Properties

Label 378.3.i.a.179.6
Level $378$
Weight $3$
Character 378.179
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(179,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.179"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.6
Character \(\chi\) \(=\) 378.179
Dual form 378.3.i.a.359.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(1.00000 + 1.73205i) q^{4} +2.45915i q^{5} +(1.16622 - 6.90217i) q^{7} -2.82843i q^{8} +(1.73888 - 3.01183i) q^{10} -11.2668i q^{11} +(-9.55569 + 16.5509i) q^{13} +(-6.30889 + 7.62875i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(8.32907 + 4.80879i) q^{17} +(-8.82426 - 15.2841i) q^{19} +(-4.25936 + 2.45915i) q^{20} +(-7.96680 + 13.7989i) q^{22} -32.3395i q^{23} +18.9526 q^{25} +(23.4066 - 13.5138i) q^{26} +(13.1211 - 4.88221i) q^{28} +(25.7644 - 14.8751i) q^{29} +(-9.69972 - 16.8004i) q^{31} +(4.89898 - 2.82843i) q^{32} +(-6.80066 - 11.7791i) q^{34} +(16.9734 + 2.86791i) q^{35} +(-15.3594 - 26.6032i) q^{37} +24.9588i q^{38} +6.95551 q^{40} +(-10.3804 - 5.99315i) q^{41} +(-30.0344 - 52.0211i) q^{43} +(19.5146 - 11.2668i) q^{44} +(-22.8675 + 39.6076i) q^{46} +(-36.2320 - 20.9185i) q^{47} +(-46.2799 - 16.0989i) q^{49} +(-23.2121 - 13.4015i) q^{50} -38.2228 q^{52} +(20.2918 + 11.7155i) q^{53} +27.7066 q^{55} +(-19.5223 - 3.29857i) q^{56} -42.0731 q^{58} +(-4.21468 + 2.43335i) q^{59} +(16.6932 - 28.9135i) q^{61} +27.4350i q^{62} -8.00000 q^{64} +(-40.7012 - 23.4988i) q^{65} +(54.1318 + 93.7590i) q^{67} +19.2352i q^{68} +(-18.7602 - 15.5145i) q^{70} -133.605i q^{71} +(60.3429 - 104.517i) q^{73} +43.4429i q^{74} +(17.6485 - 30.5681i) q^{76} +(-77.7651 - 13.1395i) q^{77} +(-13.0333 + 22.5743i) q^{79} +(-8.51873 - 4.91829i) q^{80} +(8.47559 + 14.6801i) q^{82} +(59.7033 - 34.4697i) q^{83} +(-11.8255 + 20.4824i) q^{85} +84.9501i q^{86} -31.8672 q^{88} +(-128.675 + 74.2905i) q^{89} +(103.093 + 85.2571i) q^{91} +(56.0136 - 32.3395i) q^{92} +(29.5833 + 51.2398i) q^{94} +(37.5857 - 21.7001i) q^{95} +(11.3016 + 19.5750i) q^{97} +(45.2974 + 52.4419i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 2 q^{7} + 10 q^{13} - 36 q^{14} - 64 q^{16} - 54 q^{17} + 28 q^{19} - 160 q^{25} - 72 q^{26} - 4 q^{28} - 36 q^{29} - 8 q^{31} - 90 q^{35} + 22 q^{37} - 72 q^{41} + 16 q^{43} + 72 q^{44}+ \cdots + 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 2.45915i 0.491829i 0.969292 + 0.245915i \(0.0790883\pi\)
−0.969292 + 0.245915i \(0.920912\pi\)
\(6\) 0 0
\(7\) 1.16622 6.90217i 0.166603 0.986024i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 1.73888 3.01183i 0.173888 0.301183i
\(11\) 11.2668i 1.02425i −0.858911 0.512125i \(-0.828858\pi\)
0.858911 0.512125i \(-0.171142\pi\)
\(12\) 0 0
\(13\) −9.55569 + 16.5509i −0.735053 + 1.27315i 0.219646 + 0.975580i \(0.429510\pi\)
−0.954700 + 0.297570i \(0.903824\pi\)
\(14\) −6.30889 + 7.62875i −0.450635 + 0.544911i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 8.32907 + 4.80879i 0.489945 + 0.282870i 0.724552 0.689220i \(-0.242047\pi\)
−0.234606 + 0.972090i \(0.575380\pi\)
\(18\) 0 0
\(19\) −8.82426 15.2841i −0.464435 0.804424i 0.534741 0.845016i \(-0.320409\pi\)
−0.999176 + 0.0405916i \(0.987076\pi\)
\(20\) −4.25936 + 2.45915i −0.212968 + 0.122957i
\(21\) 0 0
\(22\) −7.96680 + 13.7989i −0.362127 + 0.627223i
\(23\) 32.3395i 1.40606i −0.711158 0.703032i \(-0.751829\pi\)
0.711158 0.703032i \(-0.248171\pi\)
\(24\) 0 0
\(25\) 18.9526 0.758104
\(26\) 23.4066 13.5138i 0.900253 0.519761i
\(27\) 0 0
\(28\) 13.1211 4.88221i 0.468612 0.174365i
\(29\) 25.7644 14.8751i 0.888428 0.512934i 0.0149997 0.999887i \(-0.495225\pi\)
0.873428 + 0.486954i \(0.161892\pi\)
\(30\) 0 0
\(31\) −9.69972 16.8004i −0.312894 0.541949i 0.666093 0.745868i \(-0.267965\pi\)
−0.978988 + 0.203920i \(0.934632\pi\)
\(32\) 4.89898 2.82843i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −6.80066 11.7791i −0.200019 0.346444i
\(35\) 16.9734 + 2.86791i 0.484955 + 0.0819402i
\(36\) 0 0
\(37\) −15.3594 26.6032i −0.415118 0.719006i 0.580322 0.814387i \(-0.302927\pi\)
−0.995441 + 0.0953806i \(0.969593\pi\)
\(38\) 24.9588i 0.656810i
\(39\) 0 0
\(40\) 6.95551 0.173888
\(41\) −10.3804 5.99315i −0.253181 0.146174i 0.368039 0.929810i \(-0.380029\pi\)
−0.621220 + 0.783636i \(0.713363\pi\)
\(42\) 0 0
\(43\) −30.0344 52.0211i −0.698475 1.20979i −0.968995 0.247079i \(-0.920529\pi\)
0.270521 0.962714i \(-0.412804\pi\)
\(44\) 19.5146 11.2668i 0.443514 0.256063i
\(45\) 0 0
\(46\) −22.8675 + 39.6076i −0.497119 + 0.861035i
\(47\) −36.2320 20.9185i −0.770893 0.445075i 0.0622998 0.998057i \(-0.480156\pi\)
−0.833193 + 0.552982i \(0.813490\pi\)
\(48\) 0 0
\(49\) −46.2799 16.0989i −0.944487 0.328549i
\(50\) −23.2121 13.4015i −0.464242 0.268030i
\(51\) 0 0
\(52\) −38.2228 −0.735053
\(53\) 20.2918 + 11.7155i 0.382865 + 0.221047i 0.679064 0.734079i \(-0.262386\pi\)
−0.296199 + 0.955126i \(0.595719\pi\)
\(54\) 0 0
\(55\) 27.7066 0.503756
\(56\) −19.5223 3.29857i −0.348612 0.0589030i
\(57\) 0 0
\(58\) −42.0731 −0.725398
\(59\) −4.21468 + 2.43335i −0.0714353 + 0.0412432i −0.535292 0.844667i \(-0.679799\pi\)
0.463857 + 0.885910i \(0.346465\pi\)
\(60\) 0 0
\(61\) 16.6932 28.9135i 0.273659 0.473991i −0.696137 0.717909i \(-0.745099\pi\)
0.969796 + 0.243918i \(0.0784327\pi\)
\(62\) 27.4350i 0.442499i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −40.7012 23.4988i −0.626172 0.361521i
\(66\) 0 0
\(67\) 54.1318 + 93.7590i 0.807937 + 1.39939i 0.914290 + 0.405059i \(0.132749\pi\)
−0.106354 + 0.994328i \(0.533918\pi\)
\(68\) 19.2352i 0.282870i
\(69\) 0 0
\(70\) −18.7602 15.5145i −0.268003 0.221636i
\(71\) 133.605i 1.88175i −0.338748 0.940877i \(-0.610003\pi\)
0.338748 0.940877i \(-0.389997\pi\)
\(72\) 0 0
\(73\) 60.3429 104.517i 0.826615 1.43174i −0.0740630 0.997254i \(-0.523597\pi\)
0.900678 0.434486i \(-0.143070\pi\)
\(74\) 43.4429i 0.587066i
\(75\) 0 0
\(76\) 17.6485 30.5681i 0.232217 0.402212i
\(77\) −77.7651 13.1395i −1.00994 0.170643i
\(78\) 0 0
\(79\) −13.0333 + 22.5743i −0.164979 + 0.285751i −0.936648 0.350273i \(-0.886089\pi\)
0.771669 + 0.636024i \(0.219422\pi\)
\(80\) −8.51873 4.91829i −0.106484 0.0614786i
\(81\) 0 0
\(82\) 8.47559 + 14.6801i 0.103361 + 0.179026i
\(83\) 59.7033 34.4697i 0.719317 0.415298i −0.0951842 0.995460i \(-0.530344\pi\)
0.814501 + 0.580162i \(0.197011\pi\)
\(84\) 0 0
\(85\) −11.8255 + 20.4824i −0.139124 + 0.240969i
\(86\) 84.9501i 0.987792i
\(87\) 0 0
\(88\) −31.8672 −0.362127
\(89\) −128.675 + 74.2905i −1.44579 + 0.834725i −0.998227 0.0595295i \(-0.981040\pi\)
−0.447559 + 0.894254i \(0.647707\pi\)
\(90\) 0 0
\(91\) 103.093 + 85.2571i 1.13289 + 0.936891i
\(92\) 56.0136 32.3395i 0.608843 0.351516i
\(93\) 0 0
\(94\) 29.5833 + 51.2398i 0.314716 + 0.545104i
\(95\) 37.5857 21.7001i 0.395639 0.228422i
\(96\) 0 0
\(97\) 11.3016 + 19.5750i 0.116512 + 0.201804i 0.918383 0.395693i \(-0.129495\pi\)
−0.801871 + 0.597497i \(0.796162\pi\)
\(98\) 45.2974 + 52.4419i 0.462218 + 0.535121i
\(99\) 0 0
\(100\) 18.9526 + 32.8269i 0.189526 + 0.328269i
\(101\) 69.5252i 0.688368i 0.938902 + 0.344184i \(0.111844\pi\)
−0.938902 + 0.344184i \(0.888156\pi\)
\(102\) 0 0
\(103\) 91.1054 0.884519 0.442259 0.896887i \(-0.354177\pi\)
0.442259 + 0.896887i \(0.354177\pi\)
\(104\) 46.8132 + 27.0276i 0.450126 + 0.259881i
\(105\) 0 0
\(106\) −16.5682 28.6970i −0.156304 0.270726i
\(107\) −136.016 + 78.5290i −1.27118 + 0.733916i −0.975210 0.221282i \(-0.928976\pi\)
−0.295969 + 0.955197i \(0.595643\pi\)
\(108\) 0 0
\(109\) 26.9553 46.6880i 0.247296 0.428330i −0.715478 0.698635i \(-0.753791\pi\)
0.962775 + 0.270305i \(0.0871245\pi\)
\(110\) −33.9335 19.5915i −0.308486 0.178105i
\(111\) 0 0
\(112\) 21.5774 + 17.8442i 0.192655 + 0.159324i
\(113\) 112.172 + 64.7627i 0.992675 + 0.573121i 0.906073 0.423122i \(-0.139066\pi\)
0.0866020 + 0.996243i \(0.472399\pi\)
\(114\) 0 0
\(115\) 79.5275 0.691543
\(116\) 51.5288 + 29.7502i 0.444214 + 0.256467i
\(117\) 0 0
\(118\) 6.88255 0.0583267
\(119\) 42.9046 51.8805i 0.360543 0.435971i
\(120\) 0 0
\(121\) −5.93985 −0.0490896
\(122\) −40.8898 + 23.6077i −0.335162 + 0.193506i
\(123\) 0 0
\(124\) 19.3994 33.6008i 0.156447 0.270974i
\(125\) 108.086i 0.864687i
\(126\) 0 0
\(127\) 69.5844 0.547908 0.273954 0.961743i \(-0.411668\pi\)
0.273954 + 0.961743i \(0.411668\pi\)
\(128\) 9.79796 + 5.65685i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 33.2324 + 57.5602i 0.255634 + 0.442771i
\(131\) 1.80136i 0.0137508i −0.999976 0.00687541i \(-0.997811\pi\)
0.999976 0.00687541i \(-0.00218853\pi\)
\(132\) 0 0
\(133\) −115.784 + 43.0819i −0.870558 + 0.323924i
\(134\) 153.108i 1.14260i
\(135\) 0 0
\(136\) 13.6013 23.5582i 0.100010 0.173222i
\(137\) 45.1078i 0.329254i 0.986356 + 0.164627i \(0.0526420\pi\)
−0.986356 + 0.164627i \(0.947358\pi\)
\(138\) 0 0
\(139\) −127.215 + 220.344i −0.915219 + 1.58521i −0.108638 + 0.994081i \(0.534649\pi\)
−0.806581 + 0.591124i \(0.798684\pi\)
\(140\) 12.0061 + 32.2668i 0.0857577 + 0.230477i
\(141\) 0 0
\(142\) −94.4727 + 163.631i −0.665301 + 1.15233i
\(143\) 186.476 + 107.662i 1.30402 + 0.752879i
\(144\) 0 0
\(145\) 36.5800 + 63.3584i 0.252276 + 0.436955i
\(146\) −147.809 + 85.3378i −1.01239 + 0.584505i
\(147\) 0 0
\(148\) 30.7188 53.2065i 0.207559 0.359503i
\(149\) 33.6374i 0.225754i −0.993609 0.112877i \(-0.963993\pi\)
0.993609 0.112877i \(-0.0360066\pi\)
\(150\) 0 0
\(151\) −174.677 −1.15680 −0.578402 0.815752i \(-0.696324\pi\)
−0.578402 + 0.815752i \(0.696324\pi\)
\(152\) −43.2299 + 24.9588i −0.284407 + 0.164202i
\(153\) 0 0
\(154\) 85.9513 + 71.0808i 0.558125 + 0.461563i
\(155\) 41.3147 23.8530i 0.266546 0.153890i
\(156\) 0 0
\(157\) −26.0441 45.1098i −0.165886 0.287323i 0.771083 0.636734i \(-0.219715\pi\)
−0.936970 + 0.349411i \(0.886382\pi\)
\(158\) 31.9250 18.4319i 0.202057 0.116657i
\(159\) 0 0
\(160\) 6.95551 + 12.0473i 0.0434720 + 0.0752956i
\(161\) −223.212 37.7150i −1.38641 0.234254i
\(162\) 0 0
\(163\) 68.5686 + 118.764i 0.420666 + 0.728615i 0.996005 0.0893001i \(-0.0284630\pi\)
−0.575339 + 0.817915i \(0.695130\pi\)
\(164\) 23.9726i 0.146174i
\(165\) 0 0
\(166\) −97.4951 −0.587320
\(167\) 99.7282 + 57.5781i 0.597175 + 0.344779i 0.767929 0.640535i \(-0.221287\pi\)
−0.170755 + 0.985314i \(0.554621\pi\)
\(168\) 0 0
\(169\) −98.1226 169.953i −0.580607 1.00564i
\(170\) 28.9665 16.7238i 0.170391 0.0983753i
\(171\) 0 0
\(172\) 60.0688 104.042i 0.349237 0.604897i
\(173\) 217.116 + 125.352i 1.25501 + 0.724578i 0.972099 0.234569i \(-0.0753679\pi\)
0.282907 + 0.959147i \(0.408701\pi\)
\(174\) 0 0
\(175\) 22.1029 130.814i 0.126302 0.747509i
\(176\) 39.0292 + 22.5335i 0.221757 + 0.128031i
\(177\) 0 0
\(178\) 210.125 1.18048
\(179\) 21.9209 + 12.6560i 0.122463 + 0.0707041i 0.559980 0.828506i \(-0.310809\pi\)
−0.437517 + 0.899210i \(0.644142\pi\)
\(180\) 0 0
\(181\) −35.6698 −0.197070 −0.0985352 0.995134i \(-0.531416\pi\)
−0.0985352 + 0.995134i \(0.531416\pi\)
\(182\) −65.9772 177.316i −0.362512 0.974265i
\(183\) 0 0
\(184\) −91.4698 −0.497119
\(185\) 65.4212 37.7710i 0.353628 0.204167i
\(186\) 0 0
\(187\) 54.1795 93.8416i 0.289730 0.501827i
\(188\) 83.6742i 0.445075i
\(189\) 0 0
\(190\) −61.3772 −0.323038
\(191\) 30.3226 + 17.5068i 0.158757 + 0.0916585i 0.577274 0.816551i \(-0.304117\pi\)
−0.418517 + 0.908209i \(0.637450\pi\)
\(192\) 0 0
\(193\) 69.6945 + 120.714i 0.361111 + 0.625463i 0.988144 0.153530i \(-0.0490641\pi\)
−0.627033 + 0.778993i \(0.715731\pi\)
\(194\) 31.9658i 0.164772i
\(195\) 0 0
\(196\) −18.3957 96.2580i −0.0938558 0.491112i
\(197\) 85.6801i 0.434924i −0.976069 0.217462i \(-0.930222\pi\)
0.976069 0.217462i \(-0.0697779\pi\)
\(198\) 0 0
\(199\) −61.4480 + 106.431i −0.308784 + 0.534830i −0.978097 0.208151i \(-0.933255\pi\)
0.669313 + 0.742981i \(0.266589\pi\)
\(200\) 53.6061i 0.268030i
\(201\) 0 0
\(202\) 49.1617 85.1506i 0.243375 0.421538i
\(203\) −72.6234 195.178i −0.357751 0.961467i
\(204\) 0 0
\(205\) 14.7380 25.5270i 0.0718928 0.124522i
\(206\) −111.581 64.4213i −0.541655 0.312725i
\(207\) 0 0
\(208\) −38.2228 66.2038i −0.183763 0.318287i
\(209\) −172.202 + 99.4208i −0.823932 + 0.475697i
\(210\) 0 0
\(211\) 135.356 234.444i 0.641499 1.11111i −0.343600 0.939116i \(-0.611646\pi\)
0.985098 0.171992i \(-0.0550203\pi\)
\(212\) 46.8620i 0.221047i
\(213\) 0 0
\(214\) 222.114 1.03791
\(215\) 127.928 73.8590i 0.595012 0.343530i
\(216\) 0 0
\(217\) −127.271 + 47.3561i −0.586504 + 0.218231i
\(218\) −66.0268 + 38.1206i −0.302875 + 0.174865i
\(219\) 0 0
\(220\) 27.7066 + 47.9892i 0.125939 + 0.218133i
\(221\) −159.180 + 91.9027i −0.720272 + 0.415849i
\(222\) 0 0
\(223\) 35.6354 + 61.7223i 0.159800 + 0.276781i 0.934796 0.355184i \(-0.115582\pi\)
−0.774997 + 0.631965i \(0.782248\pi\)
\(224\) −13.8090 37.1122i −0.0616473 0.165679i
\(225\) 0 0
\(226\) −91.5883 158.636i −0.405258 0.701927i
\(227\) 244.104i 1.07535i 0.843152 + 0.537675i \(0.180697\pi\)
−0.843152 + 0.537675i \(0.819303\pi\)
\(228\) 0 0
\(229\) −446.853 −1.95132 −0.975662 0.219279i \(-0.929629\pi\)
−0.975662 + 0.219279i \(0.929629\pi\)
\(230\) −97.4008 56.2344i −0.423482 0.244497i
\(231\) 0 0
\(232\) −42.0731 72.8727i −0.181350 0.314107i
\(233\) −230.950 + 133.339i −0.991200 + 0.572269i −0.905633 0.424063i \(-0.860604\pi\)
−0.0855670 + 0.996332i \(0.527270\pi\)
\(234\) 0 0
\(235\) 51.4418 89.0997i 0.218901 0.379148i
\(236\) −8.42937 4.86670i −0.0357177 0.0206216i
\(237\) 0 0
\(238\) −89.2323 + 33.2023i −0.374926 + 0.139505i
\(239\) −314.587 181.627i −1.31627 0.759946i −0.333140 0.942878i \(-0.608108\pi\)
−0.983126 + 0.182931i \(0.941441\pi\)
\(240\) 0 0
\(241\) 326.755 1.35583 0.677915 0.735141i \(-0.262884\pi\)
0.677915 + 0.735141i \(0.262884\pi\)
\(242\) 7.27480 + 4.20011i 0.0300611 + 0.0173558i
\(243\) 0 0
\(244\) 66.7728 0.273659
\(245\) 39.5895 113.809i 0.161590 0.464526i
\(246\) 0 0
\(247\) 337.288 1.36554
\(248\) −47.5187 + 27.4350i −0.191608 + 0.110625i
\(249\) 0 0
\(250\) 76.4282 132.378i 0.305713 0.529510i
\(251\) 239.251i 0.953191i −0.879123 0.476595i \(-0.841871\pi\)
0.879123 0.476595i \(-0.158129\pi\)
\(252\) 0 0
\(253\) −364.361 −1.44016
\(254\) −85.2231 49.2036i −0.335524 0.193715i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 335.542i 1.30561i −0.757525 0.652806i \(-0.773592\pi\)
0.757525 0.652806i \(-0.226408\pi\)
\(258\) 0 0
\(259\) −201.532 + 74.9878i −0.778117 + 0.289528i
\(260\) 93.9954i 0.361521i
\(261\) 0 0
\(262\) −1.27375 + 2.20620i −0.00486165 + 0.00842063i
\(263\) 265.889i 1.01099i 0.862831 + 0.505493i \(0.168689\pi\)
−0.862831 + 0.505493i \(0.831311\pi\)
\(264\) 0 0
\(265\) −28.8101 + 49.9006i −0.108717 + 0.188304i
\(266\) 172.270 + 29.1074i 0.647630 + 0.109426i
\(267\) 0 0
\(268\) −108.264 + 187.518i −0.403968 + 0.699694i
\(269\) 283.798 + 163.851i 1.05501 + 0.609111i 0.924048 0.382277i \(-0.124860\pi\)
0.130963 + 0.991387i \(0.458193\pi\)
\(270\) 0 0
\(271\) −190.337 329.674i −0.702351 1.21651i −0.967639 0.252339i \(-0.918800\pi\)
0.265288 0.964169i \(-0.414533\pi\)
\(272\) −33.3163 + 19.2352i −0.122486 + 0.0707175i
\(273\) 0 0
\(274\) 31.8960 55.2456i 0.116409 0.201626i
\(275\) 213.534i 0.776489i
\(276\) 0 0
\(277\) −203.417 −0.734357 −0.367178 0.930151i \(-0.619676\pi\)
−0.367178 + 0.930151i \(0.619676\pi\)
\(278\) 311.613 179.910i 1.12091 0.647157i
\(279\) 0 0
\(280\) 8.11166 48.0081i 0.0289702 0.171458i
\(281\) 309.847 178.890i 1.10266 0.636620i 0.165740 0.986170i \(-0.446999\pi\)
0.936918 + 0.349550i \(0.113665\pi\)
\(282\) 0 0
\(283\) 50.6119 + 87.6624i 0.178841 + 0.309761i 0.941484 0.337059i \(-0.109432\pi\)
−0.762643 + 0.646820i \(0.776099\pi\)
\(284\) 231.410 133.605i 0.814824 0.470439i
\(285\) 0 0
\(286\) −152.257 263.716i −0.532366 0.922085i
\(287\) −53.4716 + 64.6582i −0.186312 + 0.225290i
\(288\) 0 0
\(289\) −98.2511 170.176i −0.339969 0.588844i
\(290\) 103.464i 0.356772i
\(291\) 0 0
\(292\) 241.372 0.826615
\(293\) 47.8628 + 27.6336i 0.163354 + 0.0943126i 0.579448 0.815009i \(-0.303268\pi\)
−0.416094 + 0.909322i \(0.636601\pi\)
\(294\) 0 0
\(295\) −5.98396 10.3645i −0.0202846 0.0351340i
\(296\) −75.2453 + 43.4429i −0.254207 + 0.146767i
\(297\) 0 0
\(298\) −23.7852 + 41.1972i −0.0798162 + 0.138246i
\(299\) 535.249 + 309.026i 1.79013 + 1.03353i
\(300\) 0 0
\(301\) −394.085 + 146.634i −1.30925 + 0.487158i
\(302\) 213.935 + 123.516i 0.708395 + 0.408992i
\(303\) 0 0
\(304\) 70.5941 0.232217
\(305\) 71.1024 + 41.0510i 0.233123 + 0.134593i
\(306\) 0 0
\(307\) 311.039 1.01316 0.506578 0.862194i \(-0.330910\pi\)
0.506578 + 0.862194i \(0.330910\pi\)
\(308\) −55.0067 147.833i −0.178593 0.479976i
\(309\) 0 0
\(310\) −67.4665 −0.217634
\(311\) 36.6055 21.1342i 0.117702 0.0679555i −0.439993 0.898001i \(-0.645019\pi\)
0.557695 + 0.830046i \(0.311686\pi\)
\(312\) 0 0
\(313\) −63.7340 + 110.390i −0.203623 + 0.352685i −0.949693 0.313182i \(-0.898605\pi\)
0.746070 + 0.665867i \(0.231938\pi\)
\(314\) 73.6639i 0.234598i
\(315\) 0 0
\(316\) −52.1332 −0.164979
\(317\) −492.304 284.232i −1.55301 0.896630i −0.997895 0.0648560i \(-0.979341\pi\)
−0.555114 0.831774i \(-0.687325\pi\)
\(318\) 0 0
\(319\) −167.594 290.281i −0.525373 0.909973i
\(320\) 19.6732i 0.0614786i
\(321\) 0 0
\(322\) 246.710 + 204.026i 0.766180 + 0.633622i
\(323\) 169.736i 0.525499i
\(324\) 0 0
\(325\) −181.105 + 313.684i −0.557247 + 0.965180i
\(326\) 193.941i 0.594912i
\(327\) 0 0
\(328\) −16.9512 + 29.3603i −0.0516804 + 0.0895131i
\(329\) −186.638 + 225.684i −0.567288 + 0.685969i
\(330\) 0 0
\(331\) −198.102 + 343.122i −0.598495 + 1.03662i 0.394549 + 0.918875i \(0.370901\pi\)
−0.993043 + 0.117748i \(0.962432\pi\)
\(332\) 119.407 + 68.9395i 0.359659 + 0.207649i
\(333\) 0 0
\(334\) −81.4277 141.037i −0.243795 0.422266i
\(335\) −230.567 + 133.118i −0.688260 + 0.397367i
\(336\) 0 0
\(337\) 169.043 292.792i 0.501612 0.868818i −0.498386 0.866955i \(-0.666074\pi\)
0.999998 0.00186256i \(-0.000592871\pi\)
\(338\) 277.533i 0.821103i
\(339\) 0 0
\(340\) −47.3021 −0.139124
\(341\) −189.286 + 109.284i −0.555091 + 0.320482i
\(342\) 0 0
\(343\) −165.090 + 300.657i −0.481312 + 0.876550i
\(344\) −147.138 + 84.9501i −0.427727 + 0.246948i
\(345\) 0 0
\(346\) −177.275 307.049i −0.512354 0.887424i
\(347\) 94.4271 54.5175i 0.272124 0.157111i −0.357728 0.933826i \(-0.616449\pi\)
0.629853 + 0.776715i \(0.283115\pi\)
\(348\) 0 0
\(349\) 307.589 + 532.760i 0.881344 + 1.52653i 0.849847 + 0.527030i \(0.176694\pi\)
0.0314975 + 0.999504i \(0.489972\pi\)
\(350\) −119.570 + 144.585i −0.341628 + 0.413099i
\(351\) 0 0
\(352\) −31.8672 55.1956i −0.0905318 0.156806i
\(353\) 318.694i 0.902816i −0.892318 0.451408i \(-0.850922\pi\)
0.892318 0.451408i \(-0.149078\pi\)
\(354\) 0 0
\(355\) 328.553 0.925502
\(356\) −257.350 148.581i −0.722893 0.417362i
\(357\) 0 0
\(358\) −17.8983 31.0008i −0.0499954 0.0865945i
\(359\) 566.210 326.902i 1.57719 0.910590i 0.581938 0.813233i \(-0.302295\pi\)
0.995250 0.0973563i \(-0.0310386\pi\)
\(360\) 0 0
\(361\) 24.7650 42.8942i 0.0686011 0.118821i
\(362\) 43.6864 + 25.2223i 0.120681 + 0.0696749i
\(363\) 0 0
\(364\) −44.5762 + 263.820i −0.122462 + 0.724780i
\(365\) 257.023 + 148.392i 0.704171 + 0.406554i
\(366\) 0 0
\(367\) 639.707 1.74307 0.871536 0.490332i \(-0.163124\pi\)
0.871536 + 0.490332i \(0.163124\pi\)
\(368\) 112.027 + 64.6789i 0.304422 + 0.175758i
\(369\) 0 0
\(370\) −106.832 −0.288736
\(371\) 104.527 126.395i 0.281744 0.340687i
\(372\) 0 0
\(373\) 436.699 1.17078 0.585388 0.810753i \(-0.300942\pi\)
0.585388 + 0.810753i \(0.300942\pi\)
\(374\) −132.712 + 76.6214i −0.354845 + 0.204870i
\(375\) 0 0
\(376\) −59.1666 + 102.480i −0.157358 + 0.272552i
\(377\) 568.567i 1.50814i
\(378\) 0 0
\(379\) −351.261 −0.926810 −0.463405 0.886146i \(-0.653373\pi\)
−0.463405 + 0.886146i \(0.653373\pi\)
\(380\) 75.1715 + 43.4003i 0.197820 + 0.114211i
\(381\) 0 0
\(382\) −24.7583 42.8827i −0.0648124 0.112258i
\(383\) 276.521i 0.721986i 0.932569 + 0.360993i \(0.117562\pi\)
−0.932569 + 0.360993i \(0.882438\pi\)
\(384\) 0 0
\(385\) 32.3120 191.236i 0.0839273 0.496716i
\(386\) 197.126i 0.510689i
\(387\) 0 0
\(388\) −22.6033 + 39.1500i −0.0582558 + 0.100902i
\(389\) 57.6095i 0.148096i −0.997255 0.0740482i \(-0.976408\pi\)
0.997255 0.0740482i \(-0.0235919\pi\)
\(390\) 0 0
\(391\) 155.514 269.358i 0.397733 0.688894i
\(392\) −45.5346 + 130.899i −0.116160 + 0.333927i
\(393\) 0 0
\(394\) −60.5850 + 104.936i −0.153769 + 0.266336i
\(395\) −55.5136 32.0508i −0.140541 0.0811413i
\(396\) 0 0
\(397\) 134.380 + 232.752i 0.338488 + 0.586278i 0.984149 0.177346i \(-0.0567512\pi\)
−0.645661 + 0.763625i \(0.723418\pi\)
\(398\) 150.516 86.9006i 0.378182 0.218343i
\(399\) 0 0
\(400\) −37.9052 + 65.6537i −0.0947630 + 0.164134i
\(401\) 46.8624i 0.116864i 0.998291 + 0.0584319i \(0.0186101\pi\)
−0.998291 + 0.0584319i \(0.981390\pi\)
\(402\) 0 0
\(403\) 370.750 0.919976
\(404\) −120.421 + 69.5252i −0.298072 + 0.172092i
\(405\) 0 0
\(406\) −49.0665 + 290.396i −0.120853 + 0.715260i
\(407\) −299.732 + 173.050i −0.736443 + 0.425185i
\(408\) 0 0
\(409\) −44.5923 77.2361i −0.109028 0.188841i 0.806349 0.591440i \(-0.201440\pi\)
−0.915377 + 0.402599i \(0.868107\pi\)
\(410\) −36.1006 + 20.8427i −0.0880503 + 0.0508359i
\(411\) 0 0
\(412\) 91.1054 + 157.799i 0.221130 + 0.383008i
\(413\) 11.8801 + 31.9283i 0.0287654 + 0.0773082i
\(414\) 0 0
\(415\) 84.7661 + 146.819i 0.204256 + 0.353781i
\(416\) 108.110i 0.259881i
\(417\) 0 0
\(418\) 281.204 0.672738
\(419\) 559.214 + 322.862i 1.33464 + 0.770554i 0.986007 0.166706i \(-0.0533130\pi\)
0.348632 + 0.937260i \(0.386646\pi\)
\(420\) 0 0
\(421\) −8.15020 14.1166i −0.0193592 0.0335310i 0.856184 0.516672i \(-0.172829\pi\)
−0.875543 + 0.483141i \(0.839496\pi\)
\(422\) −331.554 + 191.423i −0.785672 + 0.453608i
\(423\) 0 0
\(424\) 33.1364 57.3940i 0.0781520 0.135363i
\(425\) 157.858 + 91.1391i 0.371430 + 0.214445i
\(426\) 0 0
\(427\) −180.098 148.939i −0.421774 0.348803i
\(428\) −272.032 157.058i −0.635590 0.366958i
\(429\) 0 0
\(430\) −208.905 −0.485825
\(431\) −675.352 389.915i −1.56694 0.904674i −0.996523 0.0833199i \(-0.973448\pi\)
−0.570419 0.821354i \(-0.693219\pi\)
\(432\) 0 0
\(433\) −266.616 −0.615742 −0.307871 0.951428i \(-0.599616\pi\)
−0.307871 + 0.951428i \(0.599616\pi\)
\(434\) 189.361 + 31.9952i 0.436315 + 0.0737217i
\(435\) 0 0
\(436\) 107.821 0.247296
\(437\) −494.278 + 285.372i −1.13107 + 0.653025i
\(438\) 0 0
\(439\) 21.4115 37.0858i 0.0487734 0.0844780i −0.840608 0.541644i \(-0.817802\pi\)
0.889381 + 0.457166i \(0.151135\pi\)
\(440\) 78.3661i 0.178105i
\(441\) 0 0
\(442\) 259.940 0.588100
\(443\) −398.451 230.046i −0.899437 0.519290i −0.0224196 0.999749i \(-0.507137\pi\)
−0.877018 + 0.480458i \(0.840470\pi\)
\(444\) 0 0
\(445\) −182.691 316.430i −0.410542 0.711080i
\(446\) 100.792i 0.225991i
\(447\) 0 0
\(448\) −9.32977 + 55.2173i −0.0208254 + 0.123253i
\(449\) 568.150i 1.26537i 0.774410 + 0.632684i \(0.218047\pi\)
−0.774410 + 0.632684i \(0.781953\pi\)
\(450\) 0 0
\(451\) −67.5233 + 116.954i −0.149719 + 0.259321i
\(452\) 259.051i 0.573121i
\(453\) 0 0
\(454\) 172.608 298.965i 0.380193 0.658514i
\(455\) −209.660 + 253.522i −0.460790 + 0.557190i
\(456\) 0 0
\(457\) −53.3761 + 92.4500i −0.116797 + 0.202298i −0.918497 0.395429i \(-0.870596\pi\)
0.801700 + 0.597727i \(0.203929\pi\)
\(458\) 547.281 + 315.973i 1.19494 + 0.689897i
\(459\) 0 0
\(460\) 79.5275 + 137.746i 0.172886 + 0.299447i
\(461\) 687.776 397.088i 1.49192 0.861362i 0.491965 0.870615i \(-0.336279\pi\)
0.999957 + 0.00925333i \(0.00294547\pi\)
\(462\) 0 0
\(463\) −33.1409 + 57.4018i −0.0715787 + 0.123978i −0.899593 0.436728i \(-0.856137\pi\)
0.828015 + 0.560706i \(0.189470\pi\)
\(464\) 119.001i 0.256467i
\(465\) 0 0
\(466\) 377.139 0.809311
\(467\) −68.5040 + 39.5508i −0.146690 + 0.0846912i −0.571548 0.820568i \(-0.693657\pi\)
0.424859 + 0.905260i \(0.360324\pi\)
\(468\) 0 0
\(469\) 710.270 264.283i 1.51443 0.563503i
\(470\) −126.006 + 72.7496i −0.268098 + 0.154786i
\(471\) 0 0
\(472\) 6.88255 + 11.9209i 0.0145817 + 0.0252562i
\(473\) −586.109 + 338.390i −1.23913 + 0.715413i
\(474\) 0 0
\(475\) −167.243 289.673i −0.352090 0.609837i
\(476\) 132.764 + 22.4324i 0.278917 + 0.0471270i
\(477\) 0 0
\(478\) 256.860 + 444.894i 0.537363 + 0.930740i
\(479\) 370.623i 0.773744i −0.922133 0.386872i \(-0.873555\pi\)
0.922133 0.386872i \(-0.126445\pi\)
\(480\) 0 0
\(481\) 587.078 1.22054
\(482\) −400.191 231.051i −0.830273 0.479358i
\(483\) 0 0
\(484\) −5.93985 10.2881i −0.0122724 0.0212564i
\(485\) −48.1378 + 27.7924i −0.0992532 + 0.0573038i
\(486\) 0 0
\(487\) 4.05330 7.02052i 0.00832299 0.0144158i −0.861834 0.507191i \(-0.830684\pi\)
0.870157 + 0.492775i \(0.164017\pi\)
\(488\) −81.7796 47.2155i −0.167581 0.0967530i
\(489\) 0 0
\(490\) −128.962 + 111.393i −0.263188 + 0.227332i
\(491\) 535.748 + 309.314i 1.09114 + 0.629968i 0.933879 0.357590i \(-0.116401\pi\)
0.157257 + 0.987558i \(0.449735\pi\)
\(492\) 0 0
\(493\) 286.125 0.580375
\(494\) −413.091 238.498i −0.836217 0.482790i
\(495\) 0 0
\(496\) 77.5978 0.156447
\(497\) −922.161 155.812i −1.85546 0.313506i
\(498\) 0 0
\(499\) −49.7159 −0.0996311 −0.0498156 0.998758i \(-0.515863\pi\)
−0.0498156 + 0.998758i \(0.515863\pi\)
\(500\) −187.210 + 108.086i −0.374420 + 0.216172i
\(501\) 0 0
\(502\) −169.176 + 293.021i −0.337004 + 0.583708i
\(503\) 330.210i 0.656480i −0.944594 0.328240i \(-0.893544\pi\)
0.944594 0.328240i \(-0.106456\pi\)
\(504\) 0 0
\(505\) −170.972 −0.338559
\(506\) 446.249 + 257.642i 0.881915 + 0.509174i
\(507\) 0 0
\(508\) 69.5844 + 120.524i 0.136977 + 0.237251i
\(509\) 787.097i 1.54636i −0.634187 0.773180i \(-0.718665\pi\)
0.634187 0.773180i \(-0.281335\pi\)
\(510\) 0 0
\(511\) −651.021 538.387i −1.27401 1.05359i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −237.264 + 410.954i −0.461604 + 0.799521i
\(515\) 224.042i 0.435032i
\(516\) 0 0
\(517\) −235.684 + 408.217i −0.455869 + 0.789588i
\(518\) 299.850 + 50.6640i 0.578861 + 0.0978070i
\(519\) 0 0
\(520\) −66.4648 + 115.120i −0.127817 + 0.221385i
\(521\) 32.2385 + 18.6129i 0.0618782 + 0.0357254i 0.530620 0.847610i \(-0.321959\pi\)
−0.468742 + 0.883335i \(0.655293\pi\)
\(522\) 0 0
\(523\) 91.4338 + 158.368i 0.174826 + 0.302807i 0.940101 0.340896i \(-0.110730\pi\)
−0.765275 + 0.643703i \(0.777397\pi\)
\(524\) 3.12004 1.80136i 0.00595428 0.00343771i
\(525\) 0 0
\(526\) 188.012 325.646i 0.357437 0.619099i
\(527\) 186.576i 0.354034i
\(528\) 0 0
\(529\) −516.841 −0.977015
\(530\) 70.5701 40.7437i 0.133151 0.0768749i
\(531\) 0 0
\(532\) −190.404 157.462i −0.357903 0.295982i
\(533\) 198.384 114.537i 0.372204 0.214892i
\(534\) 0 0
\(535\) −193.114 334.484i −0.360961 0.625203i
\(536\) 265.190 153.108i 0.494758 0.285649i
\(537\) 0 0
\(538\) −231.720 401.351i −0.430706 0.746005i
\(539\) −181.382 + 521.424i −0.336517 + 0.967391i
\(540\) 0 0
\(541\) −458.958 794.939i −0.848351 1.46939i −0.882679 0.469977i \(-0.844262\pi\)
0.0343272 0.999411i \(-0.489071\pi\)
\(542\) 538.355i 0.993275i
\(543\) 0 0
\(544\) 54.4053 0.100010
\(545\) 114.813 + 66.2870i 0.210665 + 0.121628i
\(546\) 0 0
\(547\) 531.064 + 919.829i 0.970866 + 1.68159i 0.692952 + 0.720984i \(0.256310\pi\)
0.277914 + 0.960606i \(0.410357\pi\)
\(548\) −78.1290 + 45.1078i −0.142571 + 0.0823135i
\(549\) 0 0
\(550\) −150.992 + 261.525i −0.274530 + 0.475500i
\(551\) −454.703 262.523i −0.825233 0.476448i
\(552\) 0 0
\(553\) 140.612 + 116.285i 0.254272 + 0.210280i
\(554\) 249.134 + 143.837i 0.449700 + 0.259634i
\(555\) 0 0
\(556\) −508.862 −0.915219
\(557\) 93.5858 + 54.0318i 0.168018 + 0.0970050i 0.581651 0.813439i \(-0.302407\pi\)
−0.413633 + 0.910444i \(0.635740\pi\)
\(558\) 0 0
\(559\) 1148.00 2.05366
\(560\) −43.8816 + 53.0619i −0.0783600 + 0.0947534i
\(561\) 0 0
\(562\) −505.978 −0.900316
\(563\) 935.789 540.278i 1.66215 0.959641i 0.690460 0.723370i \(-0.257408\pi\)
0.971687 0.236271i \(-0.0759253\pi\)
\(564\) 0 0
\(565\) −159.261 + 275.848i −0.281878 + 0.488226i
\(566\) 143.152i 0.252919i
\(567\) 0 0
\(568\) −377.891 −0.665301
\(569\) 605.640 + 349.666i 1.06439 + 0.614528i 0.926644 0.375940i \(-0.122680\pi\)
0.137749 + 0.990467i \(0.456013\pi\)
\(570\) 0 0
\(571\) 112.622 + 195.067i 0.197237 + 0.341624i 0.947631 0.319366i \(-0.103470\pi\)
−0.750395 + 0.660990i \(0.770137\pi\)
\(572\) 430.647i 0.752879i
\(573\) 0 0
\(574\) 111.209 41.3796i 0.193744 0.0720900i
\(575\) 612.917i 1.06594i
\(576\) 0 0
\(577\) −7.39884 + 12.8152i −0.0128230 + 0.0222100i −0.872366 0.488854i \(-0.837415\pi\)
0.859543 + 0.511064i \(0.170748\pi\)
\(578\) 277.896i 0.480789i
\(579\) 0 0
\(580\) −73.1600 + 126.717i −0.126138 + 0.218477i
\(581\) −168.289 452.282i −0.289653 0.778454i
\(582\) 0 0
\(583\) 131.996 228.623i 0.226408 0.392150i
\(584\) −295.619 170.676i −0.506197 0.292253i
\(585\) 0 0
\(586\) −39.0798 67.6882i −0.0666891 0.115509i
\(587\) −97.5653 + 56.3294i −0.166210 + 0.0959615i −0.580798 0.814048i \(-0.697259\pi\)
0.414587 + 0.910009i \(0.363926\pi\)
\(588\) 0 0
\(589\) −171.186 + 296.502i −0.290638 + 0.503399i
\(590\) 16.9252i 0.0286868i
\(591\) 0 0
\(592\) 122.875 0.207559
\(593\) 46.3761 26.7752i 0.0782059 0.0451522i −0.460387 0.887718i \(-0.652289\pi\)
0.538593 + 0.842566i \(0.318956\pi\)
\(594\) 0 0
\(595\) 127.582 + 105.509i 0.214423 + 0.177326i
\(596\) 58.2617 33.6374i 0.0977545 0.0564386i
\(597\) 0 0
\(598\) −437.029 756.956i −0.730818 1.26581i
\(599\) 28.7901 16.6220i 0.0480637 0.0277496i −0.475776 0.879567i \(-0.657833\pi\)
0.523839 + 0.851817i \(0.324499\pi\)
\(600\) 0 0
\(601\) −433.346 750.577i −0.721041 1.24888i −0.960583 0.277994i \(-0.910331\pi\)
0.239542 0.970886i \(-0.423003\pi\)
\(602\) 586.340 + 99.0706i 0.973987 + 0.164569i
\(603\) 0 0
\(604\) −174.677 302.550i −0.289201 0.500911i
\(605\) 14.6069i 0.0241437i
\(606\) 0 0
\(607\) −247.487 −0.407721 −0.203861 0.979000i \(-0.565349\pi\)
−0.203861 + 0.979000i \(0.565349\pi\)
\(608\) −86.4597 49.9175i −0.142203 0.0821012i
\(609\) 0 0
\(610\) −58.0549 100.554i −0.0951719 0.164843i
\(611\) 692.444 399.783i 1.13330 0.654309i
\(612\) 0 0
\(613\) 250.537 433.943i 0.408706 0.707900i −0.586039 0.810283i \(-0.699313\pi\)
0.994745 + 0.102383i \(0.0326467\pi\)
\(614\) −380.943 219.938i −0.620429 0.358205i
\(615\) 0 0
\(616\) −37.1642 + 219.953i −0.0603315 + 0.357066i
\(617\) −212.273 122.556i −0.344041 0.198632i 0.318017 0.948085i \(-0.396983\pi\)
−0.662058 + 0.749453i \(0.730317\pi\)
\(618\) 0 0
\(619\) 439.570 0.710129 0.355065 0.934842i \(-0.384459\pi\)
0.355065 + 0.934842i \(0.384459\pi\)
\(620\) 82.6293 + 47.7061i 0.133273 + 0.0769452i
\(621\) 0 0
\(622\) −59.7765 −0.0961036
\(623\) 362.702 + 974.775i 0.582187 + 1.56465i
\(624\) 0 0
\(625\) 208.016 0.332826
\(626\) 156.116 90.1334i 0.249386 0.143983i
\(627\) 0 0
\(628\) 52.0883 90.2195i 0.0829431 0.143662i
\(629\) 295.440i 0.469698i
\(630\) 0 0
\(631\) −548.428 −0.869142 −0.434571 0.900638i \(-0.643100\pi\)
−0.434571 + 0.900638i \(0.643100\pi\)
\(632\) 63.8499 + 36.8638i 0.101028 + 0.0583287i
\(633\) 0 0
\(634\) 401.964 + 696.223i 0.634013 + 1.09814i
\(635\) 171.118i 0.269477i
\(636\) 0 0
\(637\) 708.688 612.139i 1.11254 0.960972i
\(638\) 474.027i 0.742990i
\(639\) 0 0
\(640\) −13.9110 + 24.0946i −0.0217360 + 0.0376478i
\(641\) 919.200i 1.43401i −0.697068 0.717005i \(-0.745513\pi\)
0.697068 0.717005i \(-0.254487\pi\)
\(642\) 0 0
\(643\) −636.355 + 1102.20i −0.989666 + 1.71415i −0.370653 + 0.928772i \(0.620866\pi\)
−0.619013 + 0.785380i \(0.712467\pi\)
\(644\) −157.888 424.330i −0.245168 0.658898i
\(645\) 0 0
\(646\) −120.021 + 207.883i −0.185792 + 0.321801i
\(647\) −205.822 118.831i −0.318117 0.183665i 0.332436 0.943126i \(-0.392129\pi\)
−0.650553 + 0.759461i \(0.725463\pi\)
\(648\) 0 0
\(649\) 27.4160 + 47.4858i 0.0422434 + 0.0731677i
\(650\) 443.616 256.122i 0.682485 0.394033i
\(651\) 0 0
\(652\) −137.137 + 237.529i −0.210333 + 0.364308i
\(653\) 62.5079i 0.0957242i 0.998854 + 0.0478621i \(0.0152408\pi\)
−0.998854 + 0.0478621i \(0.984759\pi\)
\(654\) 0 0
\(655\) 4.42980 0.00676306
\(656\) 41.5217 23.9726i 0.0632953 0.0365436i
\(657\) 0 0
\(658\) 388.166 144.432i 0.589918 0.219502i
\(659\) −304.697 + 175.917i −0.462363 + 0.266945i −0.713037 0.701126i \(-0.752681\pi\)
0.250675 + 0.968071i \(0.419348\pi\)
\(660\) 0 0
\(661\) −142.614 247.014i −0.215754 0.373697i 0.737751 0.675073i \(-0.235888\pi\)
−0.953506 + 0.301375i \(0.902554\pi\)
\(662\) 485.248 280.158i 0.733003 0.423200i
\(663\) 0 0
\(664\) −97.4951 168.866i −0.146830 0.254317i
\(665\) −105.945 284.730i −0.159315 0.428166i
\(666\) 0 0
\(667\) −481.052 833.207i −0.721218 1.24919i
\(668\) 230.312i 0.344779i
\(669\) 0 0
\(670\) 376.514 0.561962
\(671\) −325.761 188.078i −0.485486 0.280295i
\(672\) 0 0
\(673\) 597.026 + 1034.08i 0.887111 + 1.53652i 0.843275 + 0.537483i \(0.180625\pi\)
0.0438362 + 0.999039i \(0.486042\pi\)
\(674\) −414.070 + 239.063i −0.614347 + 0.354693i
\(675\) 0 0
\(676\) 196.245 339.907i 0.290304 0.502821i
\(677\) 245.949 + 141.999i 0.363293 + 0.209747i 0.670524 0.741888i \(-0.266069\pi\)
−0.307232 + 0.951635i \(0.599403\pi\)
\(678\) 0 0
\(679\) 148.290 55.1770i 0.218395 0.0812622i
\(680\) 57.9330 + 33.4476i 0.0851955 + 0.0491877i
\(681\) 0 0
\(682\) 309.103 0.453230
\(683\) 36.6557 + 21.1632i 0.0536687 + 0.0309856i 0.526594 0.850117i \(-0.323469\pi\)
−0.472926 + 0.881102i \(0.656802\pi\)
\(684\) 0 0
\(685\) −110.927 −0.161937
\(686\) 414.789 251.491i 0.604649 0.366605i
\(687\) 0 0
\(688\) 240.275 0.349237
\(689\) −387.805 + 223.900i −0.562853 + 0.324963i
\(690\) 0 0
\(691\) 67.0552 116.143i 0.0970407 0.168080i −0.813418 0.581680i \(-0.802396\pi\)
0.910458 + 0.413600i \(0.135729\pi\)
\(692\) 501.408i 0.724578i
\(693\) 0 0
\(694\) −154.199 −0.222189
\(695\) −541.857 312.841i −0.779650 0.450131i
\(696\) 0 0
\(697\) −57.6396 99.8347i −0.0826967 0.143235i
\(698\) 869.994i 1.24641i
\(699\) 0 0
\(700\) 248.680 92.5307i 0.355256 0.132187i
\(701\) 516.988i 0.737501i −0.929528 0.368751i \(-0.879786\pi\)
0.929528 0.368751i \(-0.120214\pi\)
\(702\) 0 0
\(703\) −271.070 + 469.507i −0.385591 + 0.667863i
\(704\) 90.1341i 0.128031i
\(705\) 0 0
\(706\) −225.351 + 390.319i −0.319194 + 0.552859i
\(707\) 479.874 + 81.0817i 0.678747 + 0.114684i
\(708\) 0 0
\(709\) 261.577 453.065i 0.368938 0.639019i −0.620462 0.784237i \(-0.713055\pi\)
0.989400 + 0.145217i \(0.0463882\pi\)
\(710\) −402.394 232.322i −0.566752 0.327214i
\(711\) 0 0
\(712\) 210.125 + 363.948i 0.295120 + 0.511162i
\(713\) −543.316 + 313.684i −0.762014 + 0.439949i
\(714\) 0 0
\(715\) −264.756 + 458.571i −0.370288 + 0.641357i
\(716\) 50.6242i 0.0707041i
\(717\) 0 0
\(718\) −924.618 −1.28777
\(719\) −1081.87 + 624.616i −1.50468 + 0.868729i −0.504697 + 0.863296i \(0.668396\pi\)
−0.999985 + 0.00543238i \(0.998271\pi\)
\(720\) 0 0
\(721\) 106.249 628.825i 0.147363 0.872157i
\(722\) −60.6616 + 35.0230i −0.0840188 + 0.0485083i
\(723\) 0 0
\(724\) −35.6698 61.7818i −0.0492676 0.0853340i
\(725\) 488.302 281.922i 0.673521 0.388857i
\(726\) 0 0
\(727\) −429.100 743.222i −0.590233 1.02231i −0.994201 0.107541i \(-0.965702\pi\)
0.403968 0.914773i \(-0.367631\pi\)
\(728\) 241.143 291.592i 0.331241 0.400539i
\(729\) 0 0
\(730\) −209.858 363.485i −0.287477 0.497924i
\(731\) 577.717i 0.790310i
\(732\) 0 0
\(733\) −466.133 −0.635925 −0.317963 0.948103i \(-0.602999\pi\)
−0.317963 + 0.948103i \(0.602999\pi\)
\(734\) −783.478 452.341i −1.06741 0.616269i
\(735\) 0 0
\(736\) −91.4698 158.430i −0.124280 0.215259i
\(737\) 1056.36 609.890i 1.43332 0.827530i
\(738\) 0 0
\(739\) −58.9593 + 102.121i −0.0797825 + 0.138187i −0.903156 0.429312i \(-0.858756\pi\)
0.823373 + 0.567500i \(0.192089\pi\)
\(740\) 130.842 + 75.5419i 0.176814 + 0.102084i
\(741\) 0 0
\(742\) −217.394 + 80.8896i −0.292984 + 0.109016i
\(743\) −271.243 156.602i −0.365064 0.210770i 0.306236 0.951956i \(-0.400930\pi\)
−0.671300 + 0.741186i \(0.734264\pi\)
\(744\) 0 0
\(745\) 82.7192 0.111033
\(746\) −534.845 308.793i −0.716951 0.413932i
\(747\) 0 0
\(748\) 216.718 0.289730
\(749\) 383.395 + 1030.39i 0.511876 + 1.37569i
\(750\) 0 0
\(751\) 551.023 0.733719 0.366860 0.930276i \(-0.380433\pi\)
0.366860 + 0.930276i \(0.380433\pi\)
\(752\) 144.928 83.6742i 0.192723 0.111269i
\(753\) 0 0
\(754\) 402.038 696.350i 0.533206 0.923540i
\(755\) 429.557i 0.568950i
\(756\) 0 0
\(757\) 1111.61 1.46844 0.734220 0.678912i \(-0.237548\pi\)
0.734220 + 0.678912i \(0.237548\pi\)
\(758\) 430.205 + 248.379i 0.567553 + 0.327677i
\(759\) 0 0
\(760\) −61.3772 106.308i −0.0807595 0.139880i
\(761\) 637.688i 0.837960i 0.907995 + 0.418980i \(0.137612\pi\)
−0.907995 + 0.418980i \(0.862388\pi\)
\(762\) 0 0
\(763\) −290.812 240.499i −0.381143 0.315201i
\(764\) 70.0271i 0.0916585i
\(765\) 0 0
\(766\) 195.530 338.667i 0.255260 0.442124i
\(767\) 93.0093i 0.121264i
\(768\) 0 0
\(769\) −121.673 + 210.745i −0.158223 + 0.274050i −0.934228 0.356677i \(-0.883910\pi\)
0.776005 + 0.630727i \(0.217243\pi\)
\(770\) −174.798 + 211.367i −0.227010 + 0.274502i
\(771\) 0 0
\(772\) −139.389 + 241.429i −0.180556 + 0.312732i
\(773\) −154.913 89.4393i −0.200405 0.115704i 0.396439 0.918061i \(-0.370246\pi\)
−0.596845 + 0.802357i \(0.703579\pi\)
\(774\) 0 0
\(775\) −183.835 318.412i −0.237206 0.410854i
\(776\) 55.3665 31.9658i 0.0713485 0.0411931i
\(777\) 0 0
\(778\) −40.7361 + 70.5569i −0.0523600 + 0.0906901i
\(779\) 211.540i 0.271554i
\(780\) 0 0
\(781\) −1505.29 −1.92739
\(782\) −380.929 + 219.930i −0.487122 + 0.281240i
\(783\) 0 0
\(784\) 148.328 128.120i 0.189194 0.163419i
\(785\) 110.931 64.0463i 0.141314 0.0815876i
\(786\) 0 0
\(787\) 92.3278 + 159.916i 0.117316 + 0.203198i 0.918703 0.394949i \(-0.129238\pi\)
−0.801387 + 0.598146i \(0.795904\pi\)
\(788\) 148.402 85.6801i 0.188328 0.108731i
\(789\) 0 0
\(790\) 45.3267 + 78.5081i 0.0573755 + 0.0993773i
\(791\) 577.821 698.704i 0.730494 0.883318i
\(792\) 0 0
\(793\) 319.030 + 552.576i 0.402308 + 0.696818i
\(794\) 380.083i 0.478694i
\(795\) 0 0
\(796\) −245.792 −0.308784
\(797\) 337.135 + 194.645i 0.423004 + 0.244222i 0.696362 0.717691i \(-0.254801\pi\)
−0.273357 + 0.961913i \(0.588134\pi\)
\(798\) 0 0
\(799\) −201.186 348.464i −0.251797 0.436125i
\(800\) 92.8484 53.6061i 0.116061 0.0670076i
\(801\) 0 0
\(802\) 33.1367 57.3945i 0.0413176 0.0715642i
\(803\) −1177.57 679.869i −1.46646 0.846661i
\(804\) 0 0
\(805\) 92.7466 548.912i 0.115213 0.681878i
\(806\) −454.075 262.160i −0.563368 0.325261i
\(807\) 0 0
\(808\) 196.647 0.243375
\(809\) 1250.90 + 722.207i 1.54623 + 0.892715i 0.998425 + 0.0561081i \(0.0178691\pi\)
0.547803 + 0.836607i \(0.315464\pi\)
\(810\) 0 0
\(811\) −61.6267 −0.0759885 −0.0379943 0.999278i \(-0.512097\pi\)
−0.0379943 + 0.999278i \(0.512097\pi\)
\(812\) 265.435 320.965i 0.326890 0.395277i
\(813\) 0 0
\(814\) 489.461 0.601303
\(815\) −292.059 + 168.620i −0.358354 + 0.206896i
\(816\) 0 0
\(817\) −530.063 + 918.095i −0.648791 + 1.12374i
\(818\) 126.126i 0.154188i
\(819\) 0 0
\(820\) 58.9521 0.0718928
\(821\) 181.227 + 104.632i 0.220740 + 0.127444i 0.606293 0.795241i \(-0.292656\pi\)
−0.385553 + 0.922686i \(0.625989\pi\)
\(822\) 0 0
\(823\) −116.003 200.923i −0.140951 0.244135i 0.786904 0.617076i \(-0.211683\pi\)
−0.927855 + 0.372941i \(0.878349\pi\)
\(824\) 257.685i 0.312725i
\(825\) 0 0
\(826\) 8.02657 47.5045i 0.00971740 0.0575115i
\(827\) 1375.87i 1.66369i 0.555009 + 0.831844i \(0.312715\pi\)
−0.555009 + 0.831844i \(0.687285\pi\)
\(828\) 0 0
\(829\) −517.892 + 897.015i −0.624719 + 1.08204i 0.363876 + 0.931447i \(0.381453\pi\)
−0.988595 + 0.150597i \(0.951880\pi\)
\(830\) 239.755i 0.288861i
\(831\) 0 0
\(832\) 76.4456 132.408i 0.0918817 0.159144i
\(833\) −308.052 356.639i −0.369810 0.428138i
\(834\) 0 0
\(835\) −141.593 + 245.246i −0.169572 + 0.293708i
\(836\) −344.404 198.842i −0.411966 0.237849i
\(837\) 0 0
\(838\) −456.596 790.847i −0.544864 0.943732i
\(839\) −560.099 + 323.373i −0.667579 + 0.385427i −0.795159 0.606402i \(-0.792612\pi\)
0.127580 + 0.991828i \(0.459279\pi\)
\(840\) 0 0
\(841\) 22.0362 38.1678i 0.0262024 0.0453838i
\(842\) 23.0523i 0.0273780i
\(843\) 0 0
\(844\) 541.425 0.641499
\(845\) 417.940 241.298i 0.494604 0.285559i
\(846\) 0 0
\(847\) −6.92717 + 40.9978i −0.00817848 + 0.0484036i
\(848\) −81.1674 + 46.8620i −0.0957163 + 0.0552618i
\(849\) 0 0
\(850\) −128.890 223.244i −0.151635 0.262640i
\(851\) −860.334 + 496.714i −1.01097 + 0.583683i
\(852\) 0 0
\(853\) −387.624 671.385i −0.454424 0.787086i 0.544230 0.838936i \(-0.316822\pi\)
−0.998655 + 0.0518495i \(0.983488\pi\)
\(854\) 115.258 + 309.760i 0.134963 + 0.362717i
\(855\) 0 0
\(856\) 222.114 + 384.712i 0.259478 + 0.449430i
\(857\) 115.567i 0.134850i −0.997724 0.0674251i \(-0.978522\pi\)
0.997724 0.0674251i \(-0.0214784\pi\)
\(858\) 0 0
\(859\) −710.100 −0.826659 −0.413330 0.910582i \(-0.635634\pi\)
−0.413330 + 0.910582i \(0.635634\pi\)
\(860\) 255.855 + 147.718i 0.297506 + 0.171765i
\(861\) 0 0
\(862\) 551.422 + 955.092i 0.639701 + 1.10799i
\(863\) 543.437 313.753i 0.629707 0.363561i −0.150932 0.988544i \(-0.548227\pi\)
0.780638 + 0.624983i \(0.214894\pi\)
\(864\) 0 0
\(865\) −308.259 + 533.920i −0.356369 + 0.617249i
\(866\) 326.537 + 188.526i 0.377063 + 0.217698i
\(867\) 0 0
\(868\) −209.294 173.084i −0.241123 0.199406i
\(869\) 254.340 + 146.843i 0.292681 + 0.168979i
\(870\) 0 0
\(871\) −2069.07 −2.37551
\(872\) −132.054 76.2411i −0.151438 0.0874325i
\(873\) 0 0
\(874\) 807.153 0.923516
\(875\) 746.027 + 126.052i 0.852602 + 0.144059i
\(876\) 0 0
\(877\) 1174.92 1.33970 0.669850 0.742497i \(-0.266358\pi\)
0.669850 + 0.742497i \(0.266358\pi\)
\(878\) −52.4473 + 30.2804i −0.0597349 + 0.0344880i
\(879\) 0 0
\(880\) −55.4132 + 95.9785i −0.0629695 + 0.109066i
\(881\) 125.159i 0.142065i −0.997474 0.0710323i \(-0.977371\pi\)
0.997474 0.0710323i \(-0.0226294\pi\)
\(882\) 0 0
\(883\) 660.599 0.748130 0.374065 0.927403i \(-0.377964\pi\)
0.374065 + 0.927403i \(0.377964\pi\)
\(884\) −318.360 183.805i −0.360136 0.207925i
\(885\) 0 0
\(886\) 325.334 + 563.494i 0.367194 + 0.635998i
\(887\) 428.773i 0.483397i 0.970351 + 0.241698i \(0.0777045\pi\)
−0.970351 + 0.241698i \(0.922296\pi\)
\(888\) 0 0
\(889\) 81.1507 480.283i 0.0912832 0.540251i
\(890\) 516.729i 0.580594i
\(891\) 0 0
\(892\) −71.2707 + 123.445i −0.0798999 + 0.138391i
\(893\) 738.363i 0.826834i
\(894\) 0 0
\(895\) −31.1230 + 53.9067i −0.0347744 + 0.0602309i
\(896\) 50.4711 61.0300i 0.0563294 0.0681139i
\(897\) 0 0
\(898\) 401.743 695.839i 0.447375 0.774876i
\(899\) −499.815 288.568i −0.555968 0.320988i
\(900\) 0 0
\(901\) 112.675 + 195.159i 0.125055 + 0.216602i
\(902\) 165.398 95.4924i 0.183368 0.105867i
\(903\) 0 0
\(904\) 183.177 317.271i 0.202629 0.350964i
\(905\) 87.7171i 0.0969250i
\(906\) 0 0
\(907\) 377.272 0.415956 0.207978 0.978134i \(-0.433312\pi\)
0.207978 + 0.978134i \(0.433312\pi\)
\(908\) −422.801 + 244.104i −0.465640 + 0.268837i
\(909\) 0 0
\(910\) 436.046 162.248i 0.479172 0.178294i
\(911\) −1546.16 + 892.675i −1.69721 + 0.979884i −0.748821 + 0.662772i \(0.769380\pi\)
−0.948388 + 0.317112i \(0.897287\pi\)
\(912\) 0 0
\(913\) −388.362 672.663i −0.425369 0.736761i
\(914\) 130.744 75.4851i 0.143046 0.0825877i
\(915\) 0 0
\(916\) −446.853 773.973i −0.487831 0.844948i
\(917\) −12.4333 2.10078i −0.0135586 0.00229093i
\(918\) 0 0
\(919\) 47.0807 + 81.5461i 0.0512303 + 0.0887335i 0.890503 0.454977i \(-0.150352\pi\)
−0.839273 + 0.543710i \(0.817019\pi\)
\(920\) 224.938i 0.244497i
\(921\) 0 0
\(922\) −1123.13 −1.21815
\(923\) 2211.28 + 1276.68i 2.39576 + 1.38319i
\(924\) 0 0
\(925\) −291.100 504.200i −0.314703 0.545082i
\(926\) 81.1784 46.8684i 0.0876657 0.0506138i
\(927\) 0 0
\(928\) 84.1462 145.745i 0.0906748 0.157053i
\(929\) 562.464 + 324.739i 0.605451 + 0.349557i 0.771183 0.636614i \(-0.219665\pi\)
−0.165732 + 0.986171i \(0.552999\pi\)
\(930\) 0 0
\(931\) 162.329 + 849.405i 0.174360 + 0.912358i
\(932\) −461.899 266.678i −0.495600 0.286135i
\(933\) 0 0
\(934\) 111.867 0.119771
\(935\) 230.770 + 133.235i 0.246813 + 0.142498i
\(936\) 0 0
\(937\) 683.065 0.728991 0.364496 0.931205i \(-0.381241\pi\)
0.364496 + 0.931205i \(0.381241\pi\)
\(938\) −1056.78 178.557i −1.12663 0.190360i
\(939\) 0 0
\(940\) 205.767 0.218901
\(941\) −660.406 + 381.286i −0.701813 + 0.405192i −0.808022 0.589152i \(-0.799462\pi\)
0.106209 + 0.994344i \(0.466129\pi\)
\(942\) 0 0
\(943\) −193.815 + 335.698i −0.205530 + 0.355989i
\(944\) 19.4668i 0.0206216i
\(945\) 0 0
\(946\) 957.113 1.01175
\(947\) 1133.04 + 654.162i 1.19645 + 0.690773i 0.959763 0.280812i \(-0.0906039\pi\)
0.236691 + 0.971585i \(0.423937\pi\)
\(948\) 0 0
\(949\) 1153.24 + 1997.47i 1.21521 + 2.10481i
\(950\) 473.034i 0.497930i
\(951\) 0 0
\(952\) −146.740 121.353i −0.154139 0.127471i
\(953\) 703.289i 0.737974i 0.929435 + 0.368987i \(0.120295\pi\)
−0.929435 + 0.368987i \(0.879705\pi\)
\(954\) 0 0
\(955\) −43.0517 + 74.5678i −0.0450803 + 0.0780814i
\(956\) 726.508i 0.759946i
\(957\) 0 0
\(958\) −262.070 + 453.919i −0.273560 + 0.473820i
\(959\) 311.342 + 52.6057i 0.324652 + 0.0548547i
\(960\) 0 0
\(961\) 292.331 506.332i 0.304194 0.526880i
\(962\) −719.021 415.127i −0.747423 0.431525i
\(963\) 0 0
\(964\) 326.755 + 565.956i 0.338957 + 0.587091i
\(965\) −296.854 + 171.389i −0.307621 + 0.177605i
\(966\) 0 0
\(967\) −104.996 + 181.858i −0.108579 + 0.188064i −0.915195 0.403012i \(-0.867963\pi\)
0.806616 + 0.591076i \(0.201297\pi\)
\(968\) 16.8004i 0.0173558i
\(969\) 0 0
\(970\) 78.6087 0.0810399
\(971\) −752.182 + 434.272i −0.774647 + 0.447243i −0.834530 0.550963i \(-0.814261\pi\)
0.0598830 + 0.998205i \(0.480927\pi\)
\(972\) 0 0
\(973\) 1372.49 + 1135.03i 1.41057 + 1.16653i
\(974\) −9.92851 + 5.73223i −0.0101935 + 0.00588524i
\(975\) 0 0
\(976\) 66.7728 + 115.654i 0.0684147 + 0.118498i
\(977\) −393.671 + 227.286i −0.402938 + 0.232636i −0.687751 0.725947i \(-0.741402\pi\)
0.284813 + 0.958583i \(0.408069\pi\)
\(978\) 0 0
\(979\) 837.013 + 1449.75i 0.854968 + 1.48085i
\(980\) 236.712 45.2378i 0.241543 0.0461610i
\(981\) 0 0
\(982\) −437.436 757.662i −0.445454 0.771550i
\(983\) 1129.10i 1.14863i −0.818636 0.574313i \(-0.805269\pi\)
0.818636 0.574313i \(-0.194731\pi\)
\(984\) 0 0
\(985\) 210.700 0.213908
\(986\) −350.430 202.321i −0.355405 0.205193i
\(987\) 0 0
\(988\) 337.288 + 584.199i 0.341384 + 0.591295i
\(989\) −1682.34 + 971.297i −1.70105 + 0.982100i
\(990\) 0 0
\(991\) 79.7669 138.160i 0.0804914 0.139415i −0.822970 0.568085i \(-0.807684\pi\)
0.903461 + 0.428670i \(0.141018\pi\)
\(992\) −95.0375 54.8699i −0.0958039 0.0553124i
\(993\) 0 0
\(994\) 1019.24 + 842.897i 1.02539 + 0.847985i
\(995\) −261.730 151.110i −0.263045 0.151869i
\(996\) 0 0
\(997\) 381.181 0.382328 0.191164 0.981558i \(-0.438774\pi\)
0.191164 + 0.981558i \(0.438774\pi\)
\(998\) 60.8893 + 35.1545i 0.0610114 + 0.0352249i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.i.a.179.6 32
3.2 odd 2 126.3.i.a.95.16 yes 32
7.2 even 3 378.3.r.a.233.14 32
9.2 odd 6 378.3.r.a.305.6 32
9.7 even 3 126.3.r.a.11.12 yes 32
21.2 odd 6 126.3.r.a.23.4 yes 32
63.2 odd 6 inner 378.3.i.a.359.3 32
63.16 even 3 126.3.i.a.65.16 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.16 32 63.16 even 3
126.3.i.a.95.16 yes 32 3.2 odd 2
126.3.r.a.11.12 yes 32 9.7 even 3
126.3.r.a.23.4 yes 32 21.2 odd 6
378.3.i.a.179.6 32 1.1 even 1 trivial
378.3.i.a.359.3 32 63.2 odd 6 inner
378.3.r.a.233.14 32 7.2 even 3
378.3.r.a.305.6 32 9.2 odd 6