Properties

Label 3751.2.a.l.1.7
Level $3751$
Weight $2$
Character 3751.1
Self dual yes
Analytic conductor $29.952$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,2,Mod(1,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3751.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-1,2,17,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9518857982\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 23 x^{13} + 21 x^{12} + 204 x^{11} - 160 x^{10} - 880 x^{9} + 535 x^{8} + 1918 x^{7} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 23 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.240763\) of defining polynomial
Character \(\chi\) \(=\) 3751.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.240763 q^{2} +0.685295 q^{3} -1.94203 q^{4} -1.44419 q^{5} -0.164993 q^{6} +4.65408 q^{7} +0.949094 q^{8} -2.53037 q^{9} +0.347707 q^{10} -1.33087 q^{12} +2.11164 q^{13} -1.12053 q^{14} -0.989697 q^{15} +3.65556 q^{16} +7.24162 q^{17} +0.609219 q^{18} +0.972100 q^{19} +2.80467 q^{20} +3.18942 q^{21} -0.403744 q^{23} +0.650409 q^{24} -2.91431 q^{25} -0.508403 q^{26} -3.78993 q^{27} -9.03838 q^{28} +10.6517 q^{29} +0.238282 q^{30} -1.00000 q^{31} -2.77831 q^{32} -1.74351 q^{34} -6.72139 q^{35} +4.91407 q^{36} -4.95782 q^{37} -0.234045 q^{38} +1.44709 q^{39} -1.37067 q^{40} -9.56967 q^{41} -0.767893 q^{42} -6.39348 q^{43} +3.65434 q^{45} +0.0972065 q^{46} -4.05721 q^{47} +2.50514 q^{48} +14.6605 q^{49} +0.701657 q^{50} +4.96264 q^{51} -4.10087 q^{52} +7.85349 q^{53} +0.912474 q^{54} +4.41716 q^{56} +0.666175 q^{57} -2.56453 q^{58} -5.89619 q^{59} +1.92202 q^{60} +5.92581 q^{61} +0.240763 q^{62} -11.7766 q^{63} -6.64221 q^{64} -3.04961 q^{65} -10.2449 q^{67} -14.0635 q^{68} -0.276684 q^{69} +1.61826 q^{70} +1.06019 q^{71} -2.40156 q^{72} +7.79694 q^{73} +1.19366 q^{74} -1.99716 q^{75} -1.88785 q^{76} -0.348406 q^{78} +14.5005 q^{79} -5.27933 q^{80} +4.99389 q^{81} +2.30402 q^{82} -4.42688 q^{83} -6.19396 q^{84} -10.4583 q^{85} +1.53931 q^{86} +7.29956 q^{87} +7.28573 q^{89} -0.879829 q^{90} +9.82773 q^{91} +0.784084 q^{92} -0.685295 q^{93} +0.976824 q^{94} -1.40390 q^{95} -1.90396 q^{96} +13.7014 q^{97} -3.52969 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - q^{2} + 2 q^{3} + 17 q^{4} + 8 q^{5} + 2 q^{6} - 3 q^{8} + 25 q^{9} + 15 q^{10} + 11 q^{12} + 4 q^{13} + 9 q^{14} + 15 q^{15} + 29 q^{16} + 2 q^{17} - 4 q^{18} - 5 q^{19} + 17 q^{20} + 15 q^{21}+ \cdots + 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.240763 −0.170245 −0.0851224 0.996370i \(-0.527128\pi\)
−0.0851224 + 0.996370i \(0.527128\pi\)
\(3\) 0.685295 0.395655 0.197828 0.980237i \(-0.436611\pi\)
0.197828 + 0.980237i \(0.436611\pi\)
\(4\) −1.94203 −0.971017
\(5\) −1.44419 −0.645862 −0.322931 0.946422i \(-0.604668\pi\)
−0.322931 + 0.946422i \(0.604668\pi\)
\(6\) −0.164993 −0.0673582
\(7\) 4.65408 1.75908 0.879539 0.475827i \(-0.157851\pi\)
0.879539 + 0.475827i \(0.157851\pi\)
\(8\) 0.949094 0.335555
\(9\) −2.53037 −0.843457
\(10\) 0.347707 0.109955
\(11\) 0 0
\(12\) −1.33087 −0.384188
\(13\) 2.11164 0.585663 0.292831 0.956164i \(-0.405403\pi\)
0.292831 + 0.956164i \(0.405403\pi\)
\(14\) −1.12053 −0.299474
\(15\) −0.989697 −0.255539
\(16\) 3.65556 0.913890
\(17\) 7.24162 1.75635 0.878175 0.478340i \(-0.158761\pi\)
0.878175 + 0.478340i \(0.158761\pi\)
\(18\) 0.609219 0.143594
\(19\) 0.972100 0.223015 0.111508 0.993764i \(-0.464432\pi\)
0.111508 + 0.993764i \(0.464432\pi\)
\(20\) 2.80467 0.627143
\(21\) 3.18942 0.695988
\(22\) 0 0
\(23\) −0.403744 −0.0841864 −0.0420932 0.999114i \(-0.513403\pi\)
−0.0420932 + 0.999114i \(0.513403\pi\)
\(24\) 0.650409 0.132764
\(25\) −2.91431 −0.582862
\(26\) −0.508403 −0.0997061
\(27\) −3.78993 −0.729373
\(28\) −9.03838 −1.70809
\(29\) 10.6517 1.97797 0.988986 0.148006i \(-0.0472856\pi\)
0.988986 + 0.148006i \(0.0472856\pi\)
\(30\) 0.238282 0.0435041
\(31\) −1.00000 −0.179605
\(32\) −2.77831 −0.491141
\(33\) 0 0
\(34\) −1.74351 −0.299010
\(35\) −6.72139 −1.13612
\(36\) 4.91407 0.819011
\(37\) −4.95782 −0.815060 −0.407530 0.913192i \(-0.633610\pi\)
−0.407530 + 0.913192i \(0.633610\pi\)
\(38\) −0.234045 −0.0379672
\(39\) 1.44709 0.231720
\(40\) −1.37067 −0.216723
\(41\) −9.56967 −1.49453 −0.747265 0.664526i \(-0.768634\pi\)
−0.747265 + 0.664526i \(0.768634\pi\)
\(42\) −0.767893 −0.118488
\(43\) −6.39348 −0.974997 −0.487498 0.873124i \(-0.662091\pi\)
−0.487498 + 0.873124i \(0.662091\pi\)
\(44\) 0 0
\(45\) 3.65434 0.544757
\(46\) 0.0972065 0.0143323
\(47\) −4.05721 −0.591805 −0.295902 0.955218i \(-0.595620\pi\)
−0.295902 + 0.955218i \(0.595620\pi\)
\(48\) 2.50514 0.361585
\(49\) 14.6605 2.09435
\(50\) 0.701657 0.0992293
\(51\) 4.96264 0.694909
\(52\) −4.10087 −0.568688
\(53\) 7.85349 1.07876 0.539380 0.842063i \(-0.318659\pi\)
0.539380 + 0.842063i \(0.318659\pi\)
\(54\) 0.912474 0.124172
\(55\) 0 0
\(56\) 4.41716 0.590268
\(57\) 0.666175 0.0882371
\(58\) −2.56453 −0.336740
\(59\) −5.89619 −0.767619 −0.383809 0.923412i \(-0.625388\pi\)
−0.383809 + 0.923412i \(0.625388\pi\)
\(60\) 1.92202 0.248132
\(61\) 5.92581 0.758722 0.379361 0.925249i \(-0.376144\pi\)
0.379361 + 0.925249i \(0.376144\pi\)
\(62\) 0.240763 0.0305769
\(63\) −11.7766 −1.48371
\(64\) −6.64221 −0.830276
\(65\) −3.04961 −0.378257
\(66\) 0 0
\(67\) −10.2449 −1.25161 −0.625807 0.779978i \(-0.715230\pi\)
−0.625807 + 0.779978i \(0.715230\pi\)
\(68\) −14.0635 −1.70544
\(69\) −0.276684 −0.0333088
\(70\) 1.61826 0.193419
\(71\) 1.06019 0.125821 0.0629105 0.998019i \(-0.479962\pi\)
0.0629105 + 0.998019i \(0.479962\pi\)
\(72\) −2.40156 −0.283027
\(73\) 7.79694 0.912563 0.456281 0.889835i \(-0.349181\pi\)
0.456281 + 0.889835i \(0.349181\pi\)
\(74\) 1.19366 0.138760
\(75\) −1.99716 −0.230612
\(76\) −1.88785 −0.216551
\(77\) 0 0
\(78\) −0.348406 −0.0394492
\(79\) 14.5005 1.63143 0.815717 0.578451i \(-0.196343\pi\)
0.815717 + 0.578451i \(0.196343\pi\)
\(80\) −5.27933 −0.590247
\(81\) 4.99389 0.554877
\(82\) 2.30402 0.254436
\(83\) −4.42688 −0.485914 −0.242957 0.970037i \(-0.578117\pi\)
−0.242957 + 0.970037i \(0.578117\pi\)
\(84\) −6.19396 −0.675816
\(85\) −10.4583 −1.13436
\(86\) 1.53931 0.165988
\(87\) 7.29956 0.782595
\(88\) 0 0
\(89\) 7.28573 0.772285 0.386143 0.922439i \(-0.373807\pi\)
0.386143 + 0.922439i \(0.373807\pi\)
\(90\) −0.879829 −0.0927421
\(91\) 9.82773 1.03023
\(92\) 0.784084 0.0817464
\(93\) −0.685295 −0.0710618
\(94\) 0.976824 0.100752
\(95\) −1.40390 −0.144037
\(96\) −1.90396 −0.194322
\(97\) 13.7014 1.39116 0.695582 0.718447i \(-0.255147\pi\)
0.695582 + 0.718447i \(0.255147\pi\)
\(98\) −3.52969 −0.356553
\(99\) 0 0
\(100\) 5.65969 0.565969
\(101\) 16.2469 1.61662 0.808312 0.588755i \(-0.200382\pi\)
0.808312 + 0.588755i \(0.200382\pi\)
\(102\) −1.19482 −0.118305
\(103\) 13.6050 1.34054 0.670269 0.742118i \(-0.266179\pi\)
0.670269 + 0.742118i \(0.266179\pi\)
\(104\) 2.00414 0.196522
\(105\) −4.60613 −0.449512
\(106\) −1.89083 −0.183653
\(107\) 2.95670 0.285835 0.142917 0.989735i \(-0.454352\pi\)
0.142917 + 0.989735i \(0.454352\pi\)
\(108\) 7.36018 0.708234
\(109\) 19.3947 1.85768 0.928838 0.370486i \(-0.120809\pi\)
0.928838 + 0.370486i \(0.120809\pi\)
\(110\) 0 0
\(111\) −3.39757 −0.322483
\(112\) 17.0133 1.60760
\(113\) 0.755335 0.0710559 0.0355280 0.999369i \(-0.488689\pi\)
0.0355280 + 0.999369i \(0.488689\pi\)
\(114\) −0.160390 −0.0150219
\(115\) 0.583084 0.0543728
\(116\) −20.6860 −1.92064
\(117\) −5.34323 −0.493981
\(118\) 1.41958 0.130683
\(119\) 33.7031 3.08956
\(120\) −0.939316 −0.0857474
\(121\) 0 0
\(122\) −1.42671 −0.129168
\(123\) −6.55804 −0.591319
\(124\) 1.94203 0.174400
\(125\) 11.4298 1.02231
\(126\) 2.83535 0.252593
\(127\) −17.9477 −1.59260 −0.796298 0.604904i \(-0.793211\pi\)
−0.796298 + 0.604904i \(0.793211\pi\)
\(128\) 7.15582 0.632491
\(129\) −4.38142 −0.385763
\(130\) 0.734232 0.0643964
\(131\) 3.43573 0.300181 0.150090 0.988672i \(-0.452044\pi\)
0.150090 + 0.988672i \(0.452044\pi\)
\(132\) 0 0
\(133\) 4.52423 0.392301
\(134\) 2.46659 0.213081
\(135\) 5.47339 0.471075
\(136\) 6.87297 0.589353
\(137\) −9.15594 −0.782245 −0.391122 0.920339i \(-0.627913\pi\)
−0.391122 + 0.920339i \(0.627913\pi\)
\(138\) 0.0666151 0.00567065
\(139\) −6.69021 −0.567457 −0.283728 0.958905i \(-0.591571\pi\)
−0.283728 + 0.958905i \(0.591571\pi\)
\(140\) 13.0532 1.10319
\(141\) −2.78038 −0.234151
\(142\) −0.255253 −0.0214204
\(143\) 0 0
\(144\) −9.24992 −0.770827
\(145\) −15.3831 −1.27750
\(146\) −1.87721 −0.155359
\(147\) 10.0467 0.828642
\(148\) 9.62825 0.791437
\(149\) −3.83569 −0.314232 −0.157116 0.987580i \(-0.550220\pi\)
−0.157116 + 0.987580i \(0.550220\pi\)
\(150\) 0.480842 0.0392606
\(151\) −12.6764 −1.03159 −0.515795 0.856712i \(-0.672503\pi\)
−0.515795 + 0.856712i \(0.672503\pi\)
\(152\) 0.922615 0.0748339
\(153\) −18.3240 −1.48141
\(154\) 0 0
\(155\) 1.44419 0.116000
\(156\) −2.81030 −0.225004
\(157\) −10.6155 −0.847208 −0.423604 0.905848i \(-0.639235\pi\)
−0.423604 + 0.905848i \(0.639235\pi\)
\(158\) −3.49118 −0.277743
\(159\) 5.38196 0.426817
\(160\) 4.01241 0.317209
\(161\) −1.87906 −0.148090
\(162\) −1.20234 −0.0944649
\(163\) −13.5530 −1.06156 −0.530778 0.847511i \(-0.678100\pi\)
−0.530778 + 0.847511i \(0.678100\pi\)
\(164\) 18.5846 1.45121
\(165\) 0 0
\(166\) 1.06583 0.0827243
\(167\) 1.15677 0.0895136 0.0447568 0.998998i \(-0.485749\pi\)
0.0447568 + 0.998998i \(0.485749\pi\)
\(168\) 3.02706 0.233543
\(169\) −8.54099 −0.656999
\(170\) 2.51796 0.193119
\(171\) −2.45977 −0.188104
\(172\) 12.4164 0.946738
\(173\) 10.3009 0.783161 0.391580 0.920144i \(-0.371928\pi\)
0.391580 + 0.920144i \(0.371928\pi\)
\(174\) −1.75746 −0.133233
\(175\) −13.5634 −1.02530
\(176\) 0 0
\(177\) −4.04063 −0.303712
\(178\) −1.75413 −0.131478
\(179\) −8.60113 −0.642879 −0.321439 0.946930i \(-0.604167\pi\)
−0.321439 + 0.946930i \(0.604167\pi\)
\(180\) −7.09685 −0.528968
\(181\) −2.36287 −0.175631 −0.0878155 0.996137i \(-0.527989\pi\)
−0.0878155 + 0.996137i \(0.527989\pi\)
\(182\) −2.36615 −0.175391
\(183\) 4.06092 0.300192
\(184\) −0.383191 −0.0282492
\(185\) 7.16004 0.526417
\(186\) 0.164993 0.0120979
\(187\) 0 0
\(188\) 7.87923 0.574652
\(189\) −17.6387 −1.28302
\(190\) 0.338006 0.0245216
\(191\) 25.9038 1.87434 0.937168 0.348879i \(-0.113438\pi\)
0.937168 + 0.348879i \(0.113438\pi\)
\(192\) −4.55187 −0.328503
\(193\) 5.37296 0.386754 0.193377 0.981125i \(-0.438056\pi\)
0.193377 + 0.981125i \(0.438056\pi\)
\(194\) −3.29878 −0.236838
\(195\) −2.08988 −0.149659
\(196\) −28.4711 −2.03365
\(197\) 13.2374 0.943125 0.471563 0.881833i \(-0.343690\pi\)
0.471563 + 0.881833i \(0.343690\pi\)
\(198\) 0 0
\(199\) 19.9091 1.41132 0.705660 0.708550i \(-0.250651\pi\)
0.705660 + 0.708550i \(0.250651\pi\)
\(200\) −2.76596 −0.195583
\(201\) −7.02078 −0.495208
\(202\) −3.91164 −0.275222
\(203\) 49.5739 3.47941
\(204\) −9.63761 −0.674768
\(205\) 13.8204 0.965261
\(206\) −3.27557 −0.228220
\(207\) 1.02162 0.0710077
\(208\) 7.71922 0.535231
\(209\) 0 0
\(210\) 1.10898 0.0765272
\(211\) −3.10581 −0.213813 −0.106906 0.994269i \(-0.534094\pi\)
−0.106906 + 0.994269i \(0.534094\pi\)
\(212\) −15.2517 −1.04749
\(213\) 0.726540 0.0497817
\(214\) −0.711863 −0.0486619
\(215\) 9.23341 0.629714
\(216\) −3.59700 −0.244745
\(217\) −4.65408 −0.315940
\(218\) −4.66952 −0.316260
\(219\) 5.34320 0.361060
\(220\) 0 0
\(221\) 15.2917 1.02863
\(222\) 0.818007 0.0549010
\(223\) 2.17232 0.145469 0.0727347 0.997351i \(-0.476827\pi\)
0.0727347 + 0.997351i \(0.476827\pi\)
\(224\) −12.9305 −0.863954
\(225\) 7.37429 0.491619
\(226\) −0.181856 −0.0120969
\(227\) 6.13958 0.407498 0.203749 0.979023i \(-0.434687\pi\)
0.203749 + 0.979023i \(0.434687\pi\)
\(228\) −1.29373 −0.0856797
\(229\) −2.15039 −0.142102 −0.0710509 0.997473i \(-0.522635\pi\)
−0.0710509 + 0.997473i \(0.522635\pi\)
\(230\) −0.140385 −0.00925670
\(231\) 0 0
\(232\) 10.1095 0.663720
\(233\) 22.4875 1.47320 0.736601 0.676327i \(-0.236430\pi\)
0.736601 + 0.676327i \(0.236430\pi\)
\(234\) 1.28645 0.0840978
\(235\) 5.85939 0.382224
\(236\) 11.4506 0.745370
\(237\) 9.93712 0.645485
\(238\) −8.11444 −0.525981
\(239\) 28.0463 1.81416 0.907082 0.420954i \(-0.138305\pi\)
0.907082 + 0.420954i \(0.138305\pi\)
\(240\) −3.61790 −0.233534
\(241\) −4.12665 −0.265821 −0.132910 0.991128i \(-0.542432\pi\)
−0.132910 + 0.991128i \(0.542432\pi\)
\(242\) 0 0
\(243\) 14.7921 0.948913
\(244\) −11.5081 −0.736731
\(245\) −21.1725 −1.35266
\(246\) 1.57893 0.100669
\(247\) 2.05272 0.130612
\(248\) −0.949094 −0.0602675
\(249\) −3.03372 −0.192254
\(250\) −2.75186 −0.174043
\(251\) −13.5923 −0.857937 −0.428969 0.903319i \(-0.641123\pi\)
−0.428969 + 0.903319i \(0.641123\pi\)
\(252\) 22.8705 1.44070
\(253\) 0 0
\(254\) 4.32112 0.271131
\(255\) −7.16700 −0.448815
\(256\) 11.5616 0.722598
\(257\) −2.15904 −0.134678 −0.0673388 0.997730i \(-0.521451\pi\)
−0.0673388 + 0.997730i \(0.521451\pi\)
\(258\) 1.05488 0.0656741
\(259\) −23.0741 −1.43375
\(260\) 5.92244 0.367294
\(261\) −26.9528 −1.66834
\(262\) −0.827194 −0.0511042
\(263\) 11.3990 0.702895 0.351447 0.936208i \(-0.385690\pi\)
0.351447 + 0.936208i \(0.385690\pi\)
\(264\) 0 0
\(265\) −11.3419 −0.696730
\(266\) −1.08927 −0.0667872
\(267\) 4.99287 0.305559
\(268\) 19.8959 1.21534
\(269\) −19.3939 −1.18246 −0.591232 0.806501i \(-0.701358\pi\)
−0.591232 + 0.806501i \(0.701358\pi\)
\(270\) −1.31779 −0.0801980
\(271\) 17.6839 1.07422 0.537111 0.843512i \(-0.319516\pi\)
0.537111 + 0.843512i \(0.319516\pi\)
\(272\) 26.4722 1.60511
\(273\) 6.73489 0.407614
\(274\) 2.20441 0.133173
\(275\) 0 0
\(276\) 0.537329 0.0323434
\(277\) −9.20195 −0.552891 −0.276446 0.961030i \(-0.589157\pi\)
−0.276446 + 0.961030i \(0.589157\pi\)
\(278\) 1.61075 0.0966066
\(279\) 2.53037 0.151489
\(280\) −6.37923 −0.381232
\(281\) 13.0580 0.778976 0.389488 0.921032i \(-0.372652\pi\)
0.389488 + 0.921032i \(0.372652\pi\)
\(282\) 0.669412 0.0398629
\(283\) −18.3111 −1.08848 −0.544240 0.838930i \(-0.683182\pi\)
−0.544240 + 0.838930i \(0.683182\pi\)
\(284\) −2.05892 −0.122174
\(285\) −0.962085 −0.0569890
\(286\) 0 0
\(287\) −44.5380 −2.62900
\(288\) 7.03016 0.414256
\(289\) 35.4410 2.08476
\(290\) 3.70368 0.217487
\(291\) 9.38948 0.550421
\(292\) −15.1419 −0.886114
\(293\) 16.5243 0.965359 0.482680 0.875797i \(-0.339664\pi\)
0.482680 + 0.875797i \(0.339664\pi\)
\(294\) −2.41888 −0.141072
\(295\) 8.51523 0.495776
\(296\) −4.70544 −0.273498
\(297\) 0 0
\(298\) 0.923491 0.0534964
\(299\) −0.852561 −0.0493049
\(300\) 3.87855 0.223928
\(301\) −29.7558 −1.71510
\(302\) 3.05200 0.175623
\(303\) 11.1339 0.639625
\(304\) 3.55357 0.203811
\(305\) −8.55800 −0.490030
\(306\) 4.41173 0.252202
\(307\) 19.9820 1.14043 0.570216 0.821495i \(-0.306859\pi\)
0.570216 + 0.821495i \(0.306859\pi\)
\(308\) 0 0
\(309\) 9.32342 0.530391
\(310\) −0.347707 −0.0197484
\(311\) −4.28152 −0.242782 −0.121391 0.992605i \(-0.538736\pi\)
−0.121391 + 0.992605i \(0.538736\pi\)
\(312\) 1.37343 0.0777551
\(313\) −22.8941 −1.29405 −0.647026 0.762468i \(-0.723987\pi\)
−0.647026 + 0.762468i \(0.723987\pi\)
\(314\) 2.55581 0.144233
\(315\) 17.0076 0.958270
\(316\) −28.1605 −1.58415
\(317\) 23.5110 1.32051 0.660255 0.751041i \(-0.270448\pi\)
0.660255 + 0.751041i \(0.270448\pi\)
\(318\) −1.29577 −0.0726634
\(319\) 0 0
\(320\) 9.59262 0.536244
\(321\) 2.02621 0.113092
\(322\) 0.452407 0.0252116
\(323\) 7.03958 0.391692
\(324\) −9.69830 −0.538795
\(325\) −6.15397 −0.341361
\(326\) 3.26306 0.180724
\(327\) 13.2911 0.734999
\(328\) −9.08251 −0.501498
\(329\) −18.8826 −1.04103
\(330\) 0 0
\(331\) 16.7939 0.923074 0.461537 0.887121i \(-0.347298\pi\)
0.461537 + 0.887121i \(0.347298\pi\)
\(332\) 8.59716 0.471830
\(333\) 12.5451 0.687468
\(334\) −0.278507 −0.0152392
\(335\) 14.7956 0.808370
\(336\) 11.6591 0.636057
\(337\) 1.42538 0.0776454 0.0388227 0.999246i \(-0.487639\pi\)
0.0388227 + 0.999246i \(0.487639\pi\)
\(338\) 2.05635 0.111851
\(339\) 0.517627 0.0281136
\(340\) 20.3103 1.10148
\(341\) 0 0
\(342\) 0.592222 0.0320237
\(343\) 35.6525 1.92505
\(344\) −6.06802 −0.327166
\(345\) 0.399584 0.0215129
\(346\) −2.48006 −0.133329
\(347\) −19.2227 −1.03193 −0.515964 0.856610i \(-0.672566\pi\)
−0.515964 + 0.856610i \(0.672566\pi\)
\(348\) −14.1760 −0.759913
\(349\) 10.4815 0.561061 0.280530 0.959845i \(-0.409490\pi\)
0.280530 + 0.959845i \(0.409490\pi\)
\(350\) 3.26557 0.174552
\(351\) −8.00297 −0.427167
\(352\) 0 0
\(353\) 12.8357 0.683178 0.341589 0.939850i \(-0.389035\pi\)
0.341589 + 0.939850i \(0.389035\pi\)
\(354\) 0.972832 0.0517054
\(355\) −1.53111 −0.0812630
\(356\) −14.1491 −0.749902
\(357\) 23.0965 1.22240
\(358\) 2.07083 0.109447
\(359\) 9.98297 0.526881 0.263441 0.964676i \(-0.415143\pi\)
0.263441 + 0.964676i \(0.415143\pi\)
\(360\) 3.46831 0.182796
\(361\) −18.0550 −0.950264
\(362\) 0.568891 0.0299003
\(363\) 0 0
\(364\) −19.0858 −1.00037
\(365\) −11.2603 −0.589390
\(366\) −0.977718 −0.0511062
\(367\) −19.7915 −1.03311 −0.516554 0.856255i \(-0.672785\pi\)
−0.516554 + 0.856255i \(0.672785\pi\)
\(368\) −1.47591 −0.0769372
\(369\) 24.2148 1.26057
\(370\) −1.72387 −0.0896197
\(371\) 36.5508 1.89762
\(372\) 1.33087 0.0690022
\(373\) 18.0408 0.934117 0.467059 0.884226i \(-0.345314\pi\)
0.467059 + 0.884226i \(0.345314\pi\)
\(374\) 0 0
\(375\) 7.83277 0.404482
\(376\) −3.85067 −0.198583
\(377\) 22.4925 1.15843
\(378\) 4.24673 0.218428
\(379\) 23.9558 1.23053 0.615263 0.788322i \(-0.289050\pi\)
0.615263 + 0.788322i \(0.289050\pi\)
\(380\) 2.72642 0.139862
\(381\) −12.2994 −0.630119
\(382\) −6.23667 −0.319096
\(383\) −19.3629 −0.989396 −0.494698 0.869065i \(-0.664721\pi\)
−0.494698 + 0.869065i \(0.664721\pi\)
\(384\) 4.90384 0.250248
\(385\) 0 0
\(386\) −1.29361 −0.0658429
\(387\) 16.1779 0.822368
\(388\) −26.6085 −1.35084
\(389\) −14.2744 −0.723742 −0.361871 0.932228i \(-0.617862\pi\)
−0.361871 + 0.932228i \(0.617862\pi\)
\(390\) 0.503165 0.0254788
\(391\) −2.92376 −0.147861
\(392\) 13.9142 0.702772
\(393\) 2.35449 0.118768
\(394\) −3.18707 −0.160562
\(395\) −20.9415 −1.05368
\(396\) 0 0
\(397\) 13.8662 0.695927 0.347964 0.937508i \(-0.386873\pi\)
0.347964 + 0.937508i \(0.386873\pi\)
\(398\) −4.79337 −0.240270
\(399\) 3.10043 0.155216
\(400\) −10.6534 −0.532672
\(401\) −8.15013 −0.406998 −0.203499 0.979075i \(-0.565231\pi\)
−0.203499 + 0.979075i \(0.565231\pi\)
\(402\) 1.69034 0.0843066
\(403\) −2.11164 −0.105188
\(404\) −31.5520 −1.56977
\(405\) −7.21214 −0.358374
\(406\) −11.9355 −0.592351
\(407\) 0 0
\(408\) 4.71001 0.233180
\(409\) −21.1398 −1.04530 −0.522648 0.852549i \(-0.675056\pi\)
−0.522648 + 0.852549i \(0.675056\pi\)
\(410\) −3.32744 −0.164331
\(411\) −6.27452 −0.309499
\(412\) −26.4213 −1.30168
\(413\) −27.4414 −1.35030
\(414\) −0.245968 −0.0120887
\(415\) 6.39327 0.313833
\(416\) −5.86678 −0.287643
\(417\) −4.58477 −0.224517
\(418\) 0 0
\(419\) −1.23751 −0.0604562 −0.0302281 0.999543i \(-0.509623\pi\)
−0.0302281 + 0.999543i \(0.509623\pi\)
\(420\) 8.94526 0.436484
\(421\) −20.5242 −1.00029 −0.500145 0.865942i \(-0.666720\pi\)
−0.500145 + 0.865942i \(0.666720\pi\)
\(422\) 0.747762 0.0364005
\(423\) 10.2662 0.499162
\(424\) 7.45370 0.361984
\(425\) −21.1043 −1.02371
\(426\) −0.174924 −0.00847508
\(427\) 27.5792 1.33465
\(428\) −5.74201 −0.277551
\(429\) 0 0
\(430\) −2.22306 −0.107206
\(431\) −23.8757 −1.15005 −0.575026 0.818135i \(-0.695008\pi\)
−0.575026 + 0.818135i \(0.695008\pi\)
\(432\) −13.8543 −0.666567
\(433\) −14.6737 −0.705174 −0.352587 0.935779i \(-0.614698\pi\)
−0.352587 + 0.935779i \(0.614698\pi\)
\(434\) 1.12053 0.0537871
\(435\) −10.5420 −0.505449
\(436\) −37.6652 −1.80383
\(437\) −0.392480 −0.0187748
\(438\) −1.28644 −0.0614686
\(439\) −6.71158 −0.320326 −0.160163 0.987091i \(-0.551202\pi\)
−0.160163 + 0.987091i \(0.551202\pi\)
\(440\) 0 0
\(441\) −37.0964 −1.76650
\(442\) −3.68166 −0.175119
\(443\) 5.49444 0.261049 0.130524 0.991445i \(-0.458334\pi\)
0.130524 + 0.991445i \(0.458334\pi\)
\(444\) 6.59819 0.313136
\(445\) −10.5220 −0.498790
\(446\) −0.523014 −0.0247654
\(447\) −2.62858 −0.124328
\(448\) −30.9134 −1.46052
\(449\) 29.6446 1.39901 0.699507 0.714626i \(-0.253403\pi\)
0.699507 + 0.714626i \(0.253403\pi\)
\(450\) −1.77545 −0.0836956
\(451\) 0 0
\(452\) −1.46689 −0.0689965
\(453\) −8.68706 −0.408153
\(454\) −1.47818 −0.0693745
\(455\) −14.1931 −0.665384
\(456\) 0.632263 0.0296084
\(457\) 13.6242 0.637314 0.318657 0.947870i \(-0.396768\pi\)
0.318657 + 0.947870i \(0.396768\pi\)
\(458\) 0.517734 0.0241921
\(459\) −27.4452 −1.28103
\(460\) −1.13237 −0.0527969
\(461\) 4.03538 0.187946 0.0939732 0.995575i \(-0.470043\pi\)
0.0939732 + 0.995575i \(0.470043\pi\)
\(462\) 0 0
\(463\) −25.9409 −1.20558 −0.602789 0.797901i \(-0.705944\pi\)
−0.602789 + 0.797901i \(0.705944\pi\)
\(464\) 38.9380 1.80765
\(465\) 0.989697 0.0458961
\(466\) −5.41414 −0.250805
\(467\) −21.5932 −0.999214 −0.499607 0.866252i \(-0.666522\pi\)
−0.499607 + 0.866252i \(0.666522\pi\)
\(468\) 10.3767 0.479664
\(469\) −47.6806 −2.20169
\(470\) −1.41072 −0.0650717
\(471\) −7.27474 −0.335202
\(472\) −5.59604 −0.257579
\(473\) 0 0
\(474\) −2.39249 −0.109891
\(475\) −2.83300 −0.129987
\(476\) −65.4525 −3.00001
\(477\) −19.8722 −0.909887
\(478\) −6.75250 −0.308852
\(479\) 17.0080 0.777115 0.388557 0.921425i \(-0.372974\pi\)
0.388557 + 0.921425i \(0.372974\pi\)
\(480\) 2.74969 0.125505
\(481\) −10.4691 −0.477350
\(482\) 0.993543 0.0452546
\(483\) −1.28771 −0.0585928
\(484\) 0 0
\(485\) −19.7874 −0.898500
\(486\) −3.56138 −0.161548
\(487\) −27.5546 −1.24862 −0.624309 0.781178i \(-0.714619\pi\)
−0.624309 + 0.781178i \(0.714619\pi\)
\(488\) 5.62415 0.254593
\(489\) −9.28782 −0.420010
\(490\) 5.09756 0.230284
\(491\) 7.98923 0.360549 0.180274 0.983616i \(-0.442301\pi\)
0.180274 + 0.983616i \(0.442301\pi\)
\(492\) 12.7359 0.574180
\(493\) 77.1356 3.47401
\(494\) −0.494219 −0.0222360
\(495\) 0 0
\(496\) −3.65556 −0.164140
\(497\) 4.93419 0.221329
\(498\) 0.730407 0.0327303
\(499\) 14.1884 0.635161 0.317580 0.948231i \(-0.397130\pi\)
0.317580 + 0.948231i \(0.397130\pi\)
\(500\) −22.1970 −0.992681
\(501\) 0.792729 0.0354165
\(502\) 3.27251 0.146059
\(503\) 37.5543 1.67446 0.837232 0.546848i \(-0.184172\pi\)
0.837232 + 0.546848i \(0.184172\pi\)
\(504\) −11.1771 −0.497866
\(505\) −23.4636 −1.04412
\(506\) 0 0
\(507\) −5.85309 −0.259945
\(508\) 34.8549 1.54644
\(509\) 29.4267 1.30431 0.652157 0.758084i \(-0.273864\pi\)
0.652157 + 0.758084i \(0.273864\pi\)
\(510\) 1.72555 0.0764085
\(511\) 36.2876 1.60527
\(512\) −17.0952 −0.755509
\(513\) −3.68420 −0.162661
\(514\) 0.519817 0.0229282
\(515\) −19.6482 −0.865803
\(516\) 8.50886 0.374582
\(517\) 0 0
\(518\) 5.55538 0.244089
\(519\) 7.05913 0.309862
\(520\) −2.89437 −0.126926
\(521\) 43.7591 1.91712 0.958561 0.284888i \(-0.0919563\pi\)
0.958561 + 0.284888i \(0.0919563\pi\)
\(522\) 6.48922 0.284025
\(523\) 39.9712 1.74782 0.873910 0.486088i \(-0.161577\pi\)
0.873910 + 0.486088i \(0.161577\pi\)
\(524\) −6.67229 −0.291481
\(525\) −9.29495 −0.405665
\(526\) −2.74446 −0.119664
\(527\) −7.24162 −0.315450
\(528\) 0 0
\(529\) −22.8370 −0.992913
\(530\) 2.73072 0.118615
\(531\) 14.9195 0.647453
\(532\) −8.78621 −0.380931
\(533\) −20.2077 −0.875291
\(534\) −1.20210 −0.0520198
\(535\) −4.27004 −0.184610
\(536\) −9.72338 −0.419986
\(537\) −5.89431 −0.254358
\(538\) 4.66932 0.201309
\(539\) 0 0
\(540\) −10.6295 −0.457421
\(541\) −21.2029 −0.911586 −0.455793 0.890086i \(-0.650644\pi\)
−0.455793 + 0.890086i \(0.650644\pi\)
\(542\) −4.25762 −0.182881
\(543\) −1.61926 −0.0694893
\(544\) −20.1195 −0.862615
\(545\) −28.0097 −1.19980
\(546\) −1.62151 −0.0693942
\(547\) −17.0400 −0.728578 −0.364289 0.931286i \(-0.618688\pi\)
−0.364289 + 0.931286i \(0.618688\pi\)
\(548\) 17.7811 0.759573
\(549\) −14.9945 −0.639949
\(550\) 0 0
\(551\) 10.3545 0.441118
\(552\) −0.262599 −0.0111769
\(553\) 67.4865 2.86982
\(554\) 2.21548 0.0941269
\(555\) 4.90674 0.208279
\(556\) 12.9926 0.551010
\(557\) −6.01265 −0.254764 −0.127382 0.991854i \(-0.540657\pi\)
−0.127382 + 0.991854i \(0.540657\pi\)
\(558\) −0.609219 −0.0257903
\(559\) −13.5007 −0.571019
\(560\) −24.5704 −1.03829
\(561\) 0 0
\(562\) −3.14388 −0.132617
\(563\) −9.17313 −0.386601 −0.193301 0.981140i \(-0.561919\pi\)
−0.193301 + 0.981140i \(0.561919\pi\)
\(564\) 5.39960 0.227364
\(565\) −1.09085 −0.0458923
\(566\) 4.40862 0.185308
\(567\) 23.2420 0.976071
\(568\) 1.00622 0.0422199
\(569\) −8.31495 −0.348581 −0.174290 0.984694i \(-0.555763\pi\)
−0.174290 + 0.984694i \(0.555763\pi\)
\(570\) 0.231634 0.00970208
\(571\) −46.7306 −1.95561 −0.977807 0.209506i \(-0.932814\pi\)
−0.977807 + 0.209506i \(0.932814\pi\)
\(572\) 0 0
\(573\) 17.7518 0.741590
\(574\) 10.7231 0.447573
\(575\) 1.17664 0.0490691
\(576\) 16.8072 0.700302
\(577\) −25.0764 −1.04394 −0.521971 0.852963i \(-0.674803\pi\)
−0.521971 + 0.852963i \(0.674803\pi\)
\(578\) −8.53287 −0.354920
\(579\) 3.68206 0.153021
\(580\) 29.8745 1.24047
\(581\) −20.6031 −0.854760
\(582\) −2.26063 −0.0937063
\(583\) 0 0
\(584\) 7.40003 0.306215
\(585\) 7.71664 0.319044
\(586\) −3.97843 −0.164347
\(587\) 10.7760 0.444774 0.222387 0.974958i \(-0.428615\pi\)
0.222387 + 0.974958i \(0.428615\pi\)
\(588\) −19.5111 −0.804625
\(589\) −0.972100 −0.0400547
\(590\) −2.05015 −0.0844033
\(591\) 9.07152 0.373152
\(592\) −18.1236 −0.744875
\(593\) −20.8971 −0.858141 −0.429071 0.903271i \(-0.641159\pi\)
−0.429071 + 0.903271i \(0.641159\pi\)
\(594\) 0 0
\(595\) −48.6737 −1.99543
\(596\) 7.44904 0.305125
\(597\) 13.6436 0.558396
\(598\) 0.205265 0.00839390
\(599\) −27.0298 −1.10441 −0.552204 0.833709i \(-0.686213\pi\)
−0.552204 + 0.833709i \(0.686213\pi\)
\(600\) −1.89549 −0.0773832
\(601\) −12.5663 −0.512592 −0.256296 0.966598i \(-0.582502\pi\)
−0.256296 + 0.966598i \(0.582502\pi\)
\(602\) 7.16408 0.291986
\(603\) 25.9234 1.05568
\(604\) 24.6180 1.00169
\(605\) 0 0
\(606\) −2.68062 −0.108893
\(607\) −10.3041 −0.418231 −0.209116 0.977891i \(-0.567058\pi\)
−0.209116 + 0.977891i \(0.567058\pi\)
\(608\) −2.70080 −0.109532
\(609\) 33.9728 1.37665
\(610\) 2.06045 0.0834250
\(611\) −8.56735 −0.346598
\(612\) 35.5858 1.43847
\(613\) 46.1388 1.86353 0.931764 0.363063i \(-0.118269\pi\)
0.931764 + 0.363063i \(0.118269\pi\)
\(614\) −4.81092 −0.194153
\(615\) 9.47107 0.381910
\(616\) 0 0
\(617\) 1.40359 0.0565065 0.0282533 0.999601i \(-0.491006\pi\)
0.0282533 + 0.999601i \(0.491006\pi\)
\(618\) −2.24473 −0.0902963
\(619\) −41.1842 −1.65533 −0.827667 0.561219i \(-0.810332\pi\)
−0.827667 + 0.561219i \(0.810332\pi\)
\(620\) −2.80467 −0.112638
\(621\) 1.53016 0.0614033
\(622\) 1.03083 0.0413325
\(623\) 33.9084 1.35851
\(624\) 5.28994 0.211767
\(625\) −1.93524 −0.0774096
\(626\) 5.51204 0.220306
\(627\) 0 0
\(628\) 20.6156 0.822653
\(629\) −35.9026 −1.43153
\(630\) −4.09479 −0.163140
\(631\) −18.6894 −0.744012 −0.372006 0.928230i \(-0.621330\pi\)
−0.372006 + 0.928230i \(0.621330\pi\)
\(632\) 13.7623 0.547437
\(633\) −2.12839 −0.0845960
\(634\) −5.66058 −0.224810
\(635\) 25.9198 1.02860
\(636\) −10.4519 −0.414446
\(637\) 30.9576 1.22659
\(638\) 0 0
\(639\) −2.68266 −0.106125
\(640\) −10.3344 −0.408502
\(641\) −28.9420 −1.14314 −0.571570 0.820553i \(-0.693666\pi\)
−0.571570 + 0.820553i \(0.693666\pi\)
\(642\) −0.487836 −0.0192533
\(643\) −10.0620 −0.396805 −0.198402 0.980121i \(-0.563575\pi\)
−0.198402 + 0.980121i \(0.563575\pi\)
\(644\) 3.64919 0.143798
\(645\) 6.32761 0.249149
\(646\) −1.69487 −0.0666836
\(647\) 20.8412 0.819352 0.409676 0.912231i \(-0.365642\pi\)
0.409676 + 0.912231i \(0.365642\pi\)
\(648\) 4.73967 0.186192
\(649\) 0 0
\(650\) 1.48164 0.0581149
\(651\) −3.18942 −0.125003
\(652\) 26.3204 1.03079
\(653\) −45.8533 −1.79438 −0.897189 0.441648i \(-0.854394\pi\)
−0.897189 + 0.441648i \(0.854394\pi\)
\(654\) −3.20000 −0.125130
\(655\) −4.96185 −0.193875
\(656\) −34.9825 −1.36584
\(657\) −19.7292 −0.769708
\(658\) 4.54622 0.177230
\(659\) 0.339852 0.0132388 0.00661938 0.999978i \(-0.497893\pi\)
0.00661938 + 0.999978i \(0.497893\pi\)
\(660\) 0 0
\(661\) 18.7612 0.729724 0.364862 0.931062i \(-0.381116\pi\)
0.364862 + 0.931062i \(0.381116\pi\)
\(662\) −4.04333 −0.157149
\(663\) 10.4793 0.406982
\(664\) −4.20153 −0.163051
\(665\) −6.53386 −0.253372
\(666\) −3.02040 −0.117038
\(667\) −4.30056 −0.166519
\(668\) −2.24649 −0.0869192
\(669\) 1.48868 0.0575557
\(670\) −3.56223 −0.137621
\(671\) 0 0
\(672\) −8.86119 −0.341828
\(673\) −8.42653 −0.324819 −0.162409 0.986723i \(-0.551927\pi\)
−0.162409 + 0.986723i \(0.551927\pi\)
\(674\) −0.343178 −0.0132187
\(675\) 11.0450 0.425124
\(676\) 16.5869 0.637957
\(677\) −4.87889 −0.187511 −0.0937555 0.995595i \(-0.529887\pi\)
−0.0937555 + 0.995595i \(0.529887\pi\)
\(678\) −0.124625 −0.00478620
\(679\) 63.7673 2.44716
\(680\) −9.92589 −0.380641
\(681\) 4.20742 0.161229
\(682\) 0 0
\(683\) −4.05668 −0.155225 −0.0776123 0.996984i \(-0.524730\pi\)
−0.0776123 + 0.996984i \(0.524730\pi\)
\(684\) 4.77696 0.182652
\(685\) 13.2229 0.505222
\(686\) −8.58379 −0.327730
\(687\) −1.47365 −0.0562233
\(688\) −23.3718 −0.891040
\(689\) 16.5837 0.631789
\(690\) −0.0962049 −0.00366246
\(691\) −45.4744 −1.72993 −0.864963 0.501836i \(-0.832658\pi\)
−0.864963 + 0.501836i \(0.832658\pi\)
\(692\) −20.0046 −0.760462
\(693\) 0 0
\(694\) 4.62811 0.175681
\(695\) 9.66195 0.366499
\(696\) 6.92797 0.262604
\(697\) −69.2998 −2.62492
\(698\) −2.52355 −0.0955177
\(699\) 15.4105 0.582880
\(700\) 26.3407 0.995583
\(701\) −25.8852 −0.977672 −0.488836 0.872376i \(-0.662578\pi\)
−0.488836 + 0.872376i \(0.662578\pi\)
\(702\) 1.92681 0.0727229
\(703\) −4.81950 −0.181771
\(704\) 0 0
\(705\) 4.01541 0.151229
\(706\) −3.09037 −0.116307
\(707\) 75.6142 2.84377
\(708\) 7.84704 0.294910
\(709\) 19.4320 0.729786 0.364893 0.931050i \(-0.381106\pi\)
0.364893 + 0.931050i \(0.381106\pi\)
\(710\) 0.368635 0.0138346
\(711\) −36.6917 −1.37604
\(712\) 6.91484 0.259145
\(713\) 0.403744 0.0151203
\(714\) −5.56078 −0.208107
\(715\) 0 0
\(716\) 16.7037 0.624246
\(717\) 19.2200 0.717783
\(718\) −2.40353 −0.0896988
\(719\) 41.4188 1.54466 0.772330 0.635221i \(-0.219091\pi\)
0.772330 + 0.635221i \(0.219091\pi\)
\(720\) 13.3587 0.497848
\(721\) 63.3187 2.35811
\(722\) 4.34697 0.161778
\(723\) −2.82797 −0.105173
\(724\) 4.58878 0.170541
\(725\) −31.0424 −1.15289
\(726\) 0 0
\(727\) −10.1085 −0.374902 −0.187451 0.982274i \(-0.560023\pi\)
−0.187451 + 0.982274i \(0.560023\pi\)
\(728\) 9.32744 0.345698
\(729\) −4.84473 −0.179434
\(730\) 2.71105 0.100341
\(731\) −46.2991 −1.71244
\(732\) −7.88645 −0.291492
\(733\) 26.9428 0.995156 0.497578 0.867419i \(-0.334223\pi\)
0.497578 + 0.867419i \(0.334223\pi\)
\(734\) 4.76505 0.175881
\(735\) −14.5094 −0.535188
\(736\) 1.12173 0.0413474
\(737\) 0 0
\(738\) −5.83002 −0.214606
\(739\) 4.50951 0.165885 0.0829425 0.996554i \(-0.473568\pi\)
0.0829425 + 0.996554i \(0.473568\pi\)
\(740\) −13.9050 −0.511159
\(741\) 1.40672 0.0516772
\(742\) −8.80006 −0.323060
\(743\) 11.3739 0.417269 0.208635 0.977994i \(-0.433098\pi\)
0.208635 + 0.977994i \(0.433098\pi\)
\(744\) −0.650409 −0.0238452
\(745\) 5.53947 0.202951
\(746\) −4.34355 −0.159029
\(747\) 11.2017 0.409847
\(748\) 0 0
\(749\) 13.7607 0.502806
\(750\) −1.88584 −0.0688611
\(751\) −45.8888 −1.67451 −0.837253 0.546816i \(-0.815840\pi\)
−0.837253 + 0.546816i \(0.815840\pi\)
\(752\) −14.8314 −0.540844
\(753\) −9.31472 −0.339447
\(754\) −5.41536 −0.197216
\(755\) 18.3071 0.666264
\(756\) 34.2549 1.24584
\(757\) 3.19914 0.116275 0.0581374 0.998309i \(-0.481484\pi\)
0.0581374 + 0.998309i \(0.481484\pi\)
\(758\) −5.76766 −0.209491
\(759\) 0 0
\(760\) −1.33243 −0.0483324
\(761\) −12.9849 −0.470702 −0.235351 0.971910i \(-0.575624\pi\)
−0.235351 + 0.971910i \(0.575624\pi\)
\(762\) 2.96124 0.107275
\(763\) 90.2646 3.26780
\(764\) −50.3061 −1.82001
\(765\) 26.4633 0.956784
\(766\) 4.66185 0.168440
\(767\) −12.4506 −0.449566
\(768\) 7.92308 0.285899
\(769\) −27.5944 −0.995080 −0.497540 0.867441i \(-0.665763\pi\)
−0.497540 + 0.867441i \(0.665763\pi\)
\(770\) 0 0
\(771\) −1.47958 −0.0532858
\(772\) −10.4345 −0.375544
\(773\) 25.8231 0.928793 0.464396 0.885627i \(-0.346271\pi\)
0.464396 + 0.885627i \(0.346271\pi\)
\(774\) −3.89503 −0.140004
\(775\) 2.91431 0.104685
\(776\) 13.0039 0.466812
\(777\) −15.8126 −0.567272
\(778\) 3.43675 0.123213
\(779\) −9.30268 −0.333303
\(780\) 4.05862 0.145322
\(781\) 0 0
\(782\) 0.703932 0.0251725
\(783\) −40.3693 −1.44268
\(784\) 53.5923 1.91401
\(785\) 15.3308 0.547179
\(786\) −0.566872 −0.0202197
\(787\) 4.32407 0.154136 0.0770682 0.997026i \(-0.475444\pi\)
0.0770682 + 0.997026i \(0.475444\pi\)
\(788\) −25.7075 −0.915790
\(789\) 7.81170 0.278104
\(790\) 5.04193 0.179384
\(791\) 3.51539 0.124993
\(792\) 0 0
\(793\) 12.5132 0.444355
\(794\) −3.33847 −0.118478
\(795\) −7.77257 −0.275665
\(796\) −38.6642 −1.37042
\(797\) −35.5665 −1.25983 −0.629915 0.776664i \(-0.716910\pi\)
−0.629915 + 0.776664i \(0.716910\pi\)
\(798\) −0.746469 −0.0264247
\(799\) −29.3807 −1.03942
\(800\) 8.09686 0.286267
\(801\) −18.4356 −0.651390
\(802\) 1.96225 0.0692893
\(803\) 0 0
\(804\) 13.6346 0.480855
\(805\) 2.71372 0.0956460
\(806\) 0.508403 0.0179077
\(807\) −13.2905 −0.467848
\(808\) 15.4198 0.542467
\(809\) −36.4165 −1.28034 −0.640168 0.768235i \(-0.721135\pi\)
−0.640168 + 0.768235i \(0.721135\pi\)
\(810\) 1.73641 0.0610113
\(811\) −9.13391 −0.320735 −0.160368 0.987057i \(-0.551268\pi\)
−0.160368 + 0.987057i \(0.551268\pi\)
\(812\) −96.2742 −3.37856
\(813\) 12.1187 0.425021
\(814\) 0 0
\(815\) 19.5732 0.685619
\(816\) 18.1412 0.635070
\(817\) −6.21511 −0.217439
\(818\) 5.08967 0.177956
\(819\) −24.8678 −0.868952
\(820\) −26.8397 −0.937284
\(821\) −40.4505 −1.41173 −0.705866 0.708345i \(-0.749442\pi\)
−0.705866 + 0.708345i \(0.749442\pi\)
\(822\) 1.51067 0.0526906
\(823\) 39.6318 1.38148 0.690739 0.723104i \(-0.257285\pi\)
0.690739 + 0.723104i \(0.257285\pi\)
\(824\) 12.9124 0.449825
\(825\) 0 0
\(826\) 6.60685 0.229882
\(827\) 36.7460 1.27778 0.638892 0.769296i \(-0.279393\pi\)
0.638892 + 0.769296i \(0.279393\pi\)
\(828\) −1.98402 −0.0689496
\(829\) 8.77892 0.304905 0.152452 0.988311i \(-0.451283\pi\)
0.152452 + 0.988311i \(0.451283\pi\)
\(830\) −1.53926 −0.0534285
\(831\) −6.30605 −0.218754
\(832\) −14.0259 −0.486262
\(833\) 106.166 3.67842
\(834\) 1.10384 0.0382229
\(835\) −1.67060 −0.0578134
\(836\) 0 0
\(837\) 3.78993 0.130999
\(838\) 0.297946 0.0102924
\(839\) 43.8498 1.51386 0.756931 0.653494i \(-0.226698\pi\)
0.756931 + 0.653494i \(0.226698\pi\)
\(840\) −4.37165 −0.150836
\(841\) 84.4589 2.91238
\(842\) 4.94147 0.170294
\(843\) 8.94859 0.308206
\(844\) 6.03158 0.207616
\(845\) 12.3348 0.424331
\(846\) −2.47173 −0.0849797
\(847\) 0 0
\(848\) 28.7089 0.985868
\(849\) −12.5485 −0.430663
\(850\) 5.08113 0.174281
\(851\) 2.00169 0.0686170
\(852\) −1.41097 −0.0483389
\(853\) 41.6678 1.42668 0.713339 0.700819i \(-0.247182\pi\)
0.713339 + 0.700819i \(0.247182\pi\)
\(854\) −6.64004 −0.227217
\(855\) 3.55239 0.121489
\(856\) 2.80619 0.0959135
\(857\) −40.4470 −1.38164 −0.690822 0.723025i \(-0.742751\pi\)
−0.690822 + 0.723025i \(0.742751\pi\)
\(858\) 0 0
\(859\) −25.5186 −0.870685 −0.435342 0.900265i \(-0.643373\pi\)
−0.435342 + 0.900265i \(0.643373\pi\)
\(860\) −17.9316 −0.611462
\(861\) −30.5217 −1.04018
\(862\) 5.74837 0.195790
\(863\) −24.3107 −0.827546 −0.413773 0.910380i \(-0.635789\pi\)
−0.413773 + 0.910380i \(0.635789\pi\)
\(864\) 10.5296 0.358225
\(865\) −14.8764 −0.505814
\(866\) 3.53288 0.120052
\(867\) 24.2875 0.824848
\(868\) 9.03838 0.306783
\(869\) 0 0
\(870\) 2.53811 0.0860500
\(871\) −21.6335 −0.733024
\(872\) 18.4074 0.623353
\(873\) −34.6695 −1.17339
\(874\) 0.0944944 0.00319632
\(875\) 53.1951 1.79832
\(876\) −10.3767 −0.350595
\(877\) −44.6657 −1.50825 −0.754127 0.656729i \(-0.771940\pi\)
−0.754127 + 0.656729i \(0.771940\pi\)
\(878\) 1.61590 0.0545339
\(879\) 11.3240 0.381949
\(880\) 0 0
\(881\) −13.6417 −0.459601 −0.229800 0.973238i \(-0.573807\pi\)
−0.229800 + 0.973238i \(0.573807\pi\)
\(882\) 8.93144 0.300737
\(883\) −6.77650 −0.228047 −0.114024 0.993478i \(-0.536374\pi\)
−0.114024 + 0.993478i \(0.536374\pi\)
\(884\) −29.6969 −0.998816
\(885\) 5.83544 0.196156
\(886\) −1.32285 −0.0444422
\(887\) 29.4593 0.989146 0.494573 0.869136i \(-0.335324\pi\)
0.494573 + 0.869136i \(0.335324\pi\)
\(888\) −3.22461 −0.108211
\(889\) −83.5298 −2.80150
\(890\) 2.53330 0.0849164
\(891\) 0 0
\(892\) −4.21872 −0.141253
\(893\) −3.94401 −0.131981
\(894\) 0.632864 0.0211661
\(895\) 12.4217 0.415211
\(896\) 33.3038 1.11260
\(897\) −0.584256 −0.0195077
\(898\) −7.13730 −0.238175
\(899\) −10.6517 −0.355254
\(900\) −14.3211 −0.477370
\(901\) 56.8719 1.89468
\(902\) 0 0
\(903\) −20.3915 −0.678586
\(904\) 0.716884 0.0238432
\(905\) 3.41244 0.113433
\(906\) 2.09152 0.0694860
\(907\) −20.8554 −0.692491 −0.346246 0.938144i \(-0.612544\pi\)
−0.346246 + 0.938144i \(0.612544\pi\)
\(908\) −11.9233 −0.395688
\(909\) −41.1106 −1.36355
\(910\) 3.41717 0.113278
\(911\) 40.6343 1.34628 0.673138 0.739517i \(-0.264946\pi\)
0.673138 + 0.739517i \(0.264946\pi\)
\(912\) 2.43524 0.0806390
\(913\) 0 0
\(914\) −3.28020 −0.108500
\(915\) −5.86475 −0.193883
\(916\) 4.17613 0.137983
\(917\) 15.9902 0.528041
\(918\) 6.60779 0.218090
\(919\) 41.4755 1.36815 0.684076 0.729411i \(-0.260206\pi\)
0.684076 + 0.729411i \(0.260206\pi\)
\(920\) 0.553401 0.0182451
\(921\) 13.6936 0.451218
\(922\) −0.971569 −0.0319969
\(923\) 2.23873 0.0736887
\(924\) 0 0
\(925\) 14.4486 0.475068
\(926\) 6.24561 0.205243
\(927\) −34.4256 −1.13069
\(928\) −29.5938 −0.971463
\(929\) 25.4975 0.836546 0.418273 0.908321i \(-0.362636\pi\)
0.418273 + 0.908321i \(0.362636\pi\)
\(930\) −0.238282 −0.00781357
\(931\) 14.2515 0.467073
\(932\) −43.6714 −1.43050
\(933\) −2.93410 −0.0960581
\(934\) 5.19883 0.170111
\(935\) 0 0
\(936\) −5.07122 −0.165758
\(937\) 19.3420 0.631875 0.315938 0.948780i \(-0.397681\pi\)
0.315938 + 0.948780i \(0.397681\pi\)
\(938\) 11.4797 0.374826
\(939\) −15.6892 −0.511998
\(940\) −11.3791 −0.371146
\(941\) 43.9326 1.43216 0.716080 0.698018i \(-0.245934\pi\)
0.716080 + 0.698018i \(0.245934\pi\)
\(942\) 1.75148 0.0570664
\(943\) 3.86370 0.125819
\(944\) −21.5539 −0.701519
\(945\) 25.4736 0.828657
\(946\) 0 0
\(947\) 43.1838 1.40328 0.701642 0.712530i \(-0.252451\pi\)
0.701642 + 0.712530i \(0.252451\pi\)
\(948\) −19.2982 −0.626777
\(949\) 16.4643 0.534454
\(950\) 0.682081 0.0221296
\(951\) 16.1120 0.522467
\(952\) 31.9874 1.03672
\(953\) −20.0889 −0.650745 −0.325372 0.945586i \(-0.605490\pi\)
−0.325372 + 0.945586i \(0.605490\pi\)
\(954\) 4.78449 0.154904
\(955\) −37.4101 −1.21056
\(956\) −54.4668 −1.76158
\(957\) 0 0
\(958\) −4.09489 −0.132300
\(959\) −42.6125 −1.37603
\(960\) 6.57377 0.212168
\(961\) 1.00000 0.0322581
\(962\) 2.52057 0.0812665
\(963\) −7.48155 −0.241090
\(964\) 8.01409 0.258117
\(965\) −7.75958 −0.249790
\(966\) 0.310032 0.00997512
\(967\) −20.2574 −0.651435 −0.325717 0.945467i \(-0.605606\pi\)
−0.325717 + 0.945467i \(0.605606\pi\)
\(968\) 0 0
\(969\) 4.82418 0.154975
\(970\) 4.76407 0.152965
\(971\) 31.1313 0.999050 0.499525 0.866300i \(-0.333508\pi\)
0.499525 + 0.866300i \(0.333508\pi\)
\(972\) −28.7267 −0.921410
\(973\) −31.1368 −0.998200
\(974\) 6.63411 0.212571
\(975\) −4.21728 −0.135061
\(976\) 21.6621 0.693388
\(977\) −16.3443 −0.522901 −0.261450 0.965217i \(-0.584201\pi\)
−0.261450 + 0.965217i \(0.584201\pi\)
\(978\) 2.23616 0.0715045
\(979\) 0 0
\(980\) 41.1178 1.31346
\(981\) −49.0758 −1.56687
\(982\) −1.92351 −0.0613816
\(983\) 46.7619 1.49147 0.745737 0.666241i \(-0.232098\pi\)
0.745737 + 0.666241i \(0.232098\pi\)
\(984\) −6.22420 −0.198420
\(985\) −19.1173 −0.609129
\(986\) −18.5714 −0.591433
\(987\) −12.9401 −0.411889
\(988\) −3.98646 −0.126826
\(989\) 2.58133 0.0820815
\(990\) 0 0
\(991\) 13.4055 0.425841 0.212921 0.977069i \(-0.431702\pi\)
0.212921 + 0.977069i \(0.431702\pi\)
\(992\) 2.77831 0.0882114
\(993\) 11.5087 0.365219
\(994\) −1.18797 −0.0376801
\(995\) −28.7526 −0.911518
\(996\) 5.89159 0.186682
\(997\) −22.3605 −0.708165 −0.354082 0.935214i \(-0.615207\pi\)
−0.354082 + 0.935214i \(0.615207\pi\)
\(998\) −3.41604 −0.108133
\(999\) 18.7898 0.594483
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.2.a.l.1.7 15
11.10 odd 2 3751.2.a.m.1.9 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3751.2.a.l.1.7 15 1.1 even 1 trivial
3751.2.a.m.1.9 yes 15 11.10 odd 2