + 0.140161i
\(288\) 0 0
\(289\) 178.873 0.618938
\(290\) 321.115 185.396i 1.10729 0.639295i
\(291\) 0 0
\(292\) 190.096 + 109.752i 0.651014 + 0.375863i
\(293\) 239.193 + 138.098i 0.816357 + 0.471324i 0.849158 0.528138i \(-0.177110\pi\)
−0.0328018 + 0.999462i \(0.510443\pi\)
\(294\) 0 0
\(295\) −124.564 215.751i −0.422251 0.731360i
\(296\) 144.709 0.488883
\(297\) 0 0
\(298\) 99.9855 0.335522
\(299\) −320.392 + 184.978i −1.07154 + 0.618657i
\(300\) 0 0
\(301\) −79.8773 23.5175i −0.265373 0.0781311i
\(302\) −81.4275 + 141.037i −0.269628 + 0.467009i
\(303\) 0 0
\(304\) 79.8766 46.1168i 0.262752 0.151700i
\(305\) 281.278 0.922222
\(306\) 0 0
\(307\) 418.849i 1.36433i 0.731199 + 0.682165i \(0.238961\pi\)
−0.731199 + 0.682165i \(0.761039\pi\)
\(308\) −175.632 + 167.220i −0.570235 + 0.542923i
\(309\) 0 0
\(310\) 3.63629 6.29824i 0.0117300 0.0203169i
\(311\) −168.685 97.3905i −0.542397 0.313153i 0.203653 0.979043i \(-0.434719\pi\)
−0.746050 + 0.665890i \(0.768052\pi\)
\(312\) 0 0
\(313\) −82.2059 + 47.4616i −0.262639 + 0.151634i −0.625538 0.780194i \(-0.715120\pi\)
0.362899 + 0.931828i \(0.381787\pi\)
\(314\) 289.696i 0.922599i
\(315\) 0 0
\(316\) −226.649 −0.717245
\(317\) 77.4057 + 134.071i 0.244182 + 0.422936i 0.961901 0.273397i \(-0.0881472\pi\)
−0.717719 + 0.696333i \(0.754814\pi\)
\(318\) 0 0
\(319\) −394.848 + 683.897i −1.23777 + 2.14388i
\(320\) 39.8446 + 23.0043i 0.124515 + 0.0718885i
\(321\) 0 0
\(322\) −194.905 + 185.570i −0.605295 + 0.576305i
\(323\) −241.978 −0.749158
\(324\) 0 0
\(325\) 109.890i 0.338124i
\(326\) 141.676 + 245.390i 0.434588 + 0.752729i
\(327\) 0 0
\(328\) −59.8862 34.5753i −0.182580 0.105412i
\(329\) 33.0590 112.285i 0.100483 0.341292i
\(330\) 0 0
\(331\) −87.2053 151.044i −0.263460 0.456326i 0.703699 0.710498i \(-0.251530\pi\)
−0.967159 + 0.254172i \(0.918197\pi\)
\(332\) 191.320i 0.576265i
\(333\) 0 0
\(334\) 33.6289i 0.100685i
\(335\) −51.5265 + 29.7488i −0.153810 + 0.0888025i
\(336\) 0 0
\(337\) −40.8311 + 70.7216i −0.121161 + 0.209856i −0.920226 0.391388i \(-0.871995\pi\)
0.799065 + 0.601245i \(0.205328\pi\)
\(338\) 11.4560 19.8424i 0.0338935 0.0587052i
\(339\) 0 0
\(340\) −60.3526 104.534i −0.177508 0.307452i
\(341\) 15.4888i 0.0454218i
\(342\) 0 0
\(343\) −224.049 259.713i −0.653204 0.757182i
\(344\) −16.8226 29.1375i −0.0489028 0.0847021i
\(345\) 0 0
\(346\) 200.146 + 115.555i 0.578457 + 0.333973i
\(347\) −242.992 + 420.875i −0.700266 + 1.21290i 0.268106 + 0.963389i \(0.413602\pi\)
−0.968373 + 0.249508i \(0.919731\pi\)
\(348\) 0 0
\(349\) −423.870 + 244.722i −1.21453 + 0.701208i −0.963742 0.266834i \(-0.914022\pi\)
−0.250786 + 0.968043i \(0.580689\pi\)
\(350\) −18.7893 77.6979i −0.0536836 0.221994i
\(351\) 0 0
\(352\) −97.9874 −0.278373
\(353\) −148.587 + 85.7870i −0.420927 + 0.243023i −0.695474 0.718551i \(-0.744806\pi\)
0.274547 + 0.961574i \(0.411472\pi\)
\(354\) 0 0
\(355\) −209.651 121.042i −0.590565 0.340963i
\(356\) −213.369 123.188i −0.599350 0.346035i
\(357\) 0 0
\(358\) 133.990 + 232.078i 0.374275 + 0.648263i
\(359\) 111.557 0.310744 0.155372 0.987856i \(-0.450342\pi\)
0.155372 + 0.987856i \(0.450342\pi\)
\(360\) 0 0
\(361\) −170.690 −0.472825
\(362\) 198.557 114.637i 0.548501 0.316677i
\(363\) 0 0
\(364\) 53.8103 182.767i 0.147830 0.502108i
\(365\) 315.596 546.628i 0.864647 1.49761i
\(366\) 0 0
\(367\) −502.284 + 289.994i −1.36862 + 0.790174i −0.990752 0.135686i \(-0.956676\pi\)
−0.377869 + 0.925859i \(0.623343\pi\)
\(368\) −108.740 −0.295489
\(369\) 0 0
\(370\) 416.118i 1.12464i
\(371\) 400.851 381.652i 1.08046 1.02871i
\(372\) 0 0
\(373\) 159.831 276.835i 0.428501 0.742185i −0.568240 0.822863i \(-0.692375\pi\)
0.996740 + 0.0806784i \(0.0257087\pi\)
\(374\) 222.632 + 128.537i 0.595273 + 0.343681i
\(375\) 0 0
\(376\) 40.9592 23.6478i 0.108934 0.0628931i
\(377\) 620.422i 1.64568i
\(378\) 0 0
\(379\) 105.877 0.279359 0.139679 0.990197i \(-0.455393\pi\)
0.139679 + 0.990197i \(0.455393\pi\)
\(380\) −132.611 229.688i −0.348975 0.604443i
\(381\) 0 0
\(382\) −69.1219 + 119.723i −0.180947 + 0.313410i
\(383\) 111.394 + 64.3133i 0.290846 + 0.167920i 0.638323 0.769769i \(-0.279628\pi\)
−0.347478 + 0.937688i \(0.612962\pi\)
\(384\) 0 0
\(385\) 480.849 + 505.037i 1.24896 + 1.31179i
\(386\) −490.663 −1.27115
\(387\) 0 0
\(388\) 48.3053i 0.124498i
\(389\) −75.0565 130.002i −0.192947 0.334195i 0.753278 0.657702i \(-0.228471\pi\)
−0.946226 + 0.323507i \(0.895138\pi\)
\(390\) 0 0
\(391\) 247.062 + 142.641i 0.631873 + 0.364812i
\(392\) 6.79664 138.426i 0.0173384 0.353128i
\(393\) 0 0
\(394\) 10.9876 + 19.0310i 0.0278872 + 0.0483021i
\(395\) 651.740i 1.64997i
\(396\) 0 0
\(397\) 305.431i 0.769347i −0.923053 0.384674i \(-0.874314\pi\)
0.923053 0.384674i \(-0.125686\pi\)
\(398\) −350.708 + 202.481i −0.881176 + 0.508747i
\(399\) 0 0
\(400\) 16.1498 27.9723i 0.0403745 0.0699307i
\(401\) −131.258 + 227.346i −0.327327 + 0.566947i −0.981981 0.188982i \(-0.939481\pi\)
0.654653 + 0.755929i \(0.272815\pi\)
\(402\) 0 0
\(403\) −6.08437 10.5384i −0.0150977 0.0261500i
\(404\) 48.6892i 0.120518i
\(405\) 0 0
\(406\) −106.081 438.669i −0.261283 1.08047i
\(407\) 443.116 + 767.499i 1.08874 + 1.88575i
\(408\) 0 0
\(409\) 305.530 + 176.398i 0.747017 + 0.431291i 0.824615 0.565694i \(-0.191392\pi\)
−0.0775980 + 0.996985i \(0.524725\pi\)
\(410\) −99.4226 + 172.205i −0.242494 + 0.420012i
\(411\) 0 0
\(412\) 253.286 146.235i 0.614771 0.354938i
\(413\) −294.734 + 71.2739i −0.713641 + 0.172576i
\(414\) 0 0
\(415\) −550.148 −1.32566
\(416\) 66.6696 38.4917i 0.160263 0.0925281i
\(417\) 0 0
\(418\) 489.181 + 282.429i 1.17029 + 0.675667i
\(419\) −604.426 348.965i −1.44254 0.832853i −0.444524 0.895767i \(-0.646627\pi\)
−0.998019 + 0.0629143i \(0.979961\pi\)
\(420\) 0 0
\(421\) −15.2619 26.4343i −0.0362514 0.0627894i 0.847330 0.531066i \(-0.178208\pi\)
−0.883582 + 0.468277i \(0.844875\pi\)
\(422\) −201.181 −0.476731
\(423\) 0 0
\(424\) 223.640 0.527452
\(425\) −73.3863 + 42.3696i −0.172674 + 0.0996932i
\(426\) 0 0
\(427\) 96.6940 328.422i 0.226450 0.769139i
\(428\) 39.3576 68.1693i 0.0919569 0.159274i
\(429\) 0 0
\(430\) −83.7861 + 48.3739i −0.194851 + 0.112497i
\(431\) −214.726 −0.498205 −0.249103 0.968477i \(-0.580136\pi\)
−0.249103 + 0.968477i \(0.580136\pi\)
\(432\) 0 0
\(433\) 49.9849i 0.115439i −0.998333 0.0577193i \(-0.981617\pi\)
0.998333 0.0577193i \(-0.0183828\pi\)
\(434\) −6.10384 6.41089i −0.0140641 0.0147716i
\(435\) 0 0
\(436\) −84.9847 + 147.198i −0.194919 + 0.337609i
\(437\) 542.861 + 313.421i 1.24224 + 0.717210i
\(438\) 0 0
\(439\) 174.953 101.009i 0.398527 0.230090i −0.287321 0.957834i \(-0.592765\pi\)
0.685848 + 0.727745i \(0.259431\pi\)
\(440\) 281.767i 0.640378i
\(441\) 0 0
\(442\) −201.969 −0.456943
\(443\) −410.792 711.513i −0.927296 1.60612i −0.787826 0.615898i \(-0.788793\pi\)
−0.139470 0.990226i \(-0.544540\pi\)
\(444\) 0 0
\(445\) −354.233 + 613.550i −0.796030 + 1.37876i
\(446\) 139.277 + 80.4119i 0.312281 + 0.180296i
\(447\) 0 0
\(448\) 40.5573 38.6148i 0.0905297 0.0861938i
\(449\) −324.954 −0.723729 −0.361864 0.932231i \(-0.617860\pi\)
−0.361864 + 0.932231i \(0.617860\pi\)
\(450\) 0 0
\(451\) 423.493i 0.939008i
\(452\) 51.2186 + 88.7132i 0.113315 + 0.196268i
\(453\) 0 0
\(454\) −184.194 106.345i −0.405714 0.234239i
\(455\) −525.555 154.734i −1.15507 0.340074i
\(456\) 0 0
\(457\) 370.766 + 642.186i 0.811305 + 1.40522i 0.911951 + 0.410298i \(0.134575\pi\)
−0.100647 + 0.994922i \(0.532091\pi\)
\(458\) 50.6324i 0.110551i
\(459\) 0 0
\(460\) 312.686i 0.679752i
\(461\) 573.356 331.027i 1.24372 0.718063i 0.273872 0.961766i \(-0.411695\pi\)
0.969850 + 0.243703i \(0.0783621\pi\)
\(462\) 0 0
\(463\) −323.675 + 560.622i −0.699083 + 1.21085i 0.269702 + 0.962944i \(0.413075\pi\)
−0.968785 + 0.247903i \(0.920258\pi\)
\(464\) 91.1791 157.927i 0.196507 0.340359i
\(465\) 0 0
\(466\) −281.249 487.138i −0.603539 1.04536i
\(467\) 17.5828i 0.0376506i 0.999823 + 0.0188253i \(0.00599263\pi\)
−0.999823 + 0.0188253i \(0.994007\pi\)
\(468\) 0 0
\(469\) 17.0219 + 70.3894i 0.0362940 + 0.150084i
\(470\) −68.0002 117.780i −0.144681 0.250595i
\(471\) 0 0
\(472\) −106.108 61.2616i −0.224805 0.129791i
\(473\) 103.025 178.444i 0.217812 0.377261i
\(474\) 0 0
\(475\) −161.249 + 93.0972i −0.339472 + 0.195994i
\(476\) −142.802 + 34.5330i −0.300004 + 0.0725483i
\(477\) 0 0
\(478\) 240.797 0.503760
\(479\) 599.109 345.896i 1.25075 0.722121i 0.279491 0.960148i \(-0.409834\pi\)
0.971258 + 0.238028i \(0.0765009\pi\)
\(480\) 0 0
\(481\) −602.982 348.132i −1.25360 0.723767i
\(482\) −88.4194 51.0490i −0.183443 0.105911i
\(483\) 0 0
\(484\) −179.048 310.120i −0.369933 0.640743i
\(485\) −138.904 −0.286400
\(486\) 0 0
\(487\) 782.871 1.60754 0.803769 0.594941i \(-0.202825\pi\)
0.803769 + 0.594941i \(0.202825\pi\)
\(488\) 119.801 69.1673i 0.245495 0.141736i
\(489\) 0 0
\(490\) −398.050 19.5440i −0.812347 0.0398857i
\(491\) 169.949 294.361i 0.346129 0.599513i −0.639429 0.768850i \(-0.720829\pi\)
0.985558 + 0.169337i \(0.0541627\pi\)
\(492\) 0 0
\(493\) −414.327 + 239.212i −0.840419 + 0.485216i
\(494\) −443.778 −0.898337
\(495\) 0 0
\(496\) 3.57671i 0.00721111i
\(497\) −213.401 + 203.180i −0.429377 + 0.408812i
\(498\) 0 0
\(499\) 108.860 188.551i 0.218156 0.377857i −0.736088 0.676885i \(-0.763329\pi\)
0.954244 + 0.299028i \(0.0966626\pi\)
\(500\) 168.594 + 97.3376i 0.337187 + 0.194675i
\(501\) 0 0
\(502\) 270.569 156.213i 0.538981 0.311181i
\(503\) 732.558i 1.45638i 0.685377 + 0.728189i \(0.259637\pi\)
−0.685377 + 0.728189i \(0.740363\pi\)
\(504\) 0 0
\(505\) 140.008 0.277243
\(506\) −332.973 576.726i −0.658049 1.13977i
\(507\) 0 0
\(508\) 139.901 242.315i 0.275395 0.476998i
\(509\) −22.4840 12.9812i −0.0441730 0.0255033i 0.477751 0.878495i \(-0.341452\pi\)
−0.521924 + 0.852992i \(0.674785\pi\)
\(510\) 0 0
\(511\) −529.757 556.405i −1.03671 1.08886i
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) 502.034i 0.976719i
\(515\) −420.503 728.333i −0.816511 1.41424i
\(516\) 0 0
\(517\) 250.843 + 144.824i 0.485189 + 0.280124i
\(518\) −485.863 143.048i −0.937959 0.276154i
\(519\) 0 0
\(520\) −110.684 191.711i −0.212855 0.368675i
\(521\) 152.333i 0.292385i −0.989256 0.146193i \(-0.953298\pi\)
0.989256 0.146193i \(-0.0467019\pi\)
\(522\) 0 0
\(523\) 343.250i 0.656310i 0.944624 + 0.328155i \(0.106427\pi\)
−0.944624 + 0.328155i \(0.893573\pi\)
\(524\) 73.4243 42.3915i 0.140123 0.0808999i
\(525\) 0 0
\(526\) 151.878 263.060i 0.288741 0.500114i
\(527\) −4.69182 + 8.12646i −0.00890288 + 0.0154202i
\(528\) 0 0
\(529\) −105.011 181.885i −0.198509 0.343828i
\(530\) 643.085i 1.21337i
\(531\) 0 0
\(532\) −313.773 + 75.8781i −0.589800 + 0.142628i
\(533\) 166.358 + 288.140i 0.312116 + 0.540600i
\(534\) 0 0
\(535\) −196.023 113.174i −0.366399 0.211541i
\(536\) −14.6307 + 25.3411i −0.0272961 + 0.0472782i
\(537\) 0 0
\(538\) −121.451 + 70.1195i −0.225745 + 0.130334i
\(539\) 754.986 387.828i 1.40072 0.719533i
\(540\) 0 0
\(541\) −941.180 −1.73970 −0.869852 0.493313i \(-0.835786\pi\)
−0.869852 + 0.493313i \(0.835786\pi\)
\(542\) −596.549 + 344.418i −1.10064 + 0.635457i
\(543\) 0 0
\(544\) −51.4106 29.6819i −0.0945048 0.0545623i
\(545\) 423.273 + 244.377i 0.776647 + 0.448398i
\(546\) 0 0
\(547\) 102.142 + 176.916i 0.186732 + 0.323429i 0.944159 0.329491i \(-0.106877\pi\)
−0.757427 + 0.652920i \(0.773544\pi\)
\(548\) 183.638 0.335105
\(549\) 0 0
\(550\) 197.810 0.359654
\(551\) −910.385 + 525.611i −1.65224 + 0.953922i
\(552\) 0 0
\(553\) 760.977 + 224.047i 1.37609 + 0.405147i
\(554\) −228.835 + 396.354i −0.413060 + 0.715441i
\(555\) 0 0
\(556\) −86.3942 + 49.8797i −0.155385 + 0.0897117i
\(557\) 693.807 1.24561 0.622807 0.782375i \(-0.285992\pi\)
0.622807 + 0.782375i \(0.285992\pi\)
\(558\) 0 0
\(559\) 161.882i 0.289592i
\(560\) −111.038 116.624i −0.198283 0.208257i
\(561\) 0 0
\(562\) −147.026 + 254.657i −0.261613 + 0.453126i
\(563\) −63.9135 36.9005i −0.113523 0.0655426i 0.442163 0.896935i \(-0.354211\pi\)
−0.555686 + 0.831392i \(0.687544\pi\)
\(564\) 0 0
\(565\) 255.098 147.281i 0.451501 0.260674i
\(566\) 384.624i 0.679548i
\(567\) 0 0
\(568\) −119.059 −0.209611
\(569\) 490.396 + 849.391i 0.861856 + 1.49278i 0.870135 + 0.492813i \(0.164031\pi\)
−0.00827871 + 0.999966i \(0.502635\pi\)
\(570\) 0 0
\(571\) −173.666 + 300.798i −0.304143 + 0.526791i −0.977070 0.212918i \(-0.931703\pi\)
0.672927 + 0.739709i \(0.265037\pi\)
\(572\) 408.298 + 235.731i 0.713808 + 0.412117i
\(573\) 0 0
\(574\) 166.890 + 175.285i 0.290749 + 0.305375i
\(575\) 219.516 0.381767
\(576\) 0 0
\(577\) 268.872i 0.465982i 0.972479 + 0.232991i \(0.0748512\pi\)
−0.972479 + 0.232991i \(0.925149\pi\)
\(578\) −126.482 219.074i −0.218828 0.379020i
\(579\) 0 0
\(580\) −454.125 262.189i −0.782974 0.452050i
\(581\) −189.123 + 642.358i −0.325513 + 1.10561i
\(582\) 0 0
\(583\) 684.808 + 1186.12i 1.17463 + 2.03452i
\(584\) 310.425i 0.531550i
\(585\) 0 0
\(586\) 390.600i 0.666552i
\(587\) 822.447 474.840i 1.40110 0.808927i 0.406596 0.913608i \(-0.366716\pi\)
0.994506 + 0.104681i \(0.0333823\pi\)
\(588\) 0 0
\(589\) −10.3092 + 17.8560i −0.0175028 + 0.0303158i
\(590\) −176.160 + 305.118i −0.298576 + 0.517149i
\(591\) 0 0
\(592\) −102.325 177.232i −0.172846 0.299379i
\(593\) 738.022i 1.24456i −0.782796 0.622278i \(-0.786207\pi\)
0.782796 0.622278i \(-0.213793\pi\)
\(594\) 0 0
\(595\) 99.3010 + 410.632i 0.166892 + 0.690138i
\(596\) −70.7004 122.457i −0.118625 0.205464i
\(597\) 0 0
\(598\) 453.102 + 261.599i 0.757696 + 0.437456i
\(599\) 134.612 233.156i 0.224729 0.389241i −0.731509 0.681831i \(-0.761184\pi\)
0.956238 + 0.292590i \(0.0945171\pi\)
\(600\) 0 0
\(601\) 669.416 386.488i 1.11384 0.643074i 0.174017 0.984743i \(-0.444325\pi\)
0.939821 + 0.341668i \(0.110992\pi\)
\(602\) 27.6789 + 114.459i 0.0459783 + 0.190131i
\(603\) 0 0
\(604\) 230.312 0.381311
\(605\) −891.761 + 514.859i −1.47399 + 0.851006i
\(606\) 0 0
\(607\) 341.516 + 197.174i 0.562629 + 0.324834i 0.754200 0.656645i \(-0.228025\pi\)
−0.191571 + 0.981479i \(0.561358\pi\)
\(608\) −112.963 65.2190i −0.185794 0.107268i
\(609\) 0 0
\(610\) −198.893 344.493i −0.326055 0.564743i
\(611\) −227.561 −0.372440
\(612\) 0 0
\(613\) 855.275 1.39523 0.697614 0.716474i \(-0.254245\pi\)
0.697614 + 0.716474i \(0.254245\pi\)
\(614\) 512.983 296.171i 0.835477 0.482363i
\(615\) 0 0
\(616\) 328.993 + 96.8620i 0.534080 + 0.157244i
\(617\) 187.827 325.326i 0.304420 0.527271i −0.672712 0.739904i \(-0.734871\pi\)
0.977132 + 0.212634i \(0.0682041\pi\)
\(618\) 0 0
\(619\) 750.475 433.287i 1.21240 0.699979i 0.249118 0.968473i \(-0.419859\pi\)
0.963281 + 0.268494i \(0.0865260\pi\)
\(620\) −10.2850 −0.0165887
\(621\) 0 0
\(622\) 275.462i 0.442865i
\(623\) 594.612 + 624.524i 0.954434 + 1.00245i
\(624\) 0 0
\(625\) 380.834 659.624i 0.609335 1.05540i
\(626\) 116.257 + 67.1208i 0.185713 + 0.107222i
\(627\) 0 0
\(628\) 354.804 204.846i 0.564974 0.326188i
\(629\) 536.907i 0.853588i
\(630\) 0 0
\(631\) −1131.47 −1.79314 −0.896571 0.442900i \(-0.853950\pi\)
−0.896571 + 0.442900i \(0.853950\pi\)
\(632\) 160.265 + 277.588i 0.253584 + 0.439221i
\(633\) 0 0
\(634\) 109.468 189.604i 0.172663 0.299061i
\(635\) −696.786 402.290i −1.09730 0.633527i
\(636\) 0 0
\(637\) −361.337 + 560.450i −0.567247 + 0.879827i
\(638\) 1116.80 1.75047
\(639\) 0 0
\(640\) 65.0660i 0.101666i
\(641\) −205.779 356.420i −0.321028 0.556038i 0.659672 0.751554i \(-0.270695\pi\)
−0.980701 + 0.195516i \(0.937362\pi\)
\(642\) 0 0
\(643\) −984.048 568.140i −1.53040 0.883577i −0.999343 0.0362419i \(-0.988461\pi\)
−0.531058 0.847336i \(-0.678205\pi\)
\(644\) 365.095 + 107.491i 0.566917 + 0.166912i
\(645\) 0 0
\(646\) 171.104 + 296.361i 0.264867 + 0.458764i
\(647\) 52.9830i 0.0818902i 0.999161 + 0.0409451i \(0.0130369\pi\)
−0.999161 + 0.0409451i \(0.986963\pi\)
\(648\) 0 0
\(649\) 750.357i 1.15617i
\(650\) −134.588 + 77.7042i −0.207058 + 0.119545i
\(651\) 0 0
\(652\) 200.360 347.034i 0.307300 0.532260i
\(653\) 24.9889 43.2821i 0.0382679 0.0662820i −0.846257 0.532775i \(-0.821149\pi\)
0.884525 + 0.466493i \(0.154483\pi\)
\(654\) 0 0
\(655\) −121.898 211.134i −0.186105 0.322343i
\(656\) 97.7937i 0.149076i
\(657\) 0 0
\(658\) −160.897 + 38.9088i −0.244524 + 0.0591319i
\(659\) 226.144 + 391.692i 0.343162 + 0.594374i 0.985018 0.172451i \(-0.0551687\pi\)
−0.641856 + 0.766825i \(0.721835\pi\)
\(660\) 0 0
\(661\) −472.830 272.988i −0.715325 0.412993i 0.0977046 0.995215i \(-0.468850\pi\)
−0.813030 + 0.582222i \(0.802183\pi\)
\(662\) −123.327 + 213.609i −0.186294 + 0.322671i
\(663\) 0 0
\(664\) −234.318 + 135.284i −0.352889 + 0.203741i
\(665\) 218.190 + 902.268i 0.328106 + 1.35679i
\(666\) 0 0
\(667\) 1239.35 1.85810
\(668\) 41.1868 23.7792i 0.0616569 0.0355976i
\(669\) 0 0
\(670\) 72.8694 + 42.0712i 0.108760 + 0.0627928i
\(671\) 733.689 + 423.595i 1.09343 + 0.631290i
\(672\) 0 0
\(673\) −208.424 361.001i −0.309694 0.536406i 0.668601 0.743621i \(-0.266893\pi\)
−0.978295 + 0.207215i \(0.933560\pi\)
\(674\) 115.488 0.171347
\(675\) 0 0
\(676\) −32.4024 −0.0479326
\(677\) −423.242 + 244.359i −0.625173 + 0.360944i −0.778880 0.627173i \(-0.784212\pi\)
0.153707 + 0.988116i \(0.450879\pi\)
\(678\) 0 0
\(679\) −47.7505 + 162.185i −0.0703248 + 0.238859i
\(680\) −85.3515 + 147.833i −0.125517 + 0.217402i
\(681\) 0 0
\(682\) 18.9699 10.9523i 0.0278151 0.0160590i
\(683\) 546.916 0.800756 0.400378 0.916350i \(-0.368879\pi\)
0.400378 + 0.916350i \(0.368879\pi\)
\(684\) 0 0
\(685\) 528.058i 0.770887i
\(686\) −159.656 + 458.048i −0.232735 + 0.667708i
\(687\) 0 0
\(688\) −23.7907 + 41.2067i −0.0345795 + 0.0598934i
\(689\) −931.873 538.017i −1.35250 0.780866i
\(690\) 0 0
\(691\) −575.708 + 332.385i −0.833152 + 0.481020i −0.854931 0.518742i \(-0.826400\pi\)
0.0217788 + 0.999763i \(0.493067\pi\)
\(692\) 326.837i 0.472309i
\(693\) 0 0
\(694\) 687.286 0.990326
\(695\) 143.431 + 248.430i 0.206376 + 0.357453i
\(696\) 0 0
\(697\) 128.283 222.192i 0.184050 0.318783i
\(698\) 599.443 + 346.089i 0.858801 + 0.495829i
\(699\) 0 0
\(700\) −81.8741 + 77.9527i −0.116963 + 0.111361i
\(701\) −125.029 −0.178358 −0.0891789 0.996016i \(-0.528424\pi\)
−0.0891789 + 0.996016i \(0.528424\pi\)
\(702\) 0 0
\(703\) 1179.73i 1.67813i
\(704\) 69.2875 + 120.010i 0.0984198 + 0.170468i
\(705\) 0 0
\(706\) 210.134 + 121.321i 0.297641 + 0.171843i
\(707\) 48.1300 163.474i 0.0680764 0.231222i
\(708\) 0 0
\(709\) −212.052 367.285i −0.299086 0.518033i 0.676841 0.736129i \(-0.263349\pi\)
−0.975927 + 0.218097i \(0.930015\pi\)
\(710\) 342.358i 0.482195i
\(711\) 0 0
\(712\) 348.429i 0.489367i
\(713\) 21.0515 12.1541i 0.0295253 0.0170464i
\(714\) 0 0
\(715\) 677.854 1174.08i 0.948048 1.64207i
\(716\) 189.491 328.208i 0.264652 0.458391i
\(717\) 0 0
\(718\) −78.8828 136.629i −0.109865 0.190291i
\(719\) 852.338i 1.18545i 0.805405 + 0.592724i \(0.201948\pi\)
−0.805405 + 0.592724i \(0.798052\pi\)
\(720\) 0 0
\(721\) −994.963 + 240.606i −1.37998 + 0.333712i
\(722\) 120.696 + 209.051i 0.167169 + 0.289545i
\(723\) 0 0
\(724\) −280.802 162.121i −0.387848 0.223924i
\(725\) −184.066 + 318.811i −0.253884 + 0.439739i
\(726\) 0 0
\(727\) 1127.09 650.723i 1.55032 0.895080i 0.552209 0.833705i \(-0.313785\pi\)
0.998115 0.0613747i \(-0.0195484\pi\)
\(728\) −261.893 + 63.3321i −0.359743 + 0.0869947i
\(729\) 0 0
\(730\) −892.640 −1.22280
\(731\) 108.107 62.4157i 0.147889 0.0853840i
\(732\) 0 0
\(733\) −989.572 571.330i −1.35003 0.779440i −0.361777 0.932265i \(-0.617830\pi\)
−0.988253 + 0.152825i \(0.951163\pi\)
\(734\) 710.337 + 410.113i 0.967761 + 0.558737i
\(735\) 0 0
\(736\) 76.8907 + 133.179i 0.104471 + 0.180949i
\(737\) −179.203 −0.243152
\(738\) 0 0
\(739\) 847.380 1.14666 0.573329 0.819325i \(-0.305652\pi\)
0.573329 + 0.819325i \(0.305652\pi\)
\(740\) −509.638 + 294.240i −0.688700 + 0.397621i
\(741\) 0 0
\(742\) −750.871 221.071i −1.01196 0.297940i
\(743\) 74.5649 129.150i 0.100356 0.173823i −0.811475 0.584387i \(-0.801335\pi\)
0.911832 + 0.410565i \(0.134668\pi\)
\(744\) 0 0
\(745\) −352.129 + 203.302i −0.472656 + 0.272888i
\(746\) −452.069 −0.605991
\(747\) 0 0
\(748\) 363.557i 0.486038i
\(749\) −199.530 + 189.973i −0.266395 + 0.253636i
\(750\) 0 0
\(751\) −89.4819 + 154.987i −0.119150 + 0.206374i −0.919431 0.393251i \(-0.871350\pi\)
0.800281 + 0.599625i \(0.204684\pi\)
\(752\) −57.9250 33.4430i −0.0770280 0.0444721i
\(753\) 0 0
\(754\) −759.858 + 438.705i −1.00777 + 0.581836i
\(755\) 662.271i 0.877180i
\(756\) 0 0
\(757\) 549.096 0.725358 0.362679 0.931914i \(-0.381862\pi\)
0.362679 + 0.931914i \(0.381862\pi\)
\(758\) −74.8663 129.672i −0.0987682 0.171071i
\(759\) 0 0
\(760\) −187.540 + 324.828i −0.246763 + 0.427406i
\(761\) 1100.15 + 635.174i 1.44567 + 0.834657i 0.998219 0.0596526i \(-0.0189993\pi\)
0.447449 + 0.894309i \(0.352333\pi\)
\(762\) 0 0
\(763\) 430.844 410.208i 0.564671 0.537626i
\(764\) 195.506 0.255898
\(765\) 0 0
\(766\) 181.905i 0.237474i
\(767\) 294.758 + 510.535i 0.384299 + 0.665626i
\(768\) 0 0
\(769\) 683.143 + 394.413i 0.888353 + 0.512891i 0.873403 0.486997i \(-0.161908\pi\)
0.0149496 + 0.999888i \(0.495241\pi\)
\(770\) 278.531 946.032i 0.361728 1.22861i
\(771\) 0 0
\(772\) 346.951 + 600.937i 0.449418 + 0.778416i
\(773\) 98.1910i 0.127026i 0.997981 + 0.0635130i \(0.0202304\pi\)
−0.997981 + 0.0635130i \(0.979770\pi\)
\(774\) 0 0
\(775\) 7.22040i 0.00931665i
\(776\) −59.1617 + 34.1570i −0.0762393 + 0.0440168i
\(777\) 0 0
\(778\) −106.146 + 183.850i −0.136434 + 0.236311i
\(779\) 281.871 488.214i 0.361837 0.626719i
\(780\) 0 0
\(781\) −364.571 631.455i −0.466800 0.808521i
\(782\) 403.451i 0.515922i
\(783\) 0 0
\(784\) −174.343 + 89.5579i −0.222376 + 0.114232i
\(785\) −589.043 1020.25i −0.750373 1.29968i
\(786\) 0 0
\(787\) 457.230 + 263.982i 0.580978 + 0.335428i 0.761522 0.648139i \(-0.224452\pi\)
−0.180544 + 0.983567i \(0.557786\pi\)
\(788\) 15.5388 26.9139i 0.0197192 0.0341547i
\(789\) 0 0
\(790\) 798.215 460.849i 1.01040 0.583354i
\(791\) −84.2723 348.485i −0.106539 0.440563i
\(792\) 0 0
\(793\) −665.592 −0.839334
\(794\) −374.075 + 215.972i −0.471127 + 0.272005i
\(795\) 0 0
\(796\) 495.976 + 286.352i 0.623086 + 0.359739i
\(797\) −455.600 263.041i −0.571643 0.330038i 0.186162 0.982519i \(-0.440395\pi\)
−0.757805 + 0.652481i \(0.773728\pi\)
\(798\) 0 0
\(799\) 87.7390 + 151.968i 0.109811 + 0.190198i
\(800\) −45.6786 −0.0570982
\(801\) 0 0
\(802\) 371.254 0.462910
\(803\) 1646.41 950.555i 2.05032 1.18375i
\(804\) 0 0
\(805\) 309.095 1049.84i 0.383969 1.30415i
\(806\) −8.60460 + 14.9036i −0.0106757 + 0.0184908i
\(807\) 0 0
\(808\) 59.6319 34.4285i 0.0738018 0.0426095i
\(809\) −87.2827 −0.107890 −0.0539448 0.998544i \(-0.517180\pi\)
−0.0539448 + 0.998544i \(0.517180\pi\)
\(810\) 0 0
\(811\) 455.489i 0.561639i −0.959761 0.280819i \(-0.909394\pi\)
0.959761 0.280819i \(-0.0906062\pi\)
\(812\) −462.247 + 440.108i −0.569270 + 0.542005i
\(813\) 0 0
\(814\) 626.660 1085.41i 0.769853 1.33342i
\(815\) −997.909 576.143i −1.22443 0.706924i
\(816\) 0 0
\(817\) 237.540 137.144i 0.290747 0.167863i
\(818\) 498.928i 0.609937i
\(819\) 0 0
\(820\) 281.210 0.342938
\(821\) −578.892 1002.67i −0.705106 1.22128i −0.966653 0.256089i \(-0.917566\pi\)
0.261547 0.965191i \(-0.415767\pi\)
\(822\) 0 0
\(823\) −288.372 + 499.474i −0.350391 + 0.606895i −0.986318 0.164855i \(-0.947285\pi\)
0.635927 + 0.771749i \(0.280618\pi\)
\(824\) −358.200 206.807i −0.434709 0.250979i
\(825\) 0 0
\(826\) 295.701 + 310.576i 0.357991 + 0.375999i
\(827\) −1015.60 −1.22805 −0.614026 0.789286i \(-0.710451\pi\)
−0.614026 + 0.789286i \(0.710451\pi\)
\(828\) 0 0
\(829\) 1345.23i 1.62271i 0.584554 + 0.811355i \(0.301270\pi\)
−0.584554 + 0.811355i \(0.698730\pi\)
\(830\) 389.014 + 673.791i 0.468691 + 0.811797i
\(831\) 0 0
\(832\) −94.2850 54.4355i −0.113323 0.0654272i
\(833\) 513.594 + 25.2172i 0.616560 + 0.0302727i
\(834\) 0 0
\(835\) −68.3781 118.434i −0.0818899 0.141838i
\(836\) 798.830i 0.955538i
\(837\) 0 0
\(838\) 987.023i 1.17783i
\(839\) 1030.38 594.890i 1.22810 0.709047i 0.261472 0.965211i \(-0.415792\pi\)
0.966633 + 0.256165i \(0.0824589\pi\)
\(840\) 0 0
\(841\) −618.703 + 1071.62i −0.735675 + 1.27423i
\(842\) −21.5835 + 37.3838i −0.0256336 + 0.0443988i
\(843\) 0 0
\(844\) 142.256 + 246.395i 0.168550 + 0.291937i
\(845\) 93.1745i 0.110266i
\(846\) 0 0
\(847\) 294.595 + 1218.22i 0.347810 + 1.43828i
\(848\) −158.137 273.902i −0.186483 0.322997i
\(849\) 0 0
\(850\) 103.784 + 59.9197i 0.122099 + 0.0704937i
\(851\) 695.426 1204.51i 0.817187 1.41541i
\(852\) 0 0
\(853\) 1394.66 805.206i 1.63500 0.943969i 0.652485 0.757802i \(-0.273727\pi\)
0.982518 0.186168i \(-0.0596068\pi\)
\(854\) −470.606 + 113.804i −0.551061 + 0.133260i
\(855\) 0 0
\(856\) −111.320 −0.130047
\(857\) −637.918 + 368.302i −0.744361 + 0.429757i −0.823653 0.567094i \(-0.808068\pi\)
0.0792915 + 0.996851i \(0.474734\pi\)
\(858\) 0 0
\(859\) 449.010 + 259.236i 0.522712 + 0.301788i 0.738044 0.674753i \(-0.235750\pi\)
−0.215331 + 0.976541i \(0.569083\pi\)
\(860\) 118.491 + 68.4111i 0.137781 + 0.0795477i
\(861\) 0 0
\(862\) 151.835 + 262.985i 0.176142 + 0.305087i
\(863\) −319.670 −0.370417 −0.185209 0.982699i \(-0.559296\pi\)
−0.185209 + 0.982699i \(0.559296\pi\)
\(864\) 0 0
\(865\) −939.834 −1.08651
\(866\) −61.2187 + 35.3447i −0.0706914 + 0.0408137i
\(867\) 0 0
\(868\) −3.53563 + 12.0088i −0.00407331 + 0.0138351i
\(869\) −981.499 + 1700.01i −1.12946 + 1.95628i
\(870\) 0 0
\(871\) 121.928 70.3951i 0.139986 0.0808210i
\(872\) 240.373 0.275657
\(873\) 0 0
\(874\) 886.488i 1.01429i
\(875\) −469.834 493.469i −0.536953 0.563964i
\(876\) 0 0
\(877\) 120.744 209.135i 0.137679 0.238467i −0.788939 0.614472i \(-0.789369\pi\)
0.926618 + 0.376005i \(0.122703\pi\)
\(878\) −247.422 142.849i −0.281801 0.162698i
\(879\) 0 0
\(880\) 345.092 199.239i 0.392150 0.226408i
\(881\) 1263.93i 1.43466i −0.696735 0.717328i \(-0.745365\pi\)
0.696735 0.717328i \(-0.254635\pi\)
\(882\) 0 0
\(883\) 84.6550 0.0958720 0.0479360 0.998850i \(-0.484736\pi\)
0.0479360 + 0.998850i \(0.484736\pi\)
\(884\) 142.813 + 247.360i 0.161554 + 0.279819i
\(885\) 0 0
\(886\) −580.948 + 1006.23i −0.655697 + 1.13570i
\(887\) −322.314 186.088i −0.363375 0.209795i 0.307185 0.951650i \(-0.400613\pi\)
−0.670560 + 0.741855i \(0.733946\pi\)
\(888\) 0 0
\(889\) −709.249 + 675.280i −0.797805 + 0.759595i
\(890\) 1001.92 1.12576
\(891\) 0 0
\(892\) 227.439i 0.254977i
\(893\) 192.786 + 333.915i 0.215885 + 0.373925i
\(894\) 0 0
\(895\) −943.775 544.889i −1.05450 0.608814i
\(896\) −75.9717 22.3675i −0.0847898 0.0249638i
\(897\) 0 0
\(898\) 229.777 + 397.986i 0.255877 + 0.443192i
\(899\) 40.7652i 0.0453450i
\(900\) 0 0
\(901\) 829.757i 0.920929i
\(902\) −518.670 + 299.455i −0.575023 + 0.331990i
\(903\) 0 0
\(904\) 72.4340 125.459i 0.0801261 0.138783i
\(905\) −466.186 + 807.458i −0.515123 + 0.892219i
\(906\) 0 0
\(907\) −680.264 1178.25i −0.750015 1.29906i −0.947815 0.318822i \(-0.896713\pi\)
0.197799 0.980243i \(-0.436621\pi\)
\(908\) 300.788i 0.331264i
\(909\) 0 0
\(910\) 182.114 + 753.083i 0.200125 + 0.827564i
\(911\) 23.2739 + 40.3116i 0.0255477 + 0.0442498i 0.878517 0.477712i \(-0.158534\pi\)
−0.852969 + 0.521962i \(0.825200\pi\)
\(912\) 0 0
\(913\) −1435.01 828.506i −1.57176 0.907454i
\(914\) 524.343 908.188i 0.573679 0.993641i
\(915\) 0 0
\(916\) −62.0117 + 35.8025i −0.0676984 + 0.0390857i
\(917\) −288.427 + 69.7487i −0.314533 + 0.0760618i
\(918\) 0 0
\(919\) −326.576 −0.355360 −0.177680 0.984088i \(-0.556859\pi\)
−0.177680 + 0.984088i \(0.556859\pi\)
\(920\) 382.960 221.102i 0.416261 0.240329i
\(921\) 0 0
\(922\) −810.848 468.143i −0.879445 0.507748i
\(923\) 496.100 + 286.423i 0.537486 + 0.310318i
\(924\) 0 0
\(925\) 206.566 + 357.783i 0.223315 + 0.386793i
\(926\) 915.492 0.988653
\(927\) 0 0
\(928\) −257.893 −0.277902
\(929\) 508.153 293.382i 0.546989 0.315804i −0.200918 0.979608i \(-0.564392\pi\)
0.747907 + 0.663804i \(0.231059\pi\)
\(930\) 0 0
\(931\) 1128.50 + 55.4088i 1.21214 + 0.0595153i
\(932\) −397.747 + 688.917i −0.426767 + 0.739182i
\(933\) 0 0
\(934\) 21.5345 12.4329i 0.0230562 0.0133115i
\(935\) −1045.42 −1.11810
\(936\) 0 0
\(937\) 858.055i 0.915747i −0.889017 0.457873i \(-0.848611\pi\)
0.889017 0.457873i \(-0.151389\pi\)
\(938\) 74.1728 70.6203i 0.0790755 0.0752882i
\(939\) 0 0
\(940\) −96.1668 + 166.566i −0.102305 + 0.177198i
\(941\) −293.858 169.659i −0.312283 0.180296i 0.335665 0.941981i \(-0.391039\pi\)
−0.647947 + 0.761685i \(0.724372\pi\)
\(942\) 0 0
\(943\) −575.586 + 332.315i −0.610378 + 0.352402i
\(944\) 173.274i 0.183553i
\(945\) 0 0
\(946\) −291.398 −0.308032
\(947\) −145.781 252.501i −0.153940 0.266632i 0.778732 0.627356i \(-0.215863\pi\)
−0.932673 + 0.360724i \(0.882530\pi\)
\(948\) 0 0
\(949\) −746.800 + 1293.50i −0.786933 + 1.36301i
\(950\) 228.041 + 131.659i 0.240043 + 0.138589i
\(951\) 0 0
\(952\) 143.270 + 150.477i 0.150494 + 0.158064i
\(953\) −1099.85 −1.15409 −0.577046 0.816712i \(-0.695795\pi\)
−0.577046 + 0.816712i \(0.695795\pi\)
\(954\) 0 0
\(955\) 562.186i 0.588676i
\(956\) −170.269 294.915i −0.178106 0.308489i
\(957\) 0 0
\(958\) −847.268 489.171i −0.884414 0.510616i
\(959\) −616.565 181.529i −0.642925 0.189290i
\(960\) 0 0
\(961\) −480.100 831.558i −0.499584 0.865305i
\(962\) 984.666i 1.02356i
\(963\) 0 0
\(964\) 144.388i 0.149780i
\(965\) 1728.02 997.671i 1.79069 1.03386i
\(966\) 0 0
\(967\) −206.206 + 357.160i −0.213243 + 0.369348i −0.952728 0.303825i \(-0.901736\pi\)
0.739484 + 0.673174i \(0.235069\pi\)
\(968\) −253.212 + 438.575i −0.261582 + 0.453074i
\(969\) 0 0
\(970\) 98.2198 + 170.122i 0.101258 + 0.175383i
\(971\) 1193.06i 1.22869i 0.789038 + 0.614344i \(0.210579\pi\)
−0.789038 + 0.614344i \(0.789421\pi\)
\(972\) 0 0
\(973\) 339.376 82.0694i 0.348793 0.0843468i
\(974\) −553.574 958.818i −0.568351 0.984412i
\(975\) 0 0
\(976\) −169.425 97.8174i −0.173591 0.100223i
\(977\) −962.075 + 1666.36i −0.984723 + 1.70559i −0.341564 + 0.939858i \(0.610957\pi\)
−0.643159 + 0.765733i \(0.722377\pi\)
\(978\) 0 0
\(979\) −1847.97 + 1066.93i −1.88761 + 1.08981i
\(980\) 257.527 + 501.329i 0.262783 + 0.511560i
\(981\) 0 0
\(982\) −480.689 −0.489500
\(983\) −1122.96 + 648.340i −1.14238 + 0.659552i −0.947018 0.321180i \(-0.895921\pi\)
−0.195359 + 0.980732i \(0.562587\pi\)
\(984\) 0 0
\(985\) −77.3920 44.6823i −0.0785706 0.0453627i
\(986\) 585.946 + 338.296i 0.594266 + 0.343100i
\(987\) 0 0
\(988\) 313.799 + 543.515i 0.317610 + 0.550117i
\(989\) −323.375 −0.326971
\(990\) 0 0
\(991\) 232.207 0.234315 0.117158 0.993113i \(-0.462622\pi\)
0.117158 + 0.993113i \(0.462622\pi\)
\(992\) −4.38056 + 2.52912i −0.00441589 + 0.00254951i
\(993\) 0 0
\(994\) 399.740 + 117.691i 0.402153 + 0.118402i
\(995\) 823.416 1426.20i 0.827554 1.43337i
\(996\) 0 0
\(997\) 1177.97 680.103i 1.18152 0.682149i 0.225152 0.974324i \(-0.427712\pi\)
0.956365 + 0.292174i \(0.0943787\pi\)
\(998\) −307.902 −0.308519
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.o.a.307.7 32
3.2 odd 2 126.3.o.a.13.9 32
7.6 odd 2 inner 378.3.o.a.307.2 32
9.2 odd 6 126.3.o.a.97.16 yes 32
9.4 even 3 1134.3.c.d.811.10 16
9.5 odd 6 1134.3.c.e.811.7 16
9.7 even 3 inner 378.3.o.a.181.2 32
21.20 even 2 126.3.o.a.13.16 yes 32
63.13 odd 6 1134.3.c.d.811.15 16
63.20 even 6 126.3.o.a.97.9 yes 32
63.34 odd 6 inner 378.3.o.a.181.7 32
63.41 even 6 1134.3.c.e.811.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.9 32 3.2 odd 2
126.3.o.a.13.16 yes 32 21.20 even 2
126.3.o.a.97.9 yes 32 63.20 even 6
126.3.o.a.97.16 yes 32 9.2 odd 6
378.3.o.a.181.2 32 9.7 even 3 inner
378.3.o.a.181.7 32 63.34 odd 6 inner
378.3.o.a.307.2 32 7.6 odd 2 inner
378.3.o.a.307.7 32 1.1 even 1 trivial
1134.3.c.d.811.10 16 9.4 even 3
1134.3.c.d.811.15 16 63.13 odd 6
1134.3.c.e.811.2 16 63.41 even 6
1134.3.c.e.811.7 16 9.5 odd 6