Properties

Label 3751.2.a.m.1.4
Level $3751$
Weight $2$
Character 3751.1
Self dual yes
Analytic conductor $29.952$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,2,Mod(1,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3751.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,1,2,17,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9518857982\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 23 x^{13} + 21 x^{12} + 204 x^{11} - 160 x^{10} - 880 x^{9} + 535 x^{8} + 1918 x^{7} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 23 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.74615\) of defining polynomial
Character \(\chi\) \(=\) 3751.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.74615 q^{2} -1.55132 q^{3} +1.04905 q^{4} +1.03434 q^{5} +2.70884 q^{6} +5.16265 q^{7} +1.66050 q^{8} -0.593409 q^{9} -1.80611 q^{10} -1.62742 q^{12} -1.03844 q^{13} -9.01478 q^{14} -1.60459 q^{15} -4.99759 q^{16} -2.01238 q^{17} +1.03618 q^{18} -1.68345 q^{19} +1.08508 q^{20} -8.00892 q^{21} +2.13060 q^{23} -2.57596 q^{24} -3.93014 q^{25} +1.81328 q^{26} +5.57452 q^{27} +5.41589 q^{28} +4.45313 q^{29} +2.80186 q^{30} -1.00000 q^{31} +5.40557 q^{32} +3.51393 q^{34} +5.33993 q^{35} -0.622518 q^{36} -2.24305 q^{37} +2.93957 q^{38} +1.61095 q^{39} +1.71752 q^{40} -9.06471 q^{41} +13.9848 q^{42} +10.0419 q^{43} -0.613786 q^{45} -3.72036 q^{46} +9.18087 q^{47} +7.75286 q^{48} +19.6529 q^{49} +6.86263 q^{50} +3.12184 q^{51} -1.08938 q^{52} +1.38926 q^{53} -9.73398 q^{54} +8.57257 q^{56} +2.61158 q^{57} -7.77585 q^{58} +0.187412 q^{59} -1.68330 q^{60} -0.401179 q^{61} +1.74615 q^{62} -3.06356 q^{63} +0.556232 q^{64} -1.07410 q^{65} +4.41292 q^{67} -2.11109 q^{68} -3.30524 q^{69} -9.32434 q^{70} -4.17895 q^{71} -0.985356 q^{72} -16.3576 q^{73} +3.91671 q^{74} +6.09691 q^{75} -1.76603 q^{76} -2.81297 q^{78} +0.702478 q^{79} -5.16921 q^{80} -6.86764 q^{81} +15.8284 q^{82} +12.3800 q^{83} -8.40178 q^{84} -2.08148 q^{85} -17.5346 q^{86} -6.90822 q^{87} +9.32302 q^{89} +1.07177 q^{90} -5.36110 q^{91} +2.23511 q^{92} +1.55132 q^{93} -16.0312 q^{94} -1.74126 q^{95} -8.38576 q^{96} +17.0539 q^{97} -34.3171 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + q^{2} + 2 q^{3} + 17 q^{4} + 8 q^{5} - 2 q^{6} + 3 q^{8} + 25 q^{9} - 15 q^{10} + 11 q^{12} - 4 q^{13} + 9 q^{14} + 15 q^{15} + 29 q^{16} - 2 q^{17} + 4 q^{18} + 5 q^{19} + 17 q^{20} - 15 q^{21}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.74615 −1.23472 −0.617359 0.786682i \(-0.711797\pi\)
−0.617359 + 0.786682i \(0.711797\pi\)
\(3\) −1.55132 −0.895654 −0.447827 0.894120i \(-0.647802\pi\)
−0.447827 + 0.894120i \(0.647802\pi\)
\(4\) 1.04905 0.524527
\(5\) 1.03434 0.462570 0.231285 0.972886i \(-0.425707\pi\)
0.231285 + 0.972886i \(0.425707\pi\)
\(6\) 2.70884 1.10588
\(7\) 5.16265 1.95130 0.975649 0.219338i \(-0.0703898\pi\)
0.975649 + 0.219338i \(0.0703898\pi\)
\(8\) 1.66050 0.587075
\(9\) −0.593409 −0.197803
\(10\) −1.80611 −0.571144
\(11\) 0 0
\(12\) −1.62742 −0.469795
\(13\) −1.03844 −0.288011 −0.144006 0.989577i \(-0.545998\pi\)
−0.144006 + 0.989577i \(0.545998\pi\)
\(14\) −9.01478 −2.40930
\(15\) −1.60459 −0.414303
\(16\) −4.99759 −1.24940
\(17\) −2.01238 −0.488074 −0.244037 0.969766i \(-0.578472\pi\)
−0.244037 + 0.969766i \(0.578472\pi\)
\(18\) 1.03618 0.244231
\(19\) −1.68345 −0.386211 −0.193105 0.981178i \(-0.561856\pi\)
−0.193105 + 0.981178i \(0.561856\pi\)
\(20\) 1.08508 0.242631
\(21\) −8.00892 −1.74769
\(22\) 0 0
\(23\) 2.13060 0.444261 0.222130 0.975017i \(-0.428699\pi\)
0.222130 + 0.975017i \(0.428699\pi\)
\(24\) −2.57596 −0.525816
\(25\) −3.93014 −0.786029
\(26\) 1.81328 0.355612
\(27\) 5.57452 1.07282
\(28\) 5.41589 1.02351
\(29\) 4.45313 0.826925 0.413463 0.910521i \(-0.364319\pi\)
0.413463 + 0.910521i \(0.364319\pi\)
\(30\) 2.80186 0.511547
\(31\) −1.00000 −0.179605
\(32\) 5.40557 0.955579
\(33\) 0 0
\(34\) 3.51393 0.602633
\(35\) 5.33993 0.902613
\(36\) −0.622518 −0.103753
\(37\) −2.24305 −0.368755 −0.184378 0.982855i \(-0.559027\pi\)
−0.184378 + 0.982855i \(0.559027\pi\)
\(38\) 2.93957 0.476861
\(39\) 1.61095 0.257959
\(40\) 1.71752 0.271564
\(41\) −9.06471 −1.41567 −0.707835 0.706378i \(-0.750328\pi\)
−0.707835 + 0.706378i \(0.750328\pi\)
\(42\) 13.9848 2.15790
\(43\) 10.0419 1.53137 0.765685 0.643215i \(-0.222400\pi\)
0.765685 + 0.643215i \(0.222400\pi\)
\(44\) 0 0
\(45\) −0.613786 −0.0914978
\(46\) −3.72036 −0.548537
\(47\) 9.18087 1.33917 0.669583 0.742737i \(-0.266473\pi\)
0.669583 + 0.742737i \(0.266473\pi\)
\(48\) 7.75286 1.11903
\(49\) 19.6529 2.80756
\(50\) 6.86263 0.970523
\(51\) 3.12184 0.437146
\(52\) −1.08938 −0.151070
\(53\) 1.38926 0.190830 0.0954148 0.995438i \(-0.469582\pi\)
0.0954148 + 0.995438i \(0.469582\pi\)
\(54\) −9.73398 −1.32463
\(55\) 0 0
\(56\) 8.57257 1.14556
\(57\) 2.61158 0.345912
\(58\) −7.77585 −1.02102
\(59\) 0.187412 0.0243990 0.0121995 0.999926i \(-0.496117\pi\)
0.0121995 + 0.999926i \(0.496117\pi\)
\(60\) −1.68330 −0.217313
\(61\) −0.401179 −0.0513657 −0.0256828 0.999670i \(-0.508176\pi\)
−0.0256828 + 0.999670i \(0.508176\pi\)
\(62\) 1.74615 0.221762
\(63\) −3.06356 −0.385973
\(64\) 0.556232 0.0695290
\(65\) −1.07410 −0.133225
\(66\) 0 0
\(67\) 4.41292 0.539124 0.269562 0.962983i \(-0.413121\pi\)
0.269562 + 0.962983i \(0.413121\pi\)
\(68\) −2.11109 −0.256008
\(69\) −3.30524 −0.397904
\(70\) −9.32434 −1.11447
\(71\) −4.17895 −0.495951 −0.247975 0.968766i \(-0.579765\pi\)
−0.247975 + 0.968766i \(0.579765\pi\)
\(72\) −0.985356 −0.116125
\(73\) −16.3576 −1.91451 −0.957256 0.289241i \(-0.906597\pi\)
−0.957256 + 0.289241i \(0.906597\pi\)
\(74\) 3.91671 0.455308
\(75\) 6.09691 0.704010
\(76\) −1.76603 −0.202578
\(77\) 0 0
\(78\) −2.81297 −0.318506
\(79\) 0.702478 0.0790350 0.0395175 0.999219i \(-0.487418\pi\)
0.0395175 + 0.999219i \(0.487418\pi\)
\(80\) −5.16921 −0.577935
\(81\) −6.86764 −0.763071
\(82\) 15.8284 1.74795
\(83\) 12.3800 1.35888 0.679438 0.733733i \(-0.262224\pi\)
0.679438 + 0.733733i \(0.262224\pi\)
\(84\) −8.40178 −0.916709
\(85\) −2.08148 −0.225769
\(86\) −17.5346 −1.89081
\(87\) −6.90822 −0.740639
\(88\) 0 0
\(89\) 9.32302 0.988239 0.494119 0.869394i \(-0.335491\pi\)
0.494119 + 0.869394i \(0.335491\pi\)
\(90\) 1.07177 0.112974
\(91\) −5.36110 −0.561996
\(92\) 2.23511 0.233027
\(93\) 1.55132 0.160864
\(94\) −16.0312 −1.65349
\(95\) −1.74126 −0.178650
\(96\) −8.38576 −0.855868
\(97\) 17.0539 1.73156 0.865781 0.500423i \(-0.166822\pi\)
0.865781 + 0.500423i \(0.166822\pi\)
\(98\) −34.3171 −3.46655
\(99\) 0 0
\(100\) −4.12293 −0.412293
\(101\) −11.8808 −1.18218 −0.591090 0.806606i \(-0.701302\pi\)
−0.591090 + 0.806606i \(0.701302\pi\)
\(102\) −5.45122 −0.539751
\(103\) 3.87876 0.382185 0.191093 0.981572i \(-0.438797\pi\)
0.191093 + 0.981572i \(0.438797\pi\)
\(104\) −1.72433 −0.169084
\(105\) −8.28393 −0.808429
\(106\) −2.42586 −0.235620
\(107\) 8.02539 0.775843 0.387922 0.921692i \(-0.373193\pi\)
0.387922 + 0.921692i \(0.373193\pi\)
\(108\) 5.84797 0.562721
\(109\) −5.83751 −0.559132 −0.279566 0.960126i \(-0.590191\pi\)
−0.279566 + 0.960126i \(0.590191\pi\)
\(110\) 0 0
\(111\) 3.47969 0.330277
\(112\) −25.8008 −2.43795
\(113\) 6.54085 0.615311 0.307656 0.951498i \(-0.400456\pi\)
0.307656 + 0.951498i \(0.400456\pi\)
\(114\) −4.56021 −0.427103
\(115\) 2.20376 0.205502
\(116\) 4.67157 0.433744
\(117\) 0.616220 0.0569695
\(118\) −0.327250 −0.0301258
\(119\) −10.3892 −0.952378
\(120\) −2.66442 −0.243227
\(121\) 0 0
\(122\) 0.700520 0.0634221
\(123\) 14.0623 1.26795
\(124\) −1.04905 −0.0942078
\(125\) −9.23679 −0.826164
\(126\) 5.34945 0.476567
\(127\) −1.78015 −0.157963 −0.0789815 0.996876i \(-0.525167\pi\)
−0.0789815 + 0.996876i \(0.525167\pi\)
\(128\) −11.7824 −1.04143
\(129\) −15.5781 −1.37158
\(130\) 1.87554 0.164496
\(131\) −6.46564 −0.564906 −0.282453 0.959281i \(-0.591148\pi\)
−0.282453 + 0.959281i \(0.591148\pi\)
\(132\) 0 0
\(133\) −8.69108 −0.753613
\(134\) −7.70564 −0.665666
\(135\) 5.76595 0.496254
\(136\) −3.34156 −0.286536
\(137\) 12.8339 1.09647 0.548235 0.836324i \(-0.315300\pi\)
0.548235 + 0.836324i \(0.315300\pi\)
\(138\) 5.77146 0.491299
\(139\) −19.6791 −1.66916 −0.834579 0.550889i \(-0.814289\pi\)
−0.834579 + 0.550889i \(0.814289\pi\)
\(140\) 5.60187 0.473444
\(141\) −14.2425 −1.19943
\(142\) 7.29710 0.612359
\(143\) 0 0
\(144\) 2.96562 0.247135
\(145\) 4.60604 0.382511
\(146\) 28.5629 2.36388
\(147\) −30.4880 −2.51461
\(148\) −2.35308 −0.193422
\(149\) 5.19130 0.425288 0.212644 0.977130i \(-0.431793\pi\)
0.212644 + 0.977130i \(0.431793\pi\)
\(150\) −10.6461 −0.869253
\(151\) 5.97827 0.486505 0.243253 0.969963i \(-0.421786\pi\)
0.243253 + 0.969963i \(0.421786\pi\)
\(152\) −2.79537 −0.226735
\(153\) 1.19417 0.0965425
\(154\) 0 0
\(155\) −1.03434 −0.0830801
\(156\) 1.68997 0.135306
\(157\) −19.7761 −1.57831 −0.789154 0.614195i \(-0.789481\pi\)
−0.789154 + 0.614195i \(0.789481\pi\)
\(158\) −1.22664 −0.0975858
\(159\) −2.15519 −0.170917
\(160\) 5.59119 0.442022
\(161\) 10.9995 0.866885
\(162\) 11.9920 0.942177
\(163\) 8.19256 0.641690 0.320845 0.947132i \(-0.396033\pi\)
0.320845 + 0.947132i \(0.396033\pi\)
\(164\) −9.50936 −0.742557
\(165\) 0 0
\(166\) −21.6173 −1.67783
\(167\) 3.87450 0.299818 0.149909 0.988700i \(-0.452102\pi\)
0.149909 + 0.988700i \(0.452102\pi\)
\(168\) −13.2988 −1.02602
\(169\) −11.9216 −0.917050
\(170\) 3.63459 0.278760
\(171\) 0.998977 0.0763937
\(172\) 10.5345 0.803245
\(173\) 10.6239 0.807724 0.403862 0.914820i \(-0.367668\pi\)
0.403862 + 0.914820i \(0.367668\pi\)
\(174\) 12.0628 0.914480
\(175\) −20.2899 −1.53378
\(176\) 0 0
\(177\) −0.290736 −0.0218531
\(178\) −16.2794 −1.22020
\(179\) −5.47863 −0.409492 −0.204746 0.978815i \(-0.565637\pi\)
−0.204746 + 0.978815i \(0.565637\pi\)
\(180\) −0.643894 −0.0479931
\(181\) −13.3156 −0.989738 −0.494869 0.868967i \(-0.664784\pi\)
−0.494869 + 0.868967i \(0.664784\pi\)
\(182\) 9.36130 0.693906
\(183\) 0.622356 0.0460059
\(184\) 3.53786 0.260814
\(185\) −2.32007 −0.170575
\(186\) −2.70884 −0.198622
\(187\) 0 0
\(188\) 9.63122 0.702429
\(189\) 28.7793 2.09339
\(190\) 3.04051 0.220582
\(191\) 24.0961 1.74354 0.871768 0.489919i \(-0.162974\pi\)
0.871768 + 0.489919i \(0.162974\pi\)
\(192\) −0.862893 −0.0622739
\(193\) −0.942745 −0.0678602 −0.0339301 0.999424i \(-0.510802\pi\)
−0.0339301 + 0.999424i \(0.510802\pi\)
\(194\) −29.7788 −2.13799
\(195\) 1.66627 0.119324
\(196\) 20.6170 1.47264
\(197\) 21.0166 1.49737 0.748684 0.662927i \(-0.230686\pi\)
0.748684 + 0.662927i \(0.230686\pi\)
\(198\) 0 0
\(199\) 10.9245 0.774416 0.387208 0.921992i \(-0.373440\pi\)
0.387208 + 0.921992i \(0.373440\pi\)
\(200\) −6.52600 −0.461458
\(201\) −6.84585 −0.482869
\(202\) 20.7456 1.45966
\(203\) 22.9899 1.61358
\(204\) 3.27498 0.229295
\(205\) −9.37598 −0.654847
\(206\) −6.77290 −0.471891
\(207\) −1.26432 −0.0878762
\(208\) 5.18970 0.359841
\(209\) 0 0
\(210\) 14.4650 0.998181
\(211\) 15.8599 1.09184 0.545920 0.837837i \(-0.316180\pi\)
0.545920 + 0.837837i \(0.316180\pi\)
\(212\) 1.45741 0.100095
\(213\) 6.48289 0.444200
\(214\) −14.0136 −0.957947
\(215\) 10.3867 0.708367
\(216\) 9.25649 0.629825
\(217\) −5.16265 −0.350463
\(218\) 10.1932 0.690370
\(219\) 25.3759 1.71474
\(220\) 0 0
\(221\) 2.08974 0.140571
\(222\) −6.07607 −0.407799
\(223\) −25.6392 −1.71693 −0.858464 0.512873i \(-0.828581\pi\)
−0.858464 + 0.512873i \(0.828581\pi\)
\(224\) 27.9071 1.86462
\(225\) 2.33218 0.155479
\(226\) −11.4213 −0.759735
\(227\) 11.9399 0.792477 0.396238 0.918148i \(-0.370315\pi\)
0.396238 + 0.918148i \(0.370315\pi\)
\(228\) 2.73968 0.181440
\(229\) 21.3753 1.41252 0.706260 0.707953i \(-0.250381\pi\)
0.706260 + 0.707953i \(0.250381\pi\)
\(230\) −3.84811 −0.253737
\(231\) 0 0
\(232\) 7.39442 0.485467
\(233\) 5.61403 0.367788 0.183894 0.982946i \(-0.441130\pi\)
0.183894 + 0.982946i \(0.441130\pi\)
\(234\) −1.07601 −0.0703412
\(235\) 9.49613 0.619459
\(236\) 0.196605 0.0127979
\(237\) −1.08977 −0.0707880
\(238\) 18.1412 1.17592
\(239\) −1.12943 −0.0730569 −0.0365284 0.999333i \(-0.511630\pi\)
−0.0365284 + 0.999333i \(0.511630\pi\)
\(240\) 8.01909 0.517630
\(241\) 28.0781 1.80867 0.904334 0.426826i \(-0.140368\pi\)
0.904334 + 0.426826i \(0.140368\pi\)
\(242\) 0 0
\(243\) −6.06968 −0.389370
\(244\) −0.420858 −0.0269427
\(245\) 20.3278 1.29870
\(246\) −24.5549 −1.56556
\(247\) 1.74817 0.111233
\(248\) −1.66050 −0.105442
\(249\) −19.2053 −1.21708
\(250\) 16.1289 1.02008
\(251\) 20.8684 1.31720 0.658600 0.752493i \(-0.271149\pi\)
0.658600 + 0.752493i \(0.271149\pi\)
\(252\) −3.21384 −0.202453
\(253\) 0 0
\(254\) 3.10842 0.195040
\(255\) 3.22905 0.202211
\(256\) 19.4614 1.21634
\(257\) 16.8106 1.04862 0.524309 0.851528i \(-0.324324\pi\)
0.524309 + 0.851528i \(0.324324\pi\)
\(258\) 27.2018 1.69351
\(259\) −11.5801 −0.719551
\(260\) −1.12679 −0.0698803
\(261\) −2.64253 −0.163568
\(262\) 11.2900 0.697499
\(263\) 24.5626 1.51460 0.757298 0.653070i \(-0.226519\pi\)
0.757298 + 0.653070i \(0.226519\pi\)
\(264\) 0 0
\(265\) 1.43697 0.0882721
\(266\) 15.1760 0.930498
\(267\) −14.4630 −0.885120
\(268\) 4.62939 0.282785
\(269\) 6.60736 0.402858 0.201429 0.979503i \(-0.435441\pi\)
0.201429 + 0.979503i \(0.435441\pi\)
\(270\) −10.0682 −0.612733
\(271\) −23.9482 −1.45475 −0.727375 0.686241i \(-0.759260\pi\)
−0.727375 + 0.686241i \(0.759260\pi\)
\(272\) 10.0571 0.609799
\(273\) 8.31677 0.503354
\(274\) −22.4099 −1.35383
\(275\) 0 0
\(276\) −3.46737 −0.208711
\(277\) −22.5790 −1.35664 −0.678319 0.734767i \(-0.737291\pi\)
−0.678319 + 0.734767i \(0.737291\pi\)
\(278\) 34.3627 2.06094
\(279\) 0.593409 0.0355265
\(280\) 8.86695 0.529901
\(281\) −16.6500 −0.993253 −0.496627 0.867964i \(-0.665428\pi\)
−0.496627 + 0.867964i \(0.665428\pi\)
\(282\) 24.8695 1.48096
\(283\) 14.8002 0.879782 0.439891 0.898051i \(-0.355017\pi\)
0.439891 + 0.898051i \(0.355017\pi\)
\(284\) −4.38395 −0.260139
\(285\) 2.70125 0.160008
\(286\) 0 0
\(287\) −46.7979 −2.76239
\(288\) −3.20771 −0.189016
\(289\) −12.9503 −0.761784
\(290\) −8.04286 −0.472293
\(291\) −26.4561 −1.55088
\(292\) −17.1600 −1.00421
\(293\) −19.6163 −1.14600 −0.573000 0.819556i \(-0.694220\pi\)
−0.573000 + 0.819556i \(0.694220\pi\)
\(294\) 53.2367 3.10483
\(295\) 0.193848 0.0112862
\(296\) −3.72458 −0.216487
\(297\) 0 0
\(298\) −9.06480 −0.525110
\(299\) −2.21250 −0.127952
\(300\) 6.39598 0.369272
\(301\) 51.8426 2.98816
\(302\) −10.4390 −0.600696
\(303\) 18.4309 1.05883
\(304\) 8.41322 0.482531
\(305\) −0.414955 −0.0237602
\(306\) −2.08520 −0.119203
\(307\) −0.877288 −0.0500695 −0.0250347 0.999687i \(-0.507970\pi\)
−0.0250347 + 0.999687i \(0.507970\pi\)
\(308\) 0 0
\(309\) −6.01719 −0.342306
\(310\) 1.80611 0.102580
\(311\) −17.5848 −0.997143 −0.498571 0.866849i \(-0.666142\pi\)
−0.498571 + 0.866849i \(0.666142\pi\)
\(312\) 2.67498 0.151441
\(313\) 28.6327 1.61842 0.809209 0.587521i \(-0.199896\pi\)
0.809209 + 0.587521i \(0.199896\pi\)
\(314\) 34.5322 1.94876
\(315\) −3.16876 −0.178540
\(316\) 0.736937 0.0414560
\(317\) −27.5796 −1.54902 −0.774512 0.632560i \(-0.782004\pi\)
−0.774512 + 0.632560i \(0.782004\pi\)
\(318\) 3.76329 0.211035
\(319\) 0 0
\(320\) 0.575332 0.0321620
\(321\) −12.4499 −0.694888
\(322\) −19.2069 −1.07036
\(323\) 3.38775 0.188500
\(324\) −7.20452 −0.400251
\(325\) 4.08122 0.226385
\(326\) −14.3055 −0.792306
\(327\) 9.05584 0.500789
\(328\) −15.0519 −0.831104
\(329\) 47.3976 2.61311
\(330\) 0 0
\(331\) 3.18557 0.175095 0.0875473 0.996160i \(-0.472097\pi\)
0.0875473 + 0.996160i \(0.472097\pi\)
\(332\) 12.9872 0.712767
\(333\) 1.33105 0.0729409
\(334\) −6.76548 −0.370190
\(335\) 4.56445 0.249383
\(336\) 40.0253 2.18356
\(337\) 4.68171 0.255029 0.127514 0.991837i \(-0.459300\pi\)
0.127514 + 0.991837i \(0.459300\pi\)
\(338\) 20.8170 1.13230
\(339\) −10.1469 −0.551106
\(340\) −2.18359 −0.118422
\(341\) 0 0
\(342\) −1.74437 −0.0943246
\(343\) 65.3227 3.52709
\(344\) 16.6745 0.899030
\(345\) −3.41874 −0.184059
\(346\) −18.5510 −0.997310
\(347\) −21.3724 −1.14733 −0.573665 0.819090i \(-0.694479\pi\)
−0.573665 + 0.819090i \(0.694479\pi\)
\(348\) −7.24710 −0.388485
\(349\) −2.84481 −0.152279 −0.0761397 0.997097i \(-0.524259\pi\)
−0.0761397 + 0.997097i \(0.524259\pi\)
\(350\) 35.4294 1.89378
\(351\) −5.78881 −0.308984
\(352\) 0 0
\(353\) 18.5284 0.986167 0.493083 0.869982i \(-0.335870\pi\)
0.493083 + 0.869982i \(0.335870\pi\)
\(354\) 0.507670 0.0269824
\(355\) −4.32246 −0.229412
\(356\) 9.78035 0.518358
\(357\) 16.1170 0.853001
\(358\) 9.56653 0.505607
\(359\) 18.0400 0.952116 0.476058 0.879414i \(-0.342065\pi\)
0.476058 + 0.879414i \(0.342065\pi\)
\(360\) −1.01919 −0.0537161
\(361\) −16.1660 −0.850841
\(362\) 23.2510 1.22205
\(363\) 0 0
\(364\) −5.62408 −0.294782
\(365\) −16.9193 −0.885597
\(366\) −1.08673 −0.0568043
\(367\) −3.14948 −0.164401 −0.0822007 0.996616i \(-0.526195\pi\)
−0.0822007 + 0.996616i \(0.526195\pi\)
\(368\) −10.6479 −0.555059
\(369\) 5.37908 0.280024
\(370\) 4.05121 0.210612
\(371\) 7.17226 0.372365
\(372\) 1.62742 0.0843776
\(373\) −15.8465 −0.820502 −0.410251 0.911973i \(-0.634559\pi\)
−0.410251 + 0.911973i \(0.634559\pi\)
\(374\) 0 0
\(375\) 14.3292 0.739957
\(376\) 15.2448 0.786192
\(377\) −4.62430 −0.238164
\(378\) −50.2531 −2.58474
\(379\) 5.14644 0.264355 0.132178 0.991226i \(-0.457803\pi\)
0.132178 + 0.991226i \(0.457803\pi\)
\(380\) −1.82668 −0.0937066
\(381\) 2.76159 0.141480
\(382\) −42.0756 −2.15277
\(383\) −7.75309 −0.396165 −0.198082 0.980185i \(-0.563471\pi\)
−0.198082 + 0.980185i \(0.563471\pi\)
\(384\) 18.2783 0.932759
\(385\) 0 0
\(386\) 1.64618 0.0837882
\(387\) −5.95894 −0.302910
\(388\) 17.8905 0.908251
\(389\) 37.1510 1.88363 0.941815 0.336132i \(-0.109119\pi\)
0.941815 + 0.336132i \(0.109119\pi\)
\(390\) −2.90956 −0.147331
\(391\) −4.28758 −0.216832
\(392\) 32.6337 1.64825
\(393\) 10.0303 0.505960
\(394\) −36.6981 −1.84883
\(395\) 0.726601 0.0365592
\(396\) 0 0
\(397\) 16.5590 0.831071 0.415536 0.909577i \(-0.363594\pi\)
0.415536 + 0.909577i \(0.363594\pi\)
\(398\) −19.0758 −0.956185
\(399\) 13.4826 0.674976
\(400\) 19.6413 0.982063
\(401\) −3.90261 −0.194887 −0.0974436 0.995241i \(-0.531067\pi\)
−0.0974436 + 0.995241i \(0.531067\pi\)
\(402\) 11.9539 0.596206
\(403\) 1.03844 0.0517284
\(404\) −12.4636 −0.620085
\(405\) −7.10346 −0.352974
\(406\) −40.1440 −1.99231
\(407\) 0 0
\(408\) 5.18382 0.256637
\(409\) −21.9827 −1.08697 −0.543487 0.839418i \(-0.682896\pi\)
−0.543487 + 0.839418i \(0.682896\pi\)
\(410\) 16.3719 0.808551
\(411\) −19.9094 −0.982059
\(412\) 4.06902 0.200466
\(413\) 0.967543 0.0476097
\(414\) 2.20769 0.108502
\(415\) 12.8051 0.628576
\(416\) −5.61336 −0.275217
\(417\) 30.5285 1.49499
\(418\) 0 0
\(419\) 4.57515 0.223511 0.111755 0.993736i \(-0.464353\pi\)
0.111755 + 0.993736i \(0.464353\pi\)
\(420\) −8.69029 −0.424043
\(421\) 35.5483 1.73252 0.866260 0.499594i \(-0.166517\pi\)
0.866260 + 0.499594i \(0.166517\pi\)
\(422\) −27.6938 −1.34811
\(423\) −5.44801 −0.264891
\(424\) 2.30686 0.112031
\(425\) 7.90894 0.383640
\(426\) −11.3201 −0.548462
\(427\) −2.07115 −0.100230
\(428\) 8.41906 0.406951
\(429\) 0 0
\(430\) −18.1368 −0.874633
\(431\) 36.1631 1.74192 0.870958 0.491357i \(-0.163499\pi\)
0.870958 + 0.491357i \(0.163499\pi\)
\(432\) −27.8592 −1.34038
\(433\) 20.8699 1.00294 0.501471 0.865175i \(-0.332793\pi\)
0.501471 + 0.865175i \(0.332793\pi\)
\(434\) 9.01478 0.432723
\(435\) −7.14544 −0.342598
\(436\) −6.12386 −0.293280
\(437\) −3.58677 −0.171578
\(438\) −44.3102 −2.11722
\(439\) −20.8831 −0.996697 −0.498349 0.866977i \(-0.666060\pi\)
−0.498349 + 0.866977i \(0.666060\pi\)
\(440\) 0 0
\(441\) −11.6622 −0.555345
\(442\) −3.64900 −0.173565
\(443\) 18.9234 0.899076 0.449538 0.893261i \(-0.351589\pi\)
0.449538 + 0.893261i \(0.351589\pi\)
\(444\) 3.65038 0.173239
\(445\) 9.64317 0.457130
\(446\) 44.7700 2.11992
\(447\) −8.05336 −0.380911
\(448\) 2.87163 0.135672
\(449\) −28.4778 −1.34395 −0.671975 0.740574i \(-0.734554\pi\)
−0.671975 + 0.740574i \(0.734554\pi\)
\(450\) −4.07235 −0.191972
\(451\) 0 0
\(452\) 6.86170 0.322747
\(453\) −9.27421 −0.435740
\(454\) −20.8488 −0.978485
\(455\) −5.54519 −0.259963
\(456\) 4.33652 0.203076
\(457\) −10.9957 −0.514357 −0.257178 0.966364i \(-0.582793\pi\)
−0.257178 + 0.966364i \(0.582793\pi\)
\(458\) −37.3246 −1.74406
\(459\) −11.2181 −0.523614
\(460\) 2.31186 0.107791
\(461\) 15.0337 0.700190 0.350095 0.936714i \(-0.386149\pi\)
0.350095 + 0.936714i \(0.386149\pi\)
\(462\) 0 0
\(463\) 26.3870 1.22631 0.613155 0.789963i \(-0.289900\pi\)
0.613155 + 0.789963i \(0.289900\pi\)
\(464\) −22.2549 −1.03316
\(465\) 1.60459 0.0744111
\(466\) −9.80297 −0.454114
\(467\) −10.4252 −0.482420 −0.241210 0.970473i \(-0.577544\pi\)
−0.241210 + 0.970473i \(0.577544\pi\)
\(468\) 0.646447 0.0298820
\(469\) 22.7824 1.05199
\(470\) −16.5817 −0.764857
\(471\) 30.6791 1.41362
\(472\) 0.311198 0.0143240
\(473\) 0 0
\(474\) 1.90290 0.0874032
\(475\) 6.61622 0.303573
\(476\) −10.8988 −0.499548
\(477\) −0.824400 −0.0377467
\(478\) 1.97216 0.0902046
\(479\) −13.7900 −0.630081 −0.315040 0.949078i \(-0.602018\pi\)
−0.315040 + 0.949078i \(0.602018\pi\)
\(480\) −8.67372 −0.395899
\(481\) 2.32927 0.106206
\(482\) −49.0286 −2.23319
\(483\) −17.0638 −0.776430
\(484\) 0 0
\(485\) 17.6395 0.800970
\(486\) 10.5986 0.480762
\(487\) 0.906414 0.0410736 0.0205368 0.999789i \(-0.493462\pi\)
0.0205368 + 0.999789i \(0.493462\pi\)
\(488\) −0.666157 −0.0301555
\(489\) −12.7093 −0.574733
\(490\) −35.4955 −1.60352
\(491\) 15.8451 0.715081 0.357540 0.933898i \(-0.383615\pi\)
0.357540 + 0.933898i \(0.383615\pi\)
\(492\) 14.7521 0.665074
\(493\) −8.96139 −0.403601
\(494\) −3.05257 −0.137341
\(495\) 0 0
\(496\) 4.99759 0.224399
\(497\) −21.5745 −0.967747
\(498\) 33.5353 1.50275
\(499\) 23.9009 1.06995 0.534976 0.844867i \(-0.320321\pi\)
0.534976 + 0.844867i \(0.320321\pi\)
\(500\) −9.68989 −0.433345
\(501\) −6.01059 −0.268533
\(502\) −36.4394 −1.62637
\(503\) −2.26525 −0.101002 −0.0505012 0.998724i \(-0.516082\pi\)
−0.0505012 + 0.998724i \(0.516082\pi\)
\(504\) −5.08704 −0.226595
\(505\) −12.2887 −0.546842
\(506\) 0 0
\(507\) 18.4943 0.821359
\(508\) −1.86748 −0.0828558
\(509\) 11.7099 0.519032 0.259516 0.965739i \(-0.416437\pi\)
0.259516 + 0.965739i \(0.416437\pi\)
\(510\) −5.63841 −0.249673
\(511\) −84.4486 −3.73578
\(512\) −10.4178 −0.460408
\(513\) −9.38446 −0.414334
\(514\) −29.3540 −1.29475
\(515\) 4.01195 0.176788
\(516\) −16.3423 −0.719430
\(517\) 0 0
\(518\) 20.2206 0.888442
\(519\) −16.4811 −0.723441
\(520\) −1.78354 −0.0782134
\(521\) 24.1991 1.06018 0.530091 0.847941i \(-0.322158\pi\)
0.530091 + 0.847941i \(0.322158\pi\)
\(522\) 4.61426 0.201961
\(523\) −38.7527 −1.69454 −0.847269 0.531164i \(-0.821755\pi\)
−0.847269 + 0.531164i \(0.821755\pi\)
\(524\) −6.78280 −0.296308
\(525\) 31.4762 1.37373
\(526\) −42.8901 −1.87010
\(527\) 2.01238 0.0876607
\(528\) 0 0
\(529\) −18.4605 −0.802632
\(530\) −2.50916 −0.108991
\(531\) −0.111212 −0.00482619
\(532\) −9.11741 −0.395290
\(533\) 9.41315 0.407729
\(534\) 25.2546 1.09287
\(535\) 8.30097 0.358882
\(536\) 7.32765 0.316506
\(537\) 8.49910 0.366763
\(538\) −11.5375 −0.497416
\(539\) 0 0
\(540\) 6.04879 0.260298
\(541\) −4.67360 −0.200934 −0.100467 0.994940i \(-0.532034\pi\)
−0.100467 + 0.994940i \(0.532034\pi\)
\(542\) 41.8172 1.79620
\(543\) 20.6567 0.886464
\(544\) −10.8781 −0.466393
\(545\) −6.03796 −0.258638
\(546\) −14.5224 −0.621500
\(547\) −22.1290 −0.946166 −0.473083 0.881018i \(-0.656859\pi\)
−0.473083 + 0.881018i \(0.656859\pi\)
\(548\) 13.4634 0.575128
\(549\) 0.238063 0.0101603
\(550\) 0 0
\(551\) −7.49664 −0.319368
\(552\) −5.48835 −0.233600
\(553\) 3.62665 0.154221
\(554\) 39.4263 1.67506
\(555\) 3.59918 0.152776
\(556\) −20.6444 −0.875518
\(557\) −42.6618 −1.80764 −0.903818 0.427917i \(-0.859248\pi\)
−0.903818 + 0.427917i \(0.859248\pi\)
\(558\) −1.03618 −0.0438652
\(559\) −10.4279 −0.441052
\(560\) −26.6868 −1.12772
\(561\) 0 0
\(562\) 29.0734 1.22639
\(563\) 28.1479 1.18629 0.593145 0.805095i \(-0.297886\pi\)
0.593145 + 0.805095i \(0.297886\pi\)
\(564\) −14.9411 −0.629133
\(565\) 6.76545 0.284625
\(566\) −25.8435 −1.08628
\(567\) −35.4552 −1.48898
\(568\) −6.93915 −0.291160
\(569\) 30.5045 1.27881 0.639407 0.768868i \(-0.279180\pi\)
0.639407 + 0.768868i \(0.279180\pi\)
\(570\) −4.71680 −0.197565
\(571\) −0.740624 −0.0309942 −0.0154971 0.999880i \(-0.504933\pi\)
−0.0154971 + 0.999880i \(0.504933\pi\)
\(572\) 0 0
\(573\) −37.3808 −1.56161
\(574\) 81.7164 3.41077
\(575\) −8.37356 −0.349202
\(576\) −0.330073 −0.0137530
\(577\) 15.5564 0.647621 0.323810 0.946122i \(-0.395036\pi\)
0.323810 + 0.946122i \(0.395036\pi\)
\(578\) 22.6133 0.940588
\(579\) 1.46250 0.0607793
\(580\) 4.83199 0.200637
\(581\) 63.9133 2.65157
\(582\) 46.1964 1.91490
\(583\) 0 0
\(584\) −27.1618 −1.12396
\(585\) 0.637380 0.0263524
\(586\) 34.2532 1.41499
\(587\) −35.0950 −1.44853 −0.724263 0.689524i \(-0.757820\pi\)
−0.724263 + 0.689524i \(0.757820\pi\)
\(588\) −31.9835 −1.31898
\(589\) 1.68345 0.0693655
\(590\) −0.338488 −0.0139353
\(591\) −32.6034 −1.34112
\(592\) 11.2099 0.460722
\(593\) 30.5749 1.25556 0.627779 0.778391i \(-0.283964\pi\)
0.627779 + 0.778391i \(0.283964\pi\)
\(594\) 0 0
\(595\) −10.7460 −0.440542
\(596\) 5.44595 0.223075
\(597\) −16.9474 −0.693609
\(598\) 3.86336 0.157985
\(599\) 7.07483 0.289070 0.144535 0.989500i \(-0.453831\pi\)
0.144535 + 0.989500i \(0.453831\pi\)
\(600\) 10.1239 0.413307
\(601\) 5.02076 0.204801 0.102401 0.994743i \(-0.467348\pi\)
0.102401 + 0.994743i \(0.467348\pi\)
\(602\) −90.5252 −3.68953
\(603\) −2.61867 −0.106640
\(604\) 6.27153 0.255185
\(605\) 0 0
\(606\) −32.1831 −1.30735
\(607\) −17.0642 −0.692613 −0.346306 0.938122i \(-0.612564\pi\)
−0.346306 + 0.938122i \(0.612564\pi\)
\(608\) −9.10003 −0.369055
\(609\) −35.6647 −1.44521
\(610\) 0.724575 0.0293372
\(611\) −9.53377 −0.385695
\(612\) 1.25274 0.0506391
\(613\) 35.8658 1.44861 0.724304 0.689481i \(-0.242161\pi\)
0.724304 + 0.689481i \(0.242161\pi\)
\(614\) 1.53188 0.0618216
\(615\) 14.5451 0.586517
\(616\) 0 0
\(617\) 46.5443 1.87380 0.936901 0.349594i \(-0.113681\pi\)
0.936901 + 0.349594i \(0.113681\pi\)
\(618\) 10.5069 0.422651
\(619\) 8.97981 0.360929 0.180465 0.983581i \(-0.442240\pi\)
0.180465 + 0.983581i \(0.442240\pi\)
\(620\) −1.08508 −0.0435777
\(621\) 11.8771 0.476611
\(622\) 30.7058 1.23119
\(623\) 48.1315 1.92835
\(624\) −8.05088 −0.322293
\(625\) 10.0967 0.403870
\(626\) −49.9972 −1.99829
\(627\) 0 0
\(628\) −20.7462 −0.827865
\(629\) 4.51387 0.179980
\(630\) 5.53315 0.220446
\(631\) 15.4902 0.616654 0.308327 0.951280i \(-0.400231\pi\)
0.308327 + 0.951280i \(0.400231\pi\)
\(632\) 1.16646 0.0463995
\(633\) −24.6037 −0.977911
\(634\) 48.1582 1.91261
\(635\) −1.84128 −0.0730690
\(636\) −2.26090 −0.0896507
\(637\) −20.4084 −0.808610
\(638\) 0 0
\(639\) 2.47983 0.0981006
\(640\) −12.1870 −0.481733
\(641\) 35.6917 1.40974 0.704868 0.709338i \(-0.251006\pi\)
0.704868 + 0.709338i \(0.251006\pi\)
\(642\) 21.7395 0.857990
\(643\) 8.98201 0.354216 0.177108 0.984191i \(-0.443326\pi\)
0.177108 + 0.984191i \(0.443326\pi\)
\(644\) 11.5391 0.454704
\(645\) −16.1131 −0.634452
\(646\) −5.91554 −0.232744
\(647\) −33.3542 −1.31129 −0.655645 0.755070i \(-0.727603\pi\)
−0.655645 + 0.755070i \(0.727603\pi\)
\(648\) −11.4037 −0.447980
\(649\) 0 0
\(650\) −7.12643 −0.279522
\(651\) 8.00892 0.313894
\(652\) 8.59443 0.336584
\(653\) −27.9202 −1.09260 −0.546301 0.837589i \(-0.683965\pi\)
−0.546301 + 0.837589i \(0.683965\pi\)
\(654\) −15.8129 −0.618333
\(655\) −6.68766 −0.261309
\(656\) 45.3017 1.76874
\(657\) 9.70675 0.378696
\(658\) −82.7635 −3.22646
\(659\) 23.8914 0.930676 0.465338 0.885133i \(-0.345933\pi\)
0.465338 + 0.885133i \(0.345933\pi\)
\(660\) 0 0
\(661\) −25.1167 −0.976928 −0.488464 0.872584i \(-0.662443\pi\)
−0.488464 + 0.872584i \(0.662443\pi\)
\(662\) −5.56249 −0.216192
\(663\) −3.24185 −0.125903
\(664\) 20.5569 0.797762
\(665\) −8.98953 −0.348599
\(666\) −2.32421 −0.0900614
\(667\) 9.48784 0.367371
\(668\) 4.06456 0.157262
\(669\) 39.7746 1.53777
\(670\) −7.97024 −0.307917
\(671\) 0 0
\(672\) −43.2927 −1.67005
\(673\) −36.0397 −1.38923 −0.694614 0.719382i \(-0.744425\pi\)
−0.694614 + 0.719382i \(0.744425\pi\)
\(674\) −8.17498 −0.314888
\(675\) −21.9087 −0.843265
\(676\) −12.5064 −0.481017
\(677\) 36.1242 1.38837 0.694183 0.719799i \(-0.255766\pi\)
0.694183 + 0.719799i \(0.255766\pi\)
\(678\) 17.7181 0.680460
\(679\) 88.0434 3.37879
\(680\) −3.45630 −0.132543
\(681\) −18.5225 −0.709785
\(682\) 0 0
\(683\) −38.9893 −1.49188 −0.745942 0.666010i \(-0.768001\pi\)
−0.745942 + 0.666010i \(0.768001\pi\)
\(684\) 1.04798 0.0400705
\(685\) 13.2746 0.507195
\(686\) −114.063 −4.35496
\(687\) −33.1599 −1.26513
\(688\) −50.1852 −1.91329
\(689\) −1.44266 −0.0549611
\(690\) 5.96964 0.227260
\(691\) 21.0565 0.801027 0.400514 0.916291i \(-0.368832\pi\)
0.400514 + 0.916291i \(0.368832\pi\)
\(692\) 11.1451 0.423673
\(693\) 0 0
\(694\) 37.3195 1.41663
\(695\) −20.3548 −0.772103
\(696\) −11.4711 −0.434811
\(697\) 18.2416 0.690952
\(698\) 4.96748 0.188022
\(699\) −8.70916 −0.329411
\(700\) −21.2852 −0.804506
\(701\) −42.7951 −1.61635 −0.808174 0.588943i \(-0.799544\pi\)
−0.808174 + 0.588943i \(0.799544\pi\)
\(702\) 10.1081 0.381507
\(703\) 3.77607 0.142417
\(704\) 0 0
\(705\) −14.7315 −0.554821
\(706\) −32.3534 −1.21764
\(707\) −61.3362 −2.30679
\(708\) −0.304998 −0.0114625
\(709\) 14.8226 0.556673 0.278336 0.960484i \(-0.410217\pi\)
0.278336 + 0.960484i \(0.410217\pi\)
\(710\) 7.54767 0.283259
\(711\) −0.416857 −0.0156334
\(712\) 15.4809 0.580170
\(713\) −2.13060 −0.0797916
\(714\) −28.1427 −1.05322
\(715\) 0 0
\(716\) −5.74738 −0.214790
\(717\) 1.75211 0.0654337
\(718\) −31.5007 −1.17559
\(719\) 12.1671 0.453757 0.226879 0.973923i \(-0.427148\pi\)
0.226879 + 0.973923i \(0.427148\pi\)
\(720\) 3.06745 0.114317
\(721\) 20.0247 0.745757
\(722\) 28.2283 1.05055
\(723\) −43.5580 −1.61994
\(724\) −13.9687 −0.519144
\(725\) −17.5014 −0.649987
\(726\) 0 0
\(727\) 2.61267 0.0968986 0.0484493 0.998826i \(-0.484572\pi\)
0.0484493 + 0.998826i \(0.484572\pi\)
\(728\) −8.90210 −0.329934
\(729\) 30.0189 1.11181
\(730\) 29.5437 1.09346
\(731\) −20.2081 −0.747422
\(732\) 0.652885 0.0241313
\(733\) 32.9162 1.21579 0.607894 0.794018i \(-0.292014\pi\)
0.607894 + 0.794018i \(0.292014\pi\)
\(734\) 5.49947 0.202989
\(735\) −31.5349 −1.16318
\(736\) 11.5171 0.424526
\(737\) 0 0
\(738\) −9.39271 −0.345750
\(739\) 21.4619 0.789489 0.394744 0.918791i \(-0.370833\pi\)
0.394744 + 0.918791i \(0.370833\pi\)
\(740\) −2.43388 −0.0894713
\(741\) −2.71196 −0.0996264
\(742\) −12.5239 −0.459766
\(743\) 43.7010 1.60324 0.801618 0.597837i \(-0.203973\pi\)
0.801618 + 0.597837i \(0.203973\pi\)
\(744\) 2.57596 0.0944394
\(745\) 5.36956 0.196725
\(746\) 27.6705 1.01309
\(747\) −7.34638 −0.268790
\(748\) 0 0
\(749\) 41.4322 1.51390
\(750\) −25.0210 −0.913638
\(751\) −6.57083 −0.239773 −0.119887 0.992788i \(-0.538253\pi\)
−0.119887 + 0.992788i \(0.538253\pi\)
\(752\) −45.8822 −1.67315
\(753\) −32.3735 −1.17976
\(754\) 8.07475 0.294065
\(755\) 6.18356 0.225043
\(756\) 30.1910 1.09804
\(757\) −5.01442 −0.182252 −0.0911261 0.995839i \(-0.529047\pi\)
−0.0911261 + 0.995839i \(0.529047\pi\)
\(758\) −8.98648 −0.326404
\(759\) 0 0
\(760\) −2.89136 −0.104881
\(761\) 18.8130 0.681969 0.340984 0.940069i \(-0.389240\pi\)
0.340984 + 0.940069i \(0.389240\pi\)
\(762\) −4.82215 −0.174688
\(763\) −30.1370 −1.09103
\(764\) 25.2781 0.914531
\(765\) 1.23517 0.0446577
\(766\) 13.5381 0.489151
\(767\) −0.194616 −0.00702718
\(768\) −30.1909 −1.08942
\(769\) −22.4564 −0.809798 −0.404899 0.914362i \(-0.632693\pi\)
−0.404899 + 0.914362i \(0.632693\pi\)
\(770\) 0 0
\(771\) −26.0787 −0.939200
\(772\) −0.988989 −0.0355945
\(773\) −25.9568 −0.933601 −0.466801 0.884363i \(-0.654593\pi\)
−0.466801 + 0.884363i \(0.654593\pi\)
\(774\) 10.4052 0.374008
\(775\) 3.93014 0.141175
\(776\) 28.3180 1.01656
\(777\) 17.9644 0.644469
\(778\) −64.8713 −2.32575
\(779\) 15.2600 0.546747
\(780\) 1.74801 0.0625886
\(781\) 0 0
\(782\) 7.48677 0.267726
\(783\) 24.8241 0.887140
\(784\) −98.2174 −3.50776
\(785\) −20.4552 −0.730079
\(786\) −17.5144 −0.624718
\(787\) −9.12898 −0.325413 −0.162706 0.986675i \(-0.552022\pi\)
−0.162706 + 0.986675i \(0.552022\pi\)
\(788\) 22.0475 0.785409
\(789\) −38.1044 −1.35655
\(790\) −1.26876 −0.0451403
\(791\) 33.7681 1.20066
\(792\) 0 0
\(793\) 0.416600 0.0147939
\(794\) −28.9145 −1.02614
\(795\) −2.22919 −0.0790613
\(796\) 11.4604 0.406202
\(797\) 4.76088 0.168639 0.0843195 0.996439i \(-0.473128\pi\)
0.0843195 + 0.996439i \(0.473128\pi\)
\(798\) −23.5428 −0.833405
\(799\) −18.4754 −0.653613
\(800\) −21.2447 −0.751112
\(801\) −5.53237 −0.195477
\(802\) 6.81456 0.240631
\(803\) 0 0
\(804\) −7.18166 −0.253278
\(805\) 11.3773 0.400995
\(806\) −1.81328 −0.0638699
\(807\) −10.2501 −0.360821
\(808\) −19.7280 −0.694029
\(809\) 27.2254 0.957195 0.478598 0.878034i \(-0.341145\pi\)
0.478598 + 0.878034i \(0.341145\pi\)
\(810\) 12.4037 0.435823
\(811\) 20.0077 0.702566 0.351283 0.936269i \(-0.385745\pi\)
0.351283 + 0.936269i \(0.385745\pi\)
\(812\) 24.1177 0.846364
\(813\) 37.1513 1.30295
\(814\) 0 0
\(815\) 8.47388 0.296827
\(816\) −15.6017 −0.546169
\(817\) −16.9050 −0.591432
\(818\) 38.3852 1.34211
\(819\) 3.18133 0.111164
\(820\) −9.83590 −0.343485
\(821\) 30.5671 1.06680 0.533400 0.845863i \(-0.320914\pi\)
0.533400 + 0.845863i \(0.320914\pi\)
\(822\) 34.7649 1.21257
\(823\) 44.2392 1.54208 0.771041 0.636786i \(-0.219737\pi\)
0.771041 + 0.636786i \(0.219737\pi\)
\(824\) 6.44067 0.224371
\(825\) 0 0
\(826\) −1.68948 −0.0587845
\(827\) −10.4041 −0.361787 −0.180893 0.983503i \(-0.557899\pi\)
−0.180893 + 0.983503i \(0.557899\pi\)
\(828\) −1.32634 −0.0460934
\(829\) 10.3646 0.359978 0.179989 0.983669i \(-0.442394\pi\)
0.179989 + 0.983669i \(0.442394\pi\)
\(830\) −22.3596 −0.776114
\(831\) 35.0272 1.21508
\(832\) −0.577613 −0.0200251
\(833\) −39.5492 −1.37030
\(834\) −53.3075 −1.84589
\(835\) 4.00755 0.138687
\(836\) 0 0
\(837\) −5.57452 −0.192684
\(838\) −7.98891 −0.275972
\(839\) 13.2843 0.458624 0.229312 0.973353i \(-0.426352\pi\)
0.229312 + 0.973353i \(0.426352\pi\)
\(840\) −13.7555 −0.474609
\(841\) −9.16964 −0.316195
\(842\) −62.0729 −2.13917
\(843\) 25.8294 0.889612
\(844\) 16.6379 0.572699
\(845\) −12.3310 −0.424200
\(846\) 9.51307 0.327066
\(847\) 0 0
\(848\) −6.94296 −0.238422
\(849\) −22.9599 −0.787981
\(850\) −13.8102 −0.473687
\(851\) −4.77904 −0.163824
\(852\) 6.80090 0.232995
\(853\) 0.915849 0.0313581 0.0156790 0.999877i \(-0.495009\pi\)
0.0156790 + 0.999877i \(0.495009\pi\)
\(854\) 3.61654 0.123755
\(855\) 1.03328 0.0353375
\(856\) 13.3261 0.455478
\(857\) −28.9505 −0.988929 −0.494464 0.869198i \(-0.664636\pi\)
−0.494464 + 0.869198i \(0.664636\pi\)
\(858\) 0 0
\(859\) −2.78855 −0.0951439 −0.0475720 0.998868i \(-0.515148\pi\)
−0.0475720 + 0.998868i \(0.515148\pi\)
\(860\) 10.8962 0.371557
\(861\) 72.5985 2.47415
\(862\) −63.1464 −2.15077
\(863\) 18.4520 0.628114 0.314057 0.949404i \(-0.398312\pi\)
0.314057 + 0.949404i \(0.398312\pi\)
\(864\) 30.1335 1.02516
\(865\) 10.9888 0.373629
\(866\) −36.4420 −1.23835
\(867\) 20.0901 0.682295
\(868\) −5.41589 −0.183827
\(869\) 0 0
\(870\) 12.4770 0.423011
\(871\) −4.58255 −0.155274
\(872\) −9.69318 −0.328252
\(873\) −10.1200 −0.342508
\(874\) 6.26305 0.211851
\(875\) −47.6863 −1.61209
\(876\) 26.6206 0.899428
\(877\) −21.6929 −0.732518 −0.366259 0.930513i \(-0.619362\pi\)
−0.366259 + 0.930513i \(0.619362\pi\)
\(878\) 36.4651 1.23064
\(879\) 30.4312 1.02642
\(880\) 0 0
\(881\) 38.2546 1.28883 0.644415 0.764676i \(-0.277101\pi\)
0.644415 + 0.764676i \(0.277101\pi\)
\(882\) 20.3641 0.685694
\(883\) −34.1002 −1.14756 −0.573781 0.819009i \(-0.694524\pi\)
−0.573781 + 0.819009i \(0.694524\pi\)
\(884\) 2.19224 0.0737331
\(885\) −0.300720 −0.0101086
\(886\) −33.0431 −1.11010
\(887\) 15.2390 0.511675 0.255837 0.966720i \(-0.417649\pi\)
0.255837 + 0.966720i \(0.417649\pi\)
\(888\) 5.77802 0.193898
\(889\) −9.19030 −0.308233
\(890\) −16.8385 −0.564426
\(891\) 0 0
\(892\) −26.8969 −0.900575
\(893\) −15.4556 −0.517201
\(894\) 14.0624 0.470317
\(895\) −5.66676 −0.189419
\(896\) −60.8284 −2.03213
\(897\) 3.43229 0.114601
\(898\) 49.7266 1.65940
\(899\) −4.45313 −0.148520
\(900\) 2.44658 0.0815528
\(901\) −2.79572 −0.0931389
\(902\) 0 0
\(903\) −80.4245 −2.67636
\(904\) 10.8611 0.361234
\(905\) −13.7728 −0.457824
\(906\) 16.1942 0.538016
\(907\) 33.3375 1.10695 0.553477 0.832864i \(-0.313301\pi\)
0.553477 + 0.832864i \(0.313301\pi\)
\(908\) 12.5256 0.415675
\(909\) 7.05016 0.233839
\(910\) 9.68276 0.320980
\(911\) 2.03204 0.0673244 0.0336622 0.999433i \(-0.489283\pi\)
0.0336622 + 0.999433i \(0.489283\pi\)
\(912\) −13.0516 −0.432181
\(913\) 0 0
\(914\) 19.2002 0.635085
\(915\) 0.643727 0.0212810
\(916\) 22.4238 0.740904
\(917\) −33.3798 −1.10230
\(918\) 19.5885 0.646516
\(919\) −40.6193 −1.33991 −0.669953 0.742404i \(-0.733686\pi\)
−0.669953 + 0.742404i \(0.733686\pi\)
\(920\) 3.65935 0.120645
\(921\) 1.36095 0.0448449
\(922\) −26.2512 −0.864537
\(923\) 4.33959 0.142839
\(924\) 0 0
\(925\) 8.81551 0.289852
\(926\) −46.0758 −1.51415
\(927\) −2.30169 −0.0755974
\(928\) 24.0717 0.790192
\(929\) 52.8569 1.73418 0.867090 0.498151i \(-0.165988\pi\)
0.867090 + 0.498151i \(0.165988\pi\)
\(930\) −2.80186 −0.0918766
\(931\) −33.0848 −1.08431
\(932\) 5.88942 0.192914
\(933\) 27.2796 0.893096
\(934\) 18.2040 0.595652
\(935\) 0 0
\(936\) 1.02323 0.0334454
\(937\) −29.2702 −0.956214 −0.478107 0.878301i \(-0.658677\pi\)
−0.478107 + 0.878301i \(0.658677\pi\)
\(938\) −39.7815 −1.29891
\(939\) −44.4185 −1.44954
\(940\) 9.96194 0.324923
\(941\) −48.7226 −1.58831 −0.794156 0.607714i \(-0.792087\pi\)
−0.794156 + 0.607714i \(0.792087\pi\)
\(942\) −53.5704 −1.74542
\(943\) −19.3133 −0.628927
\(944\) −0.936610 −0.0304841
\(945\) 29.7676 0.968339
\(946\) 0 0
\(947\) −21.0241 −0.683190 −0.341595 0.939847i \(-0.610967\pi\)
−0.341595 + 0.939847i \(0.610967\pi\)
\(948\) −1.14322 −0.0371302
\(949\) 16.9864 0.551401
\(950\) −11.5529 −0.374827
\(951\) 42.7847 1.38739
\(952\) −17.2513 −0.559117
\(953\) 36.8870 1.19489 0.597444 0.801911i \(-0.296183\pi\)
0.597444 + 0.801911i \(0.296183\pi\)
\(954\) 1.43953 0.0466065
\(955\) 24.9236 0.806508
\(956\) −1.18483 −0.0383203
\(957\) 0 0
\(958\) 24.0794 0.777971
\(959\) 66.2567 2.13954
\(960\) −0.892523 −0.0288061
\(961\) 1.00000 0.0322581
\(962\) −4.06727 −0.131134
\(963\) −4.76234 −0.153464
\(964\) 29.4554 0.948694
\(965\) −0.975117 −0.0313901
\(966\) 29.7960 0.958671
\(967\) 34.8209 1.11977 0.559883 0.828572i \(-0.310846\pi\)
0.559883 + 0.828572i \(0.310846\pi\)
\(968\) 0 0
\(969\) −5.25548 −0.168830
\(970\) −30.8013 −0.988971
\(971\) −24.3021 −0.779893 −0.389946 0.920838i \(-0.627506\pi\)
−0.389946 + 0.920838i \(0.627506\pi\)
\(972\) −6.36741 −0.204235
\(973\) −101.596 −3.25702
\(974\) −1.58274 −0.0507142
\(975\) −6.33127 −0.202763
\(976\) 2.00493 0.0641762
\(977\) −26.0018 −0.831871 −0.415936 0.909394i \(-0.636546\pi\)
−0.415936 + 0.909394i \(0.636546\pi\)
\(978\) 22.1923 0.709633
\(979\) 0 0
\(980\) 21.3249 0.681200
\(981\) 3.46403 0.110598
\(982\) −27.6680 −0.882923
\(983\) 37.2627 1.18850 0.594248 0.804282i \(-0.297450\pi\)
0.594248 + 0.804282i \(0.297450\pi\)
\(984\) 23.3504 0.744382
\(985\) 21.7382 0.692638
\(986\) 15.6480 0.498333
\(987\) −73.5288 −2.34045
\(988\) 1.83392 0.0583447
\(989\) 21.3952 0.680328
\(990\) 0 0
\(991\) 36.0204 1.14423 0.572113 0.820175i \(-0.306124\pi\)
0.572113 + 0.820175i \(0.306124\pi\)
\(992\) −5.40557 −0.171627
\(993\) −4.94183 −0.156824
\(994\) 37.6724 1.19489
\(995\) 11.2996 0.358222
\(996\) −20.1473 −0.638393
\(997\) −29.1766 −0.924031 −0.462016 0.886872i \(-0.652874\pi\)
−0.462016 + 0.886872i \(0.652874\pi\)
\(998\) −41.7347 −1.32109
\(999\) −12.5039 −0.395607
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.2.a.m.1.4 yes 15
11.10 odd 2 3751.2.a.l.1.12 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3751.2.a.l.1.12 15 11.10 odd 2
3751.2.a.m.1.4 yes 15 1.1 even 1 trivial