Properties

Label 3751.2.a.l.1.5
Level $3751$
Weight $2$
Character 3751.1
Self dual yes
Analytic conductor $29.952$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,2,Mod(1,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3751.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-1,2,17,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9518857982\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 23 x^{13} + 21 x^{12} + 204 x^{11} - 160 x^{10} - 880 x^{9} + 535 x^{8} + 1918 x^{7} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 23 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.15277\) of defining polynomial
Character \(\chi\) \(=\) 3751.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.15277 q^{2} +0.107389 q^{3} -0.671122 q^{4} +3.27597 q^{5} -0.123795 q^{6} +2.63305 q^{7} +3.07919 q^{8} -2.98847 q^{9} -3.77644 q^{10} -0.0720712 q^{12} +0.342173 q^{13} -3.03530 q^{14} +0.351804 q^{15} -2.20735 q^{16} -6.90058 q^{17} +3.44501 q^{18} -1.85785 q^{19} -2.19858 q^{20} +0.282760 q^{21} +1.56779 q^{23} +0.330671 q^{24} +5.73201 q^{25} -0.394447 q^{26} -0.643096 q^{27} -1.76710 q^{28} -0.183838 q^{29} -0.405549 q^{30} -1.00000 q^{31} -3.61381 q^{32} +7.95478 q^{34} +8.62579 q^{35} +2.00563 q^{36} +7.43409 q^{37} +2.14168 q^{38} +0.0367457 q^{39} +10.0873 q^{40} +4.54923 q^{41} -0.325958 q^{42} -1.46404 q^{43} -9.79014 q^{45} -1.80730 q^{46} +5.77796 q^{47} -0.237045 q^{48} -0.0670632 q^{49} -6.60768 q^{50} -0.741046 q^{51} -0.229640 q^{52} +7.49877 q^{53} +0.741341 q^{54} +8.10765 q^{56} -0.199513 q^{57} +0.211923 q^{58} +13.2244 q^{59} -0.236103 q^{60} +2.86416 q^{61} +1.15277 q^{62} -7.86878 q^{63} +8.58059 q^{64} +1.12095 q^{65} +3.84775 q^{67} +4.63113 q^{68} +0.168364 q^{69} -9.94355 q^{70} +4.34068 q^{71} -9.20206 q^{72} +12.3659 q^{73} -8.56980 q^{74} +0.615555 q^{75} +1.24685 q^{76} -0.0423593 q^{78} -13.5159 q^{79} -7.23122 q^{80} +8.89634 q^{81} -5.24421 q^{82} +9.82792 q^{83} -0.189767 q^{84} -22.6061 q^{85} +1.68771 q^{86} -0.0197422 q^{87} +9.23024 q^{89} +11.2858 q^{90} +0.900959 q^{91} -1.05218 q^{92} -0.107389 q^{93} -6.66066 q^{94} -6.08628 q^{95} -0.388084 q^{96} +5.92141 q^{97} +0.0773084 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - q^{2} + 2 q^{3} + 17 q^{4} + 8 q^{5} + 2 q^{6} - 3 q^{8} + 25 q^{9} + 15 q^{10} + 11 q^{12} + 4 q^{13} + 9 q^{14} + 15 q^{15} + 29 q^{16} + 2 q^{17} - 4 q^{18} - 5 q^{19} + 17 q^{20} + 15 q^{21}+ \cdots + 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15277 −0.815131 −0.407566 0.913176i \(-0.633622\pi\)
−0.407566 + 0.913176i \(0.633622\pi\)
\(3\) 0.107389 0.0620011 0.0310005 0.999519i \(-0.490131\pi\)
0.0310005 + 0.999519i \(0.490131\pi\)
\(4\) −0.671122 −0.335561
\(5\) 3.27597 1.46506 0.732530 0.680735i \(-0.238339\pi\)
0.732530 + 0.680735i \(0.238339\pi\)
\(6\) −0.123795 −0.0505390
\(7\) 2.63305 0.995198 0.497599 0.867407i \(-0.334215\pi\)
0.497599 + 0.867407i \(0.334215\pi\)
\(8\) 3.07919 1.08866
\(9\) −2.98847 −0.996156
\(10\) −3.77644 −1.19422
\(11\) 0 0
\(12\) −0.0720712 −0.0208052
\(13\) 0.342173 0.0949019 0.0474509 0.998874i \(-0.484890\pi\)
0.0474509 + 0.998874i \(0.484890\pi\)
\(14\) −3.03530 −0.811217
\(15\) 0.351804 0.0908353
\(16\) −2.20735 −0.551838
\(17\) −6.90058 −1.67364 −0.836818 0.547481i \(-0.815587\pi\)
−0.836818 + 0.547481i \(0.815587\pi\)
\(18\) 3.44501 0.811998
\(19\) −1.85785 −0.426221 −0.213110 0.977028i \(-0.568359\pi\)
−0.213110 + 0.977028i \(0.568359\pi\)
\(20\) −2.19858 −0.491617
\(21\) 0.282760 0.0617034
\(22\) 0 0
\(23\) 1.56779 0.326908 0.163454 0.986551i \(-0.447737\pi\)
0.163454 + 0.986551i \(0.447737\pi\)
\(24\) 0.330671 0.0674980
\(25\) 5.73201 1.14640
\(26\) −0.394447 −0.0773575
\(27\) −0.643096 −0.123764
\(28\) −1.76710 −0.333950
\(29\) −0.183838 −0.0341379 −0.0170690 0.999854i \(-0.505433\pi\)
−0.0170690 + 0.999854i \(0.505433\pi\)
\(30\) −0.405549 −0.0740427
\(31\) −1.00000 −0.179605
\(32\) −3.61381 −0.638837
\(33\) 0 0
\(34\) 7.95478 1.36423
\(35\) 8.62579 1.45803
\(36\) 2.00563 0.334271
\(37\) 7.43409 1.22216 0.611079 0.791570i \(-0.290736\pi\)
0.611079 + 0.791570i \(0.290736\pi\)
\(38\) 2.14168 0.347426
\(39\) 0.0367457 0.00588402
\(40\) 10.0873 1.59495
\(41\) 4.54923 0.710470 0.355235 0.934777i \(-0.384401\pi\)
0.355235 + 0.934777i \(0.384401\pi\)
\(42\) −0.325958 −0.0502964
\(43\) −1.46404 −0.223265 −0.111632 0.993750i \(-0.535608\pi\)
−0.111632 + 0.993750i \(0.535608\pi\)
\(44\) 0 0
\(45\) −9.79014 −1.45943
\(46\) −1.80730 −0.266473
\(47\) 5.77796 0.842802 0.421401 0.906874i \(-0.361538\pi\)
0.421401 + 0.906874i \(0.361538\pi\)
\(48\) −0.237045 −0.0342145
\(49\) −0.0670632 −0.00958045
\(50\) −6.60768 −0.934467
\(51\) −0.741046 −0.103767
\(52\) −0.229640 −0.0318454
\(53\) 7.49877 1.03003 0.515017 0.857180i \(-0.327785\pi\)
0.515017 + 0.857180i \(0.327785\pi\)
\(54\) 0.741341 0.100884
\(55\) 0 0
\(56\) 8.10765 1.08343
\(57\) −0.199513 −0.0264262
\(58\) 0.211923 0.0278269
\(59\) 13.2244 1.72167 0.860837 0.508881i \(-0.169941\pi\)
0.860837 + 0.508881i \(0.169941\pi\)
\(60\) −0.236103 −0.0304808
\(61\) 2.86416 0.366718 0.183359 0.983046i \(-0.441303\pi\)
0.183359 + 0.983046i \(0.441303\pi\)
\(62\) 1.15277 0.146402
\(63\) −7.86878 −0.991373
\(64\) 8.58059 1.07257
\(65\) 1.12095 0.139037
\(66\) 0 0
\(67\) 3.84775 0.470077 0.235039 0.971986i \(-0.424478\pi\)
0.235039 + 0.971986i \(0.424478\pi\)
\(68\) 4.63113 0.561607
\(69\) 0.168364 0.0202686
\(70\) −9.94355 −1.18848
\(71\) 4.34068 0.515144 0.257572 0.966259i \(-0.417077\pi\)
0.257572 + 0.966259i \(0.417077\pi\)
\(72\) −9.20206 −1.08447
\(73\) 12.3659 1.44731 0.723657 0.690160i \(-0.242460\pi\)
0.723657 + 0.690160i \(0.242460\pi\)
\(74\) −8.56980 −0.996218
\(75\) 0.615555 0.0710781
\(76\) 1.24685 0.143023
\(77\) 0 0
\(78\) −0.0423593 −0.00479625
\(79\) −13.5159 −1.52065 −0.760327 0.649540i \(-0.774961\pi\)
−0.760327 + 0.649540i \(0.774961\pi\)
\(80\) −7.23122 −0.808475
\(81\) 8.89634 0.988482
\(82\) −5.24421 −0.579126
\(83\) 9.82792 1.07875 0.539377 0.842064i \(-0.318660\pi\)
0.539377 + 0.842064i \(0.318660\pi\)
\(84\) −0.189767 −0.0207053
\(85\) −22.6061 −2.45198
\(86\) 1.68771 0.181990
\(87\) −0.0197422 −0.00211659
\(88\) 0 0
\(89\) 9.23024 0.978404 0.489202 0.872171i \(-0.337288\pi\)
0.489202 + 0.872171i \(0.337288\pi\)
\(90\) 11.2858 1.18963
\(91\) 0.900959 0.0944462
\(92\) −1.05218 −0.109697
\(93\) −0.107389 −0.0111357
\(94\) −6.66066 −0.686995
\(95\) −6.08628 −0.624439
\(96\) −0.388084 −0.0396086
\(97\) 5.92141 0.601228 0.300614 0.953746i \(-0.402808\pi\)
0.300614 + 0.953746i \(0.402808\pi\)
\(98\) 0.0773084 0.00780933
\(99\) 0 0
\(100\) −3.84688 −0.384688
\(101\) −7.06692 −0.703185 −0.351592 0.936153i \(-0.614360\pi\)
−0.351592 + 0.936153i \(0.614360\pi\)
\(102\) 0.854256 0.0845839
\(103\) 9.46983 0.933090 0.466545 0.884497i \(-0.345499\pi\)
0.466545 + 0.884497i \(0.345499\pi\)
\(104\) 1.05362 0.103316
\(105\) 0.926316 0.0903992
\(106\) −8.64435 −0.839613
\(107\) −12.5151 −1.20988 −0.604942 0.796270i \(-0.706804\pi\)
−0.604942 + 0.796270i \(0.706804\pi\)
\(108\) 0.431596 0.0415303
\(109\) −1.73913 −0.166578 −0.0832891 0.996525i \(-0.526543\pi\)
−0.0832891 + 0.996525i \(0.526543\pi\)
\(110\) 0 0
\(111\) 0.798340 0.0757751
\(112\) −5.81206 −0.549188
\(113\) −7.29603 −0.686353 −0.343176 0.939271i \(-0.611503\pi\)
−0.343176 + 0.939271i \(0.611503\pi\)
\(114\) 0.229993 0.0215408
\(115\) 5.13605 0.478939
\(116\) 0.123378 0.0114554
\(117\) −1.02257 −0.0945370
\(118\) −15.2447 −1.40339
\(119\) −18.1695 −1.66560
\(120\) 1.08327 0.0988886
\(121\) 0 0
\(122\) −3.30171 −0.298923
\(123\) 0.488537 0.0440499
\(124\) 0.671122 0.0602685
\(125\) 2.39803 0.214486
\(126\) 9.07089 0.808099
\(127\) 9.10026 0.807517 0.403759 0.914866i \(-0.367704\pi\)
0.403759 + 0.914866i \(0.367704\pi\)
\(128\) −2.66383 −0.235451
\(129\) −0.157222 −0.0138427
\(130\) −1.29220 −0.113333
\(131\) 15.2130 1.32916 0.664582 0.747215i \(-0.268610\pi\)
0.664582 + 0.747215i \(0.268610\pi\)
\(132\) 0 0
\(133\) −4.89182 −0.424174
\(134\) −4.43557 −0.383175
\(135\) −2.10677 −0.181321
\(136\) −21.2482 −1.82202
\(137\) 1.70017 0.145255 0.0726275 0.997359i \(-0.476862\pi\)
0.0726275 + 0.997359i \(0.476862\pi\)
\(138\) −0.194085 −0.0165216
\(139\) 12.3211 1.04506 0.522532 0.852620i \(-0.324987\pi\)
0.522532 + 0.852620i \(0.324987\pi\)
\(140\) −5.78896 −0.489257
\(141\) 0.620490 0.0522547
\(142\) −5.00381 −0.419910
\(143\) 0 0
\(144\) 6.59660 0.549716
\(145\) −0.602250 −0.0500141
\(146\) −14.2550 −1.17975
\(147\) −0.00720185 −0.000593999 0
\(148\) −4.98918 −0.410108
\(149\) −23.2285 −1.90295 −0.951475 0.307728i \(-0.900431\pi\)
−0.951475 + 0.307728i \(0.900431\pi\)
\(150\) −0.709593 −0.0579380
\(151\) 12.4737 1.01510 0.507549 0.861623i \(-0.330552\pi\)
0.507549 + 0.861623i \(0.330552\pi\)
\(152\) −5.72068 −0.464009
\(153\) 20.6221 1.66720
\(154\) 0 0
\(155\) −3.27597 −0.263133
\(156\) −0.0246608 −0.00197445
\(157\) 13.7145 1.09453 0.547266 0.836959i \(-0.315668\pi\)
0.547266 + 0.836959i \(0.315668\pi\)
\(158\) 15.5807 1.23953
\(159\) 0.805285 0.0638633
\(160\) −11.8387 −0.935935
\(161\) 4.12807 0.325338
\(162\) −10.2554 −0.805743
\(163\) 1.00329 0.0785834 0.0392917 0.999228i \(-0.487490\pi\)
0.0392917 + 0.999228i \(0.487490\pi\)
\(164\) −3.05309 −0.238406
\(165\) 0 0
\(166\) −11.3293 −0.879327
\(167\) 2.30657 0.178488 0.0892440 0.996010i \(-0.471555\pi\)
0.0892440 + 0.996010i \(0.471555\pi\)
\(168\) 0.870673 0.0671739
\(169\) −12.8829 −0.990994
\(170\) 26.0596 1.99868
\(171\) 5.55214 0.424583
\(172\) 0.982552 0.0749189
\(173\) −8.11715 −0.617135 −0.308568 0.951202i \(-0.599850\pi\)
−0.308568 + 0.951202i \(0.599850\pi\)
\(174\) 0.0227582 0.00172530
\(175\) 15.0926 1.14090
\(176\) 0 0
\(177\) 1.42016 0.106746
\(178\) −10.6403 −0.797528
\(179\) −14.6013 −1.09135 −0.545675 0.837997i \(-0.683727\pi\)
−0.545675 + 0.837997i \(0.683727\pi\)
\(180\) 6.57038 0.489727
\(181\) 24.4581 1.81796 0.908978 0.416843i \(-0.136864\pi\)
0.908978 + 0.416843i \(0.136864\pi\)
\(182\) −1.03860 −0.0769860
\(183\) 0.307579 0.0227369
\(184\) 4.82753 0.355890
\(185\) 24.3539 1.79053
\(186\) 0.123795 0.00907708
\(187\) 0 0
\(188\) −3.87772 −0.282812
\(189\) −1.69330 −0.123170
\(190\) 7.01608 0.509000
\(191\) 1.99534 0.144378 0.0721889 0.997391i \(-0.477002\pi\)
0.0721889 + 0.997391i \(0.477002\pi\)
\(192\) 0.921462 0.0665008
\(193\) −14.2850 −1.02826 −0.514128 0.857713i \(-0.671884\pi\)
−0.514128 + 0.857713i \(0.671884\pi\)
\(194\) −6.82603 −0.490080
\(195\) 0.120378 0.00862044
\(196\) 0.0450076 0.00321483
\(197\) 7.47401 0.532501 0.266251 0.963904i \(-0.414215\pi\)
0.266251 + 0.963904i \(0.414215\pi\)
\(198\) 0 0
\(199\) −27.8678 −1.97550 −0.987749 0.156049i \(-0.950124\pi\)
−0.987749 + 0.156049i \(0.950124\pi\)
\(200\) 17.6499 1.24804
\(201\) 0.413206 0.0291453
\(202\) 8.14653 0.573188
\(203\) −0.484055 −0.0339740
\(204\) 0.497333 0.0348202
\(205\) 14.9031 1.04088
\(206\) −10.9165 −0.760591
\(207\) −4.68530 −0.325651
\(208\) −0.755297 −0.0523704
\(209\) 0 0
\(210\) −1.06783 −0.0736872
\(211\) −2.74406 −0.188909 −0.0944543 0.995529i \(-0.530111\pi\)
−0.0944543 + 0.995529i \(0.530111\pi\)
\(212\) −5.03259 −0.345640
\(213\) 0.466142 0.0319395
\(214\) 14.4271 0.986214
\(215\) −4.79617 −0.327096
\(216\) −1.98021 −0.134736
\(217\) −2.63305 −0.178743
\(218\) 2.00481 0.135783
\(219\) 1.32796 0.0897351
\(220\) 0 0
\(221\) −2.36119 −0.158831
\(222\) −0.920302 −0.0617666
\(223\) 18.4742 1.23713 0.618564 0.785735i \(-0.287715\pi\)
0.618564 + 0.785735i \(0.287715\pi\)
\(224\) −9.51533 −0.635770
\(225\) −17.1299 −1.14199
\(226\) 8.41064 0.559468
\(227\) 16.7025 1.10858 0.554292 0.832322i \(-0.312989\pi\)
0.554292 + 0.832322i \(0.312989\pi\)
\(228\) 0.133898 0.00886759
\(229\) 7.17201 0.473940 0.236970 0.971517i \(-0.423846\pi\)
0.236970 + 0.971517i \(0.423846\pi\)
\(230\) −5.92068 −0.390398
\(231\) 0 0
\(232\) −0.566073 −0.0371645
\(233\) −19.5627 −1.28160 −0.640798 0.767709i \(-0.721397\pi\)
−0.640798 + 0.767709i \(0.721397\pi\)
\(234\) 1.17879 0.0770601
\(235\) 18.9285 1.23476
\(236\) −8.87521 −0.577727
\(237\) −1.45146 −0.0942823
\(238\) 20.9453 1.35768
\(239\) 27.7470 1.79480 0.897401 0.441216i \(-0.145453\pi\)
0.897401 + 0.441216i \(0.145453\pi\)
\(240\) −0.776554 −0.0501264
\(241\) −17.6551 −1.13726 −0.568631 0.822593i \(-0.692527\pi\)
−0.568631 + 0.822593i \(0.692527\pi\)
\(242\) 0 0
\(243\) 2.88466 0.185051
\(244\) −1.92220 −0.123056
\(245\) −0.219697 −0.0140359
\(246\) −0.563171 −0.0359064
\(247\) −0.635708 −0.0404492
\(248\) −3.07919 −0.195529
\(249\) 1.05541 0.0668840
\(250\) −2.76438 −0.174835
\(251\) −16.6714 −1.05229 −0.526144 0.850396i \(-0.676363\pi\)
−0.526144 + 0.850396i \(0.676363\pi\)
\(252\) 5.28091 0.332666
\(253\) 0 0
\(254\) −10.4905 −0.658233
\(255\) −2.42765 −0.152025
\(256\) −14.0904 −0.880650
\(257\) −16.3614 −1.02060 −0.510299 0.859997i \(-0.670465\pi\)
−0.510299 + 0.859997i \(0.670465\pi\)
\(258\) 0.181241 0.0112836
\(259\) 19.5743 1.21629
\(260\) −0.752295 −0.0466554
\(261\) 0.549395 0.0340067
\(262\) −17.5371 −1.08344
\(263\) −9.37200 −0.577902 −0.288951 0.957344i \(-0.593307\pi\)
−0.288951 + 0.957344i \(0.593307\pi\)
\(264\) 0 0
\(265\) 24.5658 1.50906
\(266\) 5.63914 0.345758
\(267\) 0.991227 0.0606621
\(268\) −2.58231 −0.157740
\(269\) 14.5309 0.885964 0.442982 0.896531i \(-0.353921\pi\)
0.442982 + 0.896531i \(0.353921\pi\)
\(270\) 2.42861 0.147801
\(271\) 7.68414 0.466779 0.233389 0.972383i \(-0.425018\pi\)
0.233389 + 0.972383i \(0.425018\pi\)
\(272\) 15.2320 0.923575
\(273\) 0.0967531 0.00585577
\(274\) −1.95990 −0.118402
\(275\) 0 0
\(276\) −0.112993 −0.00680136
\(277\) 12.1756 0.731563 0.365781 0.930701i \(-0.380802\pi\)
0.365781 + 0.930701i \(0.380802\pi\)
\(278\) −14.2034 −0.851864
\(279\) 2.98847 0.178915
\(280\) 26.5604 1.58729
\(281\) 15.6056 0.930950 0.465475 0.885061i \(-0.345884\pi\)
0.465475 + 0.885061i \(0.345884\pi\)
\(282\) −0.715282 −0.0425944
\(283\) 8.35173 0.496459 0.248230 0.968701i \(-0.420151\pi\)
0.248230 + 0.968701i \(0.420151\pi\)
\(284\) −2.91313 −0.172862
\(285\) −0.653600 −0.0387159
\(286\) 0 0
\(287\) 11.9783 0.707058
\(288\) 10.7998 0.636382
\(289\) 30.6180 1.80106
\(290\) 0.694255 0.0407681
\(291\) 0.635895 0.0372768
\(292\) −8.29900 −0.485662
\(293\) 31.3717 1.83276 0.916378 0.400313i \(-0.131099\pi\)
0.916378 + 0.400313i \(0.131099\pi\)
\(294\) 0.00830207 0.000484187 0
\(295\) 43.3229 2.52236
\(296\) 22.8910 1.33051
\(297\) 0 0
\(298\) 26.7771 1.55115
\(299\) 0.536457 0.0310241
\(300\) −0.413112 −0.0238511
\(301\) −3.85490 −0.222193
\(302\) −14.3793 −0.827438
\(303\) −0.758909 −0.0435982
\(304\) 4.10094 0.235205
\(305\) 9.38290 0.537263
\(306\) −23.7726 −1.35899
\(307\) 20.3687 1.16250 0.581251 0.813724i \(-0.302563\pi\)
0.581251 + 0.813724i \(0.302563\pi\)
\(308\) 0 0
\(309\) 1.01696 0.0578526
\(310\) 3.77644 0.214488
\(311\) −29.6459 −1.68106 −0.840531 0.541763i \(-0.817757\pi\)
−0.840531 + 0.541763i \(0.817757\pi\)
\(312\) 0.113147 0.00640568
\(313\) 21.5561 1.21842 0.609212 0.793008i \(-0.291486\pi\)
0.609212 + 0.793008i \(0.291486\pi\)
\(314\) −15.8096 −0.892188
\(315\) −25.7779 −1.45242
\(316\) 9.07080 0.510272
\(317\) 19.2133 1.07912 0.539562 0.841946i \(-0.318590\pi\)
0.539562 + 0.841946i \(0.318590\pi\)
\(318\) −0.928308 −0.0520570
\(319\) 0 0
\(320\) 28.1098 1.57139
\(321\) −1.34399 −0.0750141
\(322\) −4.75872 −0.265193
\(323\) 12.8203 0.713339
\(324\) −5.97053 −0.331696
\(325\) 1.96134 0.108796
\(326\) −1.15656 −0.0640558
\(327\) −0.186763 −0.0103280
\(328\) 14.0079 0.773458
\(329\) 15.2136 0.838755
\(330\) 0 0
\(331\) −0.0130451 −0.000717023 0 −0.000358512 1.00000i \(-0.500114\pi\)
−0.000358512 1.00000i \(0.500114\pi\)
\(332\) −6.59574 −0.361988
\(333\) −22.2165 −1.21746
\(334\) −2.65895 −0.145491
\(335\) 12.6051 0.688691
\(336\) −0.624151 −0.0340503
\(337\) −11.6798 −0.636242 −0.318121 0.948050i \(-0.603052\pi\)
−0.318121 + 0.948050i \(0.603052\pi\)
\(338\) 14.8510 0.807790
\(339\) −0.783514 −0.0425546
\(340\) 15.1715 0.822788
\(341\) 0 0
\(342\) −6.40033 −0.346090
\(343\) −18.6079 −1.00473
\(344\) −4.50807 −0.243059
\(345\) 0.551556 0.0296948
\(346\) 9.35720 0.503046
\(347\) −5.75926 −0.309173 −0.154587 0.987979i \(-0.549405\pi\)
−0.154587 + 0.987979i \(0.549405\pi\)
\(348\) 0.0132494 0.000710245 0
\(349\) −29.8101 −1.59570 −0.797849 0.602857i \(-0.794029\pi\)
−0.797849 + 0.602857i \(0.794029\pi\)
\(350\) −17.3983 −0.929980
\(351\) −0.220050 −0.0117454
\(352\) 0 0
\(353\) 36.0545 1.91899 0.959493 0.281734i \(-0.0909095\pi\)
0.959493 + 0.281734i \(0.0909095\pi\)
\(354\) −1.63712 −0.0870117
\(355\) 14.2200 0.754718
\(356\) −6.19462 −0.328314
\(357\) −1.95121 −0.103269
\(358\) 16.8319 0.889593
\(359\) 3.54787 0.187250 0.0936248 0.995608i \(-0.470155\pi\)
0.0936248 + 0.995608i \(0.470155\pi\)
\(360\) −30.1457 −1.58882
\(361\) −15.5484 −0.818336
\(362\) −28.1946 −1.48187
\(363\) 0 0
\(364\) −0.604653 −0.0316925
\(365\) 40.5102 2.12040
\(366\) −0.354568 −0.0185336
\(367\) −3.51477 −0.183469 −0.0917347 0.995783i \(-0.529241\pi\)
−0.0917347 + 0.995783i \(0.529241\pi\)
\(368\) −3.46067 −0.180400
\(369\) −13.5952 −0.707739
\(370\) −28.0744 −1.45952
\(371\) 19.7446 1.02509
\(372\) 0.0720712 0.00373672
\(373\) −17.5147 −0.906877 −0.453438 0.891288i \(-0.649803\pi\)
−0.453438 + 0.891288i \(0.649803\pi\)
\(374\) 0 0
\(375\) 0.257522 0.0132984
\(376\) 17.7914 0.917523
\(377\) −0.0629046 −0.00323975
\(378\) 1.95199 0.100399
\(379\) −23.2999 −1.19684 −0.598418 0.801184i \(-0.704204\pi\)
−0.598418 + 0.801184i \(0.704204\pi\)
\(380\) 4.08464 0.209538
\(381\) 0.977268 0.0500670
\(382\) −2.30017 −0.117687
\(383\) 33.8396 1.72912 0.864562 0.502526i \(-0.167596\pi\)
0.864562 + 0.502526i \(0.167596\pi\)
\(384\) −0.286066 −0.0145982
\(385\) 0 0
\(386\) 16.4673 0.838164
\(387\) 4.37525 0.222406
\(388\) −3.97399 −0.201749
\(389\) −20.4381 −1.03625 −0.518126 0.855304i \(-0.673370\pi\)
−0.518126 + 0.855304i \(0.673370\pi\)
\(390\) −0.138768 −0.00702679
\(391\) −10.8187 −0.547124
\(392\) −0.206500 −0.0104298
\(393\) 1.63371 0.0824096
\(394\) −8.61581 −0.434058
\(395\) −44.2777 −2.22785
\(396\) 0 0
\(397\) −11.1155 −0.557869 −0.278934 0.960310i \(-0.589981\pi\)
−0.278934 + 0.960310i \(0.589981\pi\)
\(398\) 32.1252 1.61029
\(399\) −0.525328 −0.0262993
\(400\) −12.6525 −0.632627
\(401\) −30.2195 −1.50909 −0.754545 0.656249i \(-0.772142\pi\)
−0.754545 + 0.656249i \(0.772142\pi\)
\(402\) −0.476331 −0.0237572
\(403\) −0.342173 −0.0170449
\(404\) 4.74276 0.235961
\(405\) 29.1442 1.44819
\(406\) 0.558004 0.0276933
\(407\) 0 0
\(408\) −2.28182 −0.112967
\(409\) −28.5272 −1.41058 −0.705290 0.708919i \(-0.749183\pi\)
−0.705290 + 0.708919i \(0.749183\pi\)
\(410\) −17.1799 −0.848454
\(411\) 0.182579 0.00900596
\(412\) −6.35541 −0.313109
\(413\) 34.8205 1.71341
\(414\) 5.40107 0.265448
\(415\) 32.1960 1.58044
\(416\) −1.23655 −0.0606269
\(417\) 1.32315 0.0647951
\(418\) 0 0
\(419\) −9.56270 −0.467169 −0.233584 0.972337i \(-0.575045\pi\)
−0.233584 + 0.972337i \(0.575045\pi\)
\(420\) −0.621671 −0.0303344
\(421\) 7.66340 0.373491 0.186746 0.982408i \(-0.440206\pi\)
0.186746 + 0.982408i \(0.440206\pi\)
\(422\) 3.16326 0.153985
\(423\) −17.2673 −0.839562
\(424\) 23.0901 1.12136
\(425\) −39.5541 −1.91866
\(426\) −0.537354 −0.0260349
\(427\) 7.54146 0.364957
\(428\) 8.39918 0.405990
\(429\) 0 0
\(430\) 5.52888 0.266626
\(431\) 14.6736 0.706800 0.353400 0.935472i \(-0.385025\pi\)
0.353400 + 0.935472i \(0.385025\pi\)
\(432\) 1.41954 0.0682976
\(433\) 4.75175 0.228354 0.114177 0.993460i \(-0.463577\pi\)
0.114177 + 0.993460i \(0.463577\pi\)
\(434\) 3.03530 0.145699
\(435\) −0.0646750 −0.00310093
\(436\) 1.16717 0.0558972
\(437\) −2.91273 −0.139335
\(438\) −1.53083 −0.0731459
\(439\) −13.9499 −0.665793 −0.332897 0.942963i \(-0.608026\pi\)
−0.332897 + 0.942963i \(0.608026\pi\)
\(440\) 0 0
\(441\) 0.200416 0.00954363
\(442\) 2.72191 0.129468
\(443\) 41.4538 1.96953 0.984766 0.173886i \(-0.0556325\pi\)
0.984766 + 0.173886i \(0.0556325\pi\)
\(444\) −0.535784 −0.0254272
\(445\) 30.2380 1.43342
\(446\) −21.2966 −1.00842
\(447\) −2.49448 −0.117985
\(448\) 22.5931 1.06742
\(449\) 32.8894 1.55215 0.776074 0.630642i \(-0.217208\pi\)
0.776074 + 0.630642i \(0.217208\pi\)
\(450\) 19.7468 0.930875
\(451\) 0 0
\(452\) 4.89653 0.230313
\(453\) 1.33954 0.0629372
\(454\) −19.2541 −0.903641
\(455\) 2.95152 0.138369
\(456\) −0.614339 −0.0287690
\(457\) −27.9961 −1.30960 −0.654802 0.755801i \(-0.727248\pi\)
−0.654802 + 0.755801i \(0.727248\pi\)
\(458\) −8.26768 −0.386323
\(459\) 4.43773 0.207136
\(460\) −3.44692 −0.160713
\(461\) 18.4278 0.858268 0.429134 0.903241i \(-0.358819\pi\)
0.429134 + 0.903241i \(0.358819\pi\)
\(462\) 0 0
\(463\) −26.2380 −1.21938 −0.609691 0.792639i \(-0.708707\pi\)
−0.609691 + 0.792639i \(0.708707\pi\)
\(464\) 0.405796 0.0188386
\(465\) −0.351804 −0.0163145
\(466\) 22.5513 1.04467
\(467\) −34.4708 −1.59512 −0.797559 0.603241i \(-0.793876\pi\)
−0.797559 + 0.603241i \(0.793876\pi\)
\(468\) 0.686272 0.0317229
\(469\) 10.1313 0.467820
\(470\) −21.8201 −1.00649
\(471\) 1.47278 0.0678622
\(472\) 40.7205 1.87431
\(473\) 0 0
\(474\) 1.67320 0.0768524
\(475\) −10.6492 −0.488620
\(476\) 12.1940 0.558910
\(477\) −22.4098 −1.02608
\(478\) −31.9859 −1.46300
\(479\) −34.1531 −1.56050 −0.780248 0.625470i \(-0.784907\pi\)
−0.780248 + 0.625470i \(0.784907\pi\)
\(480\) −1.27135 −0.0580290
\(481\) 2.54375 0.115985
\(482\) 20.3522 0.927018
\(483\) 0.443310 0.0201713
\(484\) 0 0
\(485\) 19.3984 0.880836
\(486\) −3.32535 −0.150841
\(487\) 9.48784 0.429935 0.214968 0.976621i \(-0.431035\pi\)
0.214968 + 0.976621i \(0.431035\pi\)
\(488\) 8.81928 0.399230
\(489\) 0.107742 0.00487226
\(490\) 0.253260 0.0114411
\(491\) −14.2933 −0.645049 −0.322524 0.946561i \(-0.604531\pi\)
−0.322524 + 0.946561i \(0.604531\pi\)
\(492\) −0.327868 −0.0147814
\(493\) 1.26859 0.0571344
\(494\) 0.732825 0.0329714
\(495\) 0 0
\(496\) 2.20735 0.0991130
\(497\) 11.4292 0.512671
\(498\) −1.21665 −0.0545192
\(499\) 2.89660 0.129670 0.0648348 0.997896i \(-0.479348\pi\)
0.0648348 + 0.997896i \(0.479348\pi\)
\(500\) −1.60937 −0.0719733
\(501\) 0.247701 0.0110664
\(502\) 19.2182 0.857752
\(503\) 25.4083 1.13290 0.566449 0.824097i \(-0.308317\pi\)
0.566449 + 0.824097i \(0.308317\pi\)
\(504\) −24.2294 −1.07927
\(505\) −23.1510 −1.03021
\(506\) 0 0
\(507\) −1.38348 −0.0614427
\(508\) −6.10738 −0.270971
\(509\) 31.0667 1.37701 0.688504 0.725232i \(-0.258268\pi\)
0.688504 + 0.725232i \(0.258268\pi\)
\(510\) 2.79852 0.123921
\(511\) 32.5599 1.44036
\(512\) 21.5706 0.953297
\(513\) 1.19478 0.0527507
\(514\) 18.8609 0.831921
\(515\) 31.0229 1.36703
\(516\) 0.105515 0.00464506
\(517\) 0 0
\(518\) −22.5647 −0.991435
\(519\) −0.871693 −0.0382631
\(520\) 3.45162 0.151364
\(521\) −1.23390 −0.0540581 −0.0270290 0.999635i \(-0.508605\pi\)
−0.0270290 + 0.999635i \(0.508605\pi\)
\(522\) −0.633326 −0.0277199
\(523\) 1.97777 0.0864817 0.0432409 0.999065i \(-0.486232\pi\)
0.0432409 + 0.999065i \(0.486232\pi\)
\(524\) −10.2098 −0.446016
\(525\) 1.62078 0.0707368
\(526\) 10.8038 0.471066
\(527\) 6.90058 0.300594
\(528\) 0 0
\(529\) −20.5420 −0.893131
\(530\) −28.3187 −1.23008
\(531\) −39.5208 −1.71506
\(532\) 3.28301 0.142336
\(533\) 1.55662 0.0674249
\(534\) −1.14266 −0.0494476
\(535\) −40.9992 −1.77255
\(536\) 11.8479 0.511753
\(537\) −1.56801 −0.0676648
\(538\) −16.7508 −0.722177
\(539\) 0 0
\(540\) 1.41390 0.0608444
\(541\) 34.8968 1.50033 0.750166 0.661249i \(-0.229973\pi\)
0.750166 + 0.661249i \(0.229973\pi\)
\(542\) −8.85805 −0.380486
\(543\) 2.62653 0.112715
\(544\) 24.9374 1.06918
\(545\) −5.69734 −0.244047
\(546\) −0.111534 −0.00477322
\(547\) −13.4432 −0.574792 −0.287396 0.957812i \(-0.592790\pi\)
−0.287396 + 0.957812i \(0.592790\pi\)
\(548\) −1.14102 −0.0487419
\(549\) −8.55944 −0.365308
\(550\) 0 0
\(551\) 0.341545 0.0145503
\(552\) 0.518424 0.0220656
\(553\) −35.5879 −1.51335
\(554\) −14.0357 −0.596319
\(555\) 2.61534 0.111015
\(556\) −8.26898 −0.350683
\(557\) 39.1484 1.65877 0.829386 0.558675i \(-0.188690\pi\)
0.829386 + 0.558675i \(0.188690\pi\)
\(558\) −3.44501 −0.145839
\(559\) −0.500957 −0.0211882
\(560\) −19.0402 −0.804593
\(561\) 0 0
\(562\) −17.9896 −0.758846
\(563\) −17.4664 −0.736121 −0.368060 0.929802i \(-0.619978\pi\)
−0.368060 + 0.929802i \(0.619978\pi\)
\(564\) −0.416424 −0.0175346
\(565\) −23.9016 −1.00555
\(566\) −9.62763 −0.404679
\(567\) 23.4245 0.983736
\(568\) 13.3658 0.560816
\(569\) 10.7176 0.449304 0.224652 0.974439i \(-0.427876\pi\)
0.224652 + 0.974439i \(0.427876\pi\)
\(570\) 0.753450 0.0315586
\(571\) −41.8928 −1.75316 −0.876580 0.481256i \(-0.840181\pi\)
−0.876580 + 0.481256i \(0.840181\pi\)
\(572\) 0 0
\(573\) 0.214278 0.00895158
\(574\) −13.8082 −0.576345
\(575\) 8.98660 0.374767
\(576\) −25.6428 −1.06845
\(577\) −8.79461 −0.366124 −0.183062 0.983101i \(-0.558601\pi\)
−0.183062 + 0.983101i \(0.558601\pi\)
\(578\) −35.2954 −1.46810
\(579\) −1.53405 −0.0637530
\(580\) 0.404183 0.0167828
\(581\) 25.8774 1.07357
\(582\) −0.733040 −0.0303855
\(583\) 0 0
\(584\) 38.0768 1.57563
\(585\) −3.34993 −0.138502
\(586\) −36.1644 −1.49394
\(587\) −30.5869 −1.26246 −0.631228 0.775598i \(-0.717449\pi\)
−0.631228 + 0.775598i \(0.717449\pi\)
\(588\) 0.00483332 0.000199323 0
\(589\) 1.85785 0.0765515
\(590\) −49.9413 −2.05605
\(591\) 0.802627 0.0330157
\(592\) −16.4096 −0.674432
\(593\) 32.2636 1.32491 0.662453 0.749104i \(-0.269516\pi\)
0.662453 + 0.749104i \(0.269516\pi\)
\(594\) 0 0
\(595\) −59.5229 −2.44020
\(596\) 15.5891 0.638556
\(597\) −2.99270 −0.122483
\(598\) −0.618412 −0.0252887
\(599\) −25.2799 −1.03291 −0.516455 0.856314i \(-0.672749\pi\)
−0.516455 + 0.856314i \(0.672749\pi\)
\(600\) 1.89541 0.0773797
\(601\) 1.67048 0.0681405 0.0340702 0.999419i \(-0.489153\pi\)
0.0340702 + 0.999419i \(0.489153\pi\)
\(602\) 4.44381 0.181116
\(603\) −11.4989 −0.468270
\(604\) −8.37140 −0.340627
\(605\) 0 0
\(606\) 0.874848 0.0355383
\(607\) −25.0906 −1.01840 −0.509198 0.860650i \(-0.670058\pi\)
−0.509198 + 0.860650i \(0.670058\pi\)
\(608\) 6.71393 0.272286
\(609\) −0.0519822 −0.00210643
\(610\) −10.8163 −0.437940
\(611\) 1.97707 0.0799835
\(612\) −13.8400 −0.559448
\(613\) −4.95539 −0.200146 −0.100073 0.994980i \(-0.531908\pi\)
−0.100073 + 0.994980i \(0.531908\pi\)
\(614\) −23.4804 −0.947592
\(615\) 1.60043 0.0645357
\(616\) 0 0
\(617\) −39.7247 −1.59926 −0.799628 0.600495i \(-0.794970\pi\)
−0.799628 + 0.600495i \(0.794970\pi\)
\(618\) −1.17232 −0.0471575
\(619\) 32.5556 1.30852 0.654260 0.756270i \(-0.272980\pi\)
0.654260 + 0.756270i \(0.272980\pi\)
\(620\) 2.19858 0.0882970
\(621\) −1.00824 −0.0404593
\(622\) 34.1748 1.37029
\(623\) 24.3037 0.973706
\(624\) −0.0811106 −0.00324702
\(625\) −20.8041 −0.832166
\(626\) −24.8492 −0.993175
\(627\) 0 0
\(628\) −9.20407 −0.367283
\(629\) −51.2995 −2.04545
\(630\) 29.7160 1.18391
\(631\) −27.2465 −1.08467 −0.542333 0.840164i \(-0.682459\pi\)
−0.542333 + 0.840164i \(0.682459\pi\)
\(632\) −41.6179 −1.65547
\(633\) −0.294682 −0.0117125
\(634\) −22.1485 −0.879628
\(635\) 29.8122 1.18306
\(636\) −0.540445 −0.0214300
\(637\) −0.0229472 −0.000909203 0
\(638\) 0 0
\(639\) −12.9720 −0.513164
\(640\) −8.72662 −0.344950
\(641\) −9.63386 −0.380514 −0.190257 0.981734i \(-0.560932\pi\)
−0.190257 + 0.981734i \(0.560932\pi\)
\(642\) 1.54931 0.0611463
\(643\) 22.4579 0.885653 0.442827 0.896607i \(-0.353976\pi\)
0.442827 + 0.896607i \(0.353976\pi\)
\(644\) −2.77044 −0.109171
\(645\) −0.515056 −0.0202803
\(646\) −14.7788 −0.581465
\(647\) −47.5680 −1.87009 −0.935046 0.354525i \(-0.884642\pi\)
−0.935046 + 0.354525i \(0.884642\pi\)
\(648\) 27.3935 1.07612
\(649\) 0 0
\(650\) −2.26097 −0.0886827
\(651\) −0.282760 −0.0110823
\(652\) −0.673327 −0.0263695
\(653\) 47.0874 1.84267 0.921337 0.388766i \(-0.127098\pi\)
0.921337 + 0.388766i \(0.127098\pi\)
\(654\) 0.215295 0.00841870
\(655\) 49.8373 1.94730
\(656\) −10.0417 −0.392064
\(657\) −36.9550 −1.44175
\(658\) −17.5378 −0.683696
\(659\) −9.75425 −0.379971 −0.189986 0.981787i \(-0.560844\pi\)
−0.189986 + 0.981787i \(0.560844\pi\)
\(660\) 0 0
\(661\) −20.9488 −0.814813 −0.407407 0.913247i \(-0.633567\pi\)
−0.407407 + 0.913247i \(0.633567\pi\)
\(662\) 0.0150380 0.000584468 0
\(663\) −0.253566 −0.00984770
\(664\) 30.2620 1.17439
\(665\) −16.0255 −0.621441
\(666\) 25.6106 0.992389
\(667\) −0.288221 −0.0111599
\(668\) −1.54799 −0.0598936
\(669\) 1.98393 0.0767032
\(670\) −14.5308 −0.561374
\(671\) 0 0
\(672\) −1.02184 −0.0394184
\(673\) 4.53121 0.174665 0.0873327 0.996179i \(-0.472166\pi\)
0.0873327 + 0.996179i \(0.472166\pi\)
\(674\) 13.4642 0.518620
\(675\) −3.68623 −0.141883
\(676\) 8.64601 0.332539
\(677\) 24.7951 0.952955 0.476477 0.879187i \(-0.341913\pi\)
0.476477 + 0.879187i \(0.341913\pi\)
\(678\) 0.903211 0.0346876
\(679\) 15.5914 0.598342
\(680\) −69.6085 −2.66936
\(681\) 1.79366 0.0687334
\(682\) 0 0
\(683\) −3.58738 −0.137267 −0.0686336 0.997642i \(-0.521864\pi\)
−0.0686336 + 0.997642i \(0.521864\pi\)
\(684\) −3.72616 −0.142473
\(685\) 5.56970 0.212807
\(686\) 21.4506 0.818989
\(687\) 0.770196 0.0293848
\(688\) 3.23166 0.123206
\(689\) 2.56588 0.0977522
\(690\) −0.635817 −0.0242051
\(691\) −40.1663 −1.52800 −0.763999 0.645217i \(-0.776767\pi\)
−0.763999 + 0.645217i \(0.776767\pi\)
\(692\) 5.44760 0.207087
\(693\) 0 0
\(694\) 6.63910 0.252017
\(695\) 40.3637 1.53108
\(696\) −0.0607900 −0.00230424
\(697\) −31.3923 −1.18907
\(698\) 34.3642 1.30070
\(699\) −2.10082 −0.0794604
\(700\) −10.1290 −0.382840
\(701\) 24.4163 0.922189 0.461095 0.887351i \(-0.347457\pi\)
0.461095 + 0.887351i \(0.347457\pi\)
\(702\) 0.253667 0.00957406
\(703\) −13.8115 −0.520909
\(704\) 0 0
\(705\) 2.03271 0.0765562
\(706\) −41.5625 −1.56422
\(707\) −18.6075 −0.699808
\(708\) −0.953100 −0.0358197
\(709\) −6.87752 −0.258290 −0.129145 0.991626i \(-0.541223\pi\)
−0.129145 + 0.991626i \(0.541223\pi\)
\(710\) −16.3923 −0.615194
\(711\) 40.3918 1.51481
\(712\) 28.4217 1.06515
\(713\) −1.56779 −0.0587143
\(714\) 2.24930 0.0841778
\(715\) 0 0
\(716\) 9.79923 0.366214
\(717\) 2.97972 0.111280
\(718\) −4.08988 −0.152633
\(719\) −1.77394 −0.0661566 −0.0330783 0.999453i \(-0.510531\pi\)
−0.0330783 + 0.999453i \(0.510531\pi\)
\(720\) 21.6103 0.805368
\(721\) 24.9345 0.928610
\(722\) 17.9237 0.667051
\(723\) −1.89596 −0.0705115
\(724\) −16.4144 −0.610036
\(725\) −1.05376 −0.0391357
\(726\) 0 0
\(727\) 13.6200 0.505139 0.252569 0.967579i \(-0.418724\pi\)
0.252569 + 0.967579i \(0.418724\pi\)
\(728\) 2.77422 0.102820
\(729\) −26.3792 −0.977009
\(730\) −46.6990 −1.72841
\(731\) 10.1027 0.373664
\(732\) −0.206423 −0.00762962
\(733\) −23.9566 −0.884856 −0.442428 0.896804i \(-0.645883\pi\)
−0.442428 + 0.896804i \(0.645883\pi\)
\(734\) 4.05172 0.149552
\(735\) −0.0235931 −0.000870244 0
\(736\) −5.66571 −0.208841
\(737\) 0 0
\(738\) 15.6721 0.576900
\(739\) 32.2523 1.18642 0.593210 0.805048i \(-0.297861\pi\)
0.593210 + 0.805048i \(0.297861\pi\)
\(740\) −16.3444 −0.600833
\(741\) −0.0682681 −0.00250789
\(742\) −22.7610 −0.835582
\(743\) 44.9374 1.64859 0.824296 0.566159i \(-0.191571\pi\)
0.824296 + 0.566159i \(0.191571\pi\)
\(744\) −0.330671 −0.0121230
\(745\) −76.0958 −2.78793
\(746\) 20.1904 0.739223
\(747\) −29.3704 −1.07461
\(748\) 0 0
\(749\) −32.9529 −1.20407
\(750\) −0.296864 −0.0108399
\(751\) 26.6343 0.971898 0.485949 0.873987i \(-0.338474\pi\)
0.485949 + 0.873987i \(0.338474\pi\)
\(752\) −12.7540 −0.465090
\(753\) −1.79032 −0.0652430
\(754\) 0.0725145 0.00264082
\(755\) 40.8636 1.48718
\(756\) 1.13641 0.0413309
\(757\) 33.5729 1.22023 0.610113 0.792314i \(-0.291124\pi\)
0.610113 + 0.792314i \(0.291124\pi\)
\(758\) 26.8594 0.975578
\(759\) 0 0
\(760\) −18.7408 −0.679801
\(761\) −4.80013 −0.174005 −0.0870023 0.996208i \(-0.527729\pi\)
−0.0870023 + 0.996208i \(0.527729\pi\)
\(762\) −1.12656 −0.0408111
\(763\) −4.57921 −0.165778
\(764\) −1.33912 −0.0484476
\(765\) 67.5576 2.44255
\(766\) −39.0093 −1.40946
\(767\) 4.52505 0.163390
\(768\) −1.51316 −0.0546013
\(769\) 34.9209 1.25928 0.629640 0.776887i \(-0.283202\pi\)
0.629640 + 0.776887i \(0.283202\pi\)
\(770\) 0 0
\(771\) −1.75704 −0.0632781
\(772\) 9.58698 0.345043
\(773\) 29.7126 1.06869 0.534344 0.845267i \(-0.320559\pi\)
0.534344 + 0.845267i \(0.320559\pi\)
\(774\) −5.04365 −0.181290
\(775\) −5.73201 −0.205900
\(776\) 18.2331 0.654532
\(777\) 2.10207 0.0754112
\(778\) 23.5604 0.844682
\(779\) −8.45180 −0.302817
\(780\) −0.0807883 −0.00289268
\(781\) 0 0
\(782\) 12.4714 0.445978
\(783\) 0.118226 0.00422504
\(784\) 0.148032 0.00528686
\(785\) 44.9282 1.60356
\(786\) −1.88329 −0.0671746
\(787\) −47.1544 −1.68087 −0.840436 0.541911i \(-0.817701\pi\)
−0.840436 + 0.541911i \(0.817701\pi\)
\(788\) −5.01598 −0.178687
\(789\) −1.00645 −0.0358306
\(790\) 51.0419 1.81599
\(791\) −19.2108 −0.683057
\(792\) 0 0
\(793\) 0.980038 0.0348022
\(794\) 12.8136 0.454736
\(795\) 2.63809 0.0935635
\(796\) 18.7027 0.662900
\(797\) 2.69124 0.0953287 0.0476644 0.998863i \(-0.484822\pi\)
0.0476644 + 0.998863i \(0.484822\pi\)
\(798\) 0.605582 0.0214374
\(799\) −39.8713 −1.41054
\(800\) −20.7144 −0.732364
\(801\) −27.5843 −0.974643
\(802\) 34.8361 1.23011
\(803\) 0 0
\(804\) −0.277312 −0.00978003
\(805\) 13.5235 0.476639
\(806\) 0.394447 0.0138938
\(807\) 1.56046 0.0549307
\(808\) −21.7604 −0.765527
\(809\) 2.06674 0.0726628 0.0363314 0.999340i \(-0.488433\pi\)
0.0363314 + 0.999340i \(0.488433\pi\)
\(810\) −33.5965 −1.18046
\(811\) 0.783325 0.0275063 0.0137531 0.999905i \(-0.495622\pi\)
0.0137531 + 0.999905i \(0.495622\pi\)
\(812\) 0.324860 0.0114004
\(813\) 0.825193 0.0289408
\(814\) 0 0
\(815\) 3.28674 0.115129
\(816\) 1.63575 0.0572627
\(817\) 2.71998 0.0951601
\(818\) 32.8853 1.14981
\(819\) −2.69249 −0.0940831
\(820\) −10.0018 −0.349279
\(821\) 22.4309 0.782845 0.391423 0.920211i \(-0.371983\pi\)
0.391423 + 0.920211i \(0.371983\pi\)
\(822\) −0.210472 −0.00734104
\(823\) −21.4831 −0.748853 −0.374426 0.927257i \(-0.622160\pi\)
−0.374426 + 0.927257i \(0.622160\pi\)
\(824\) 29.1594 1.01582
\(825\) 0 0
\(826\) −40.1401 −1.39665
\(827\) −40.8268 −1.41969 −0.709844 0.704359i \(-0.751235\pi\)
−0.709844 + 0.704359i \(0.751235\pi\)
\(828\) 3.14441 0.109276
\(829\) 14.7640 0.512774 0.256387 0.966574i \(-0.417468\pi\)
0.256387 + 0.966574i \(0.417468\pi\)
\(830\) −37.1146 −1.28827
\(831\) 1.30753 0.0453577
\(832\) 2.93605 0.101789
\(833\) 0.462775 0.0160342
\(834\) −1.52529 −0.0528165
\(835\) 7.55627 0.261496
\(836\) 0 0
\(837\) 0.643096 0.0222286
\(838\) 11.0236 0.380804
\(839\) 28.5773 0.986598 0.493299 0.869860i \(-0.335791\pi\)
0.493299 + 0.869860i \(0.335791\pi\)
\(840\) 2.85230 0.0984137
\(841\) −28.9662 −0.998835
\(842\) −8.83414 −0.304444
\(843\) 1.67587 0.0577199
\(844\) 1.84160 0.0633904
\(845\) −42.2041 −1.45187
\(846\) 19.9052 0.684354
\(847\) 0 0
\(848\) −16.5524 −0.568412
\(849\) 0.896885 0.0307810
\(850\) 45.5968 1.56396
\(851\) 11.6551 0.399532
\(852\) −0.312838 −0.0107177
\(853\) 29.2738 1.00232 0.501158 0.865356i \(-0.332907\pi\)
0.501158 + 0.865356i \(0.332907\pi\)
\(854\) −8.69356 −0.297488
\(855\) 18.1887 0.622039
\(856\) −38.5364 −1.31715
\(857\) −10.2407 −0.349815 −0.174907 0.984585i \(-0.555963\pi\)
−0.174907 + 0.984585i \(0.555963\pi\)
\(858\) 0 0
\(859\) 0.0382432 0.00130484 0.000652421 1.00000i \(-0.499792\pi\)
0.000652421 1.00000i \(0.499792\pi\)
\(860\) 3.21882 0.109761
\(861\) 1.28634 0.0438384
\(862\) −16.9152 −0.576135
\(863\) −51.8036 −1.76341 −0.881707 0.471798i \(-0.843605\pi\)
−0.881707 + 0.471798i \(0.843605\pi\)
\(864\) 2.32403 0.0790650
\(865\) −26.5916 −0.904140
\(866\) −5.47767 −0.186139
\(867\) 3.28803 0.111667
\(868\) 1.76710 0.0599792
\(869\) 0 0
\(870\) 0.0745554 0.00252766
\(871\) 1.31660 0.0446112
\(872\) −5.35510 −0.181347
\(873\) −17.6960 −0.598917
\(874\) 3.35771 0.113576
\(875\) 6.31413 0.213457
\(876\) −0.891222 −0.0301116
\(877\) −7.78611 −0.262918 −0.131459 0.991322i \(-0.541966\pi\)
−0.131459 + 0.991322i \(0.541966\pi\)
\(878\) 16.0810 0.542709
\(879\) 3.36898 0.113633
\(880\) 0 0
\(881\) 12.4817 0.420519 0.210259 0.977646i \(-0.432569\pi\)
0.210259 + 0.977646i \(0.432569\pi\)
\(882\) −0.231034 −0.00777931
\(883\) −25.8967 −0.871493 −0.435746 0.900069i \(-0.643516\pi\)
−0.435746 + 0.900069i \(0.643516\pi\)
\(884\) 1.58465 0.0532975
\(885\) 4.65240 0.156389
\(886\) −47.7867 −1.60543
\(887\) 35.2744 1.18440 0.592200 0.805791i \(-0.298260\pi\)
0.592200 + 0.805791i \(0.298260\pi\)
\(888\) 2.45824 0.0824931
\(889\) 23.9614 0.803640
\(890\) −34.8575 −1.16843
\(891\) 0 0
\(892\) −12.3985 −0.415132
\(893\) −10.7346 −0.359220
\(894\) 2.87556 0.0961732
\(895\) −47.8333 −1.59889
\(896\) −7.01398 −0.234321
\(897\) 0.0576096 0.00192353
\(898\) −37.9139 −1.26520
\(899\) 0.183838 0.00613135
\(900\) 11.4963 0.383209
\(901\) −51.7458 −1.72390
\(902\) 0 0
\(903\) −0.413974 −0.0137762
\(904\) −22.4659 −0.747203
\(905\) 80.1241 2.66342
\(906\) −1.54418 −0.0513021
\(907\) −15.1372 −0.502622 −0.251311 0.967906i \(-0.580862\pi\)
−0.251311 + 0.967906i \(0.580862\pi\)
\(908\) −11.2094 −0.371997
\(909\) 21.1193 0.700481
\(910\) −3.40242 −0.112789
\(911\) −49.4855 −1.63953 −0.819764 0.572701i \(-0.805896\pi\)
−0.819764 + 0.572701i \(0.805896\pi\)
\(912\) 0.440396 0.0145830
\(913\) 0 0
\(914\) 32.2731 1.06750
\(915\) 1.00762 0.0333109
\(916\) −4.81330 −0.159036
\(917\) 40.0565 1.32278
\(918\) −5.11568 −0.168843
\(919\) 15.0994 0.498082 0.249041 0.968493i \(-0.419885\pi\)
0.249041 + 0.968493i \(0.419885\pi\)
\(920\) 15.8149 0.521401
\(921\) 2.18737 0.0720764
\(922\) −21.2430 −0.699601
\(923\) 1.48527 0.0488882
\(924\) 0 0
\(925\) 42.6123 1.40108
\(926\) 30.2464 0.993957
\(927\) −28.3003 −0.929503
\(928\) 0.664357 0.0218086
\(929\) −25.3815 −0.832740 −0.416370 0.909195i \(-0.636698\pi\)
−0.416370 + 0.909195i \(0.636698\pi\)
\(930\) 0.405549 0.0132985
\(931\) 0.124594 0.00408339
\(932\) 13.1290 0.430054
\(933\) −3.18364 −0.104228
\(934\) 39.7369 1.30023
\(935\) 0 0
\(936\) −3.14870 −0.102918
\(937\) 31.1915 1.01898 0.509492 0.860476i \(-0.329834\pi\)
0.509492 + 0.860476i \(0.329834\pi\)
\(938\) −11.6791 −0.381335
\(939\) 2.31489 0.0755436
\(940\) −12.7033 −0.414336
\(941\) 22.9835 0.749242 0.374621 0.927178i \(-0.377773\pi\)
0.374621 + 0.927178i \(0.377773\pi\)
\(942\) −1.69778 −0.0553166
\(943\) 7.13225 0.232258
\(944\) −29.1910 −0.950085
\(945\) −5.54721 −0.180451
\(946\) 0 0
\(947\) −2.18255 −0.0709233 −0.0354617 0.999371i \(-0.511290\pi\)
−0.0354617 + 0.999371i \(0.511290\pi\)
\(948\) 0.974105 0.0316375
\(949\) 4.23127 0.137353
\(950\) 12.2761 0.398290
\(951\) 2.06329 0.0669069
\(952\) −55.9474 −1.81327
\(953\) −15.1240 −0.489915 −0.244958 0.969534i \(-0.578774\pi\)
−0.244958 + 0.969534i \(0.578774\pi\)
\(954\) 25.8334 0.836386
\(955\) 6.53669 0.211522
\(956\) −18.6216 −0.602266
\(957\) 0 0
\(958\) 39.3707 1.27201
\(959\) 4.47661 0.144557
\(960\) 3.01868 0.0974276
\(961\) 1.00000 0.0322581
\(962\) −2.93236 −0.0945430
\(963\) 37.4011 1.20523
\(964\) 11.8487 0.381621
\(965\) −46.7973 −1.50646
\(966\) −0.511034 −0.0164423
\(967\) −23.8152 −0.765847 −0.382923 0.923780i \(-0.625083\pi\)
−0.382923 + 0.923780i \(0.625083\pi\)
\(968\) 0 0
\(969\) 1.37676 0.0442278
\(970\) −22.3619 −0.717997
\(971\) 30.7573 0.987047 0.493524 0.869732i \(-0.335709\pi\)
0.493524 + 0.869732i \(0.335709\pi\)
\(972\) −1.93596 −0.0620959
\(973\) 32.4421 1.04005
\(974\) −10.9373 −0.350454
\(975\) 0.210626 0.00674545
\(976\) −6.32220 −0.202369
\(977\) 30.7283 0.983087 0.491543 0.870853i \(-0.336433\pi\)
0.491543 + 0.870853i \(0.336433\pi\)
\(978\) −0.124202 −0.00397153
\(979\) 0 0
\(980\) 0.147444 0.00470992
\(981\) 5.19733 0.165938
\(982\) 16.4769 0.525799
\(983\) −42.0295 −1.34053 −0.670267 0.742120i \(-0.733820\pi\)
−0.670267 + 0.742120i \(0.733820\pi\)
\(984\) 1.50430 0.0479553
\(985\) 24.4847 0.780146
\(986\) −1.46239 −0.0465721
\(987\) 1.63378 0.0520038
\(988\) 0.426638 0.0135732
\(989\) −2.29532 −0.0729869
\(990\) 0 0
\(991\) 11.9371 0.379195 0.189598 0.981862i \(-0.439282\pi\)
0.189598 + 0.981862i \(0.439282\pi\)
\(992\) 3.61381 0.114739
\(993\) −0.00140090 −4.44562e−5 0
\(994\) −13.1753 −0.417894
\(995\) −91.2943 −2.89422
\(996\) −0.708310 −0.0224437
\(997\) −19.8817 −0.629661 −0.314830 0.949148i \(-0.601948\pi\)
−0.314830 + 0.949148i \(0.601948\pi\)
\(998\) −3.33911 −0.105698
\(999\) −4.78083 −0.151259
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.2.a.l.1.5 15
11.10 odd 2 3751.2.a.m.1.11 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3751.2.a.l.1.5 15 1.1 even 1 trivial
3751.2.a.m.1.11 yes 15 11.10 odd 2