Properties

Label 375.3.k.b.7.2
Level $375$
Weight $3$
Character 375.7
Analytic conductor $10.218$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,3,Mod(7,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 17])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 375.k (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,-4,0,0,0,0,4,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2180099135\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.2
Character \(\chi\) \(=\) 375.7
Dual form 375.3.k.b.268.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.22224 + 1.13229i) q^{2} +(1.71073 - 0.270952i) q^{3} +(1.30514 - 1.79637i) q^{4} +(-3.49485 + 2.53916i) q^{6} +(-3.10232 - 3.10232i) q^{7} +(0.694313 - 4.38372i) q^{8} +(2.85317 - 0.927051i) q^{9} +(-2.50856 + 7.72057i) q^{11} +(1.74601 - 3.42674i) q^{12} +(2.93716 + 1.49656i) q^{13} +(10.4068 + 3.38139i) q^{14} +(6.16532 + 18.9749i) q^{16} +(-27.8560 - 4.41196i) q^{17} +(-5.29075 + 5.29075i) q^{18} +(15.2294 + 20.9615i) q^{19} +(-6.14781 - 4.46664i) q^{21} +(-3.16728 - 19.9974i) q^{22} +(8.88304 + 17.4339i) q^{23} -7.68747i q^{24} -8.22163 q^{26} +(4.62981 - 2.35900i) q^{27} +(-9.62191 + 1.52396i) q^{28} +(-20.3892 + 28.0633i) q^{29} +(8.77688 - 6.37677i) q^{31} +(-22.6323 - 22.6323i) q^{32} +(-2.19956 + 13.8875i) q^{33} +(66.8985 - 21.7366i) q^{34} +(2.05846 - 6.33529i) q^{36} +(-11.0377 + 21.6628i) q^{37} +(-57.5779 - 29.3374i) q^{38} +(5.43018 + 1.76437i) q^{39} +(13.9284 + 42.8673i) q^{41} +(18.7195 + 2.96487i) q^{42} +(8.53203 - 8.53203i) q^{43} +(10.5950 + 14.5828i) q^{44} +(-39.4805 - 28.6843i) q^{46} +(6.30548 + 39.8112i) q^{47} +(15.6885 + 30.7904i) q^{48} -29.7512i q^{49} -48.8495 q^{51} +(6.52180 - 3.32302i) q^{52} +(-90.1725 + 14.2819i) q^{53} +(-7.61748 + 10.4846i) q^{54} +(-15.7537 + 11.4457i) q^{56} +(31.7329 + 31.7329i) q^{57} +(13.5339 - 85.4499i) q^{58} +(-101.152 + 32.8662i) q^{59} +(-4.73879 + 14.5845i) q^{61} +(-12.2840 + 24.1087i) q^{62} +(-11.7275 - 5.97544i) q^{63} +(0.0212563 + 0.00690660i) q^{64} +(-10.8367 - 33.3519i) q^{66} +(-26.4335 - 4.18666i) q^{67} +(-44.2816 + 44.2816i) q^{68} +(19.9202 + 27.4178i) q^{69} +(-41.3332 - 30.0303i) q^{71} +(-2.08294 - 13.1512i) q^{72} +(51.7793 + 101.623i) q^{73} -60.6378i q^{74} +57.5312 q^{76} +(31.7341 - 16.1693i) q^{77} +(-14.0650 + 2.22767i) q^{78} +(-21.7607 + 29.9510i) q^{79} +(7.28115 - 5.29007i) q^{81} +(-79.4905 - 79.4905i) q^{82} +(16.2002 - 102.284i) q^{83} +(-16.0475 + 5.21416i) q^{84} +(-9.29951 + 28.6210i) q^{86} +(-27.2765 + 53.5331i) q^{87} +(32.1031 + 16.3573i) q^{88} +(-108.616 - 35.2914i) q^{89} +(-4.46922 - 13.7548i) q^{91} +(42.9115 + 6.79652i) q^{92} +(13.2870 - 13.2870i) q^{93} +(-59.0902 - 81.3306i) q^{94} +(-44.8500 - 32.5855i) q^{96} +(9.20986 + 58.1488i) q^{97} +(33.6869 + 66.1143i) q^{98} +24.3537i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 4 q^{2} + 4 q^{7} + 72 q^{8} + 24 q^{12} - 32 q^{13} + 80 q^{16} - 40 q^{17} + 48 q^{18} + 100 q^{19} - 280 q^{22} - 264 q^{23} - 40 q^{26} + 44 q^{28} - 200 q^{29} - 636 q^{32} - 36 q^{33} - 100 q^{34}+ \cdots - 828 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{17}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22224 + 1.13229i −1.11112 + 0.566145i −0.910494 0.413523i \(-0.864298\pi\)
−0.200628 + 0.979668i \(0.564298\pi\)
\(3\) 1.71073 0.270952i 0.570242 0.0903175i
\(4\) 1.30514 1.79637i 0.326286 0.449094i
\(5\) 0 0
\(6\) −3.49485 + 2.53916i −0.582475 + 0.423193i
\(7\) −3.10232 3.10232i −0.443189 0.443189i 0.449893 0.893082i \(-0.351462\pi\)
−0.893082 + 0.449893i \(0.851462\pi\)
\(8\) 0.694313 4.38372i 0.0867892 0.547965i
\(9\) 2.85317 0.927051i 0.317019 0.103006i
\(10\) 0 0
\(11\) −2.50856 + 7.72057i −0.228051 + 0.701870i 0.769916 + 0.638145i \(0.220298\pi\)
−0.997968 + 0.0637248i \(0.979702\pi\)
\(12\) 1.74601 3.42674i 0.145501 0.285561i
\(13\) 2.93716 + 1.49656i 0.225936 + 0.115120i 0.563295 0.826256i \(-0.309534\pi\)
−0.337359 + 0.941376i \(0.609534\pi\)
\(14\) 10.4068 + 3.38139i 0.743346 + 0.241528i
\(15\) 0 0
\(16\) 6.16532 + 18.9749i 0.385333 + 1.18593i
\(17\) −27.8560 4.41196i −1.63859 0.259527i −0.731927 0.681383i \(-0.761379\pi\)
−0.906663 + 0.421856i \(0.861379\pi\)
\(18\) −5.29075 + 5.29075i −0.293930 + 0.293930i
\(19\) 15.2294 + 20.9615i 0.801547 + 1.10324i 0.992573 + 0.121650i \(0.0388186\pi\)
−0.191026 + 0.981585i \(0.561181\pi\)
\(20\) 0 0
\(21\) −6.14781 4.46664i −0.292753 0.212697i
\(22\) −3.16728 19.9974i −0.143967 0.908972i
\(23\) 8.88304 + 17.4339i 0.386219 + 0.757997i 0.999492 0.0318737i \(-0.0101474\pi\)
−0.613273 + 0.789871i \(0.710147\pi\)
\(24\) 7.68747i 0.320311i
\(25\) 0 0
\(26\) −8.22163 −0.316216
\(27\) 4.62981 2.35900i 0.171474 0.0873705i
\(28\) −9.62191 + 1.52396i −0.343640 + 0.0544272i
\(29\) −20.3892 + 28.0633i −0.703075 + 0.967699i 0.296844 + 0.954926i \(0.404066\pi\)
−0.999918 + 0.0127733i \(0.995934\pi\)
\(30\) 0 0
\(31\) 8.77688 6.37677i 0.283125 0.205702i −0.437154 0.899387i \(-0.644014\pi\)
0.720279 + 0.693684i \(0.244014\pi\)
\(32\) −22.6323 22.6323i −0.707261 0.707261i
\(33\) −2.19956 + 13.8875i −0.0666534 + 0.420833i
\(34\) 66.8985 21.7366i 1.96760 0.639313i
\(35\) 0 0
\(36\) 2.05846 6.33529i 0.0571795 0.175980i
\(37\) −11.0377 + 21.6628i −0.298317 + 0.585480i −0.990702 0.136048i \(-0.956560\pi\)
0.692385 + 0.721528i \(0.256560\pi\)
\(38\) −57.5779 29.3374i −1.51521 0.772037i
\(39\) 5.43018 + 1.76437i 0.139235 + 0.0452403i
\(40\) 0 0
\(41\) 13.9284 + 42.8673i 0.339718 + 1.04554i 0.964351 + 0.264626i \(0.0852484\pi\)
−0.624634 + 0.780918i \(0.714752\pi\)
\(42\) 18.7195 + 2.96487i 0.445701 + 0.0705921i
\(43\) 8.53203 8.53203i 0.198419 0.198419i −0.600903 0.799322i \(-0.705192\pi\)
0.799322 + 0.600903i \(0.205192\pi\)
\(44\) 10.5950 + 14.5828i 0.240795 + 0.331426i
\(45\) 0 0
\(46\) −39.4805 28.6843i −0.858272 0.623571i
\(47\) 6.30548 + 39.8112i 0.134159 + 0.847048i 0.959355 + 0.282201i \(0.0910646\pi\)
−0.825196 + 0.564846i \(0.808935\pi\)
\(48\) 15.6885 + 30.7904i 0.326843 + 0.641466i
\(49\) 29.7512i 0.607167i
\(50\) 0 0
\(51\) −48.8495 −0.957833
\(52\) 6.52180 3.32302i 0.125419 0.0639042i
\(53\) −90.1725 + 14.2819i −1.70137 + 0.269470i −0.930171 0.367127i \(-0.880341\pi\)
−0.771197 + 0.636597i \(0.780341\pi\)
\(54\) −7.61748 + 10.4846i −0.141064 + 0.194158i
\(55\) 0 0
\(56\) −15.7537 + 11.4457i −0.281316 + 0.204388i
\(57\) 31.7329 + 31.7329i 0.556718 + 0.556718i
\(58\) 13.5339 85.4499i 0.233344 1.47327i
\(59\) −101.152 + 32.8662i −1.71444 + 0.557055i −0.991062 0.133399i \(-0.957411\pi\)
−0.723377 + 0.690454i \(0.757411\pi\)
\(60\) 0 0
\(61\) −4.73879 + 14.5845i −0.0776851 + 0.239090i −0.982356 0.187021i \(-0.940117\pi\)
0.904671 + 0.426111i \(0.140117\pi\)
\(62\) −12.2840 + 24.1087i −0.198129 + 0.388850i
\(63\) −11.7275 5.97544i −0.186150 0.0948483i
\(64\) 0.0212563 + 0.00690660i 0.000332130 + 0.000107916i
\(65\) 0 0
\(66\) −10.8367 33.3519i −0.164192 0.505332i
\(67\) −26.4335 4.18666i −0.394530 0.0624874i −0.0439823 0.999032i \(-0.514005\pi\)
−0.350548 + 0.936545i \(0.614005\pi\)
\(68\) −44.2816 + 44.2816i −0.651200 + 0.651200i
\(69\) 19.9202 + 27.4178i 0.288699 + 0.397360i
\(70\) 0 0
\(71\) −41.3332 30.0303i −0.582158 0.422963i 0.257343 0.966320i \(-0.417153\pi\)
−0.839501 + 0.543357i \(0.817153\pi\)
\(72\) −2.08294 13.1512i −0.0289297 0.182655i
\(73\) 51.7793 + 101.623i 0.709306 + 1.39209i 0.910902 + 0.412622i \(0.135387\pi\)
−0.201596 + 0.979469i \(0.564613\pi\)
\(74\) 60.6378i 0.819430i
\(75\) 0 0
\(76\) 57.5312 0.756989
\(77\) 31.7341 16.1693i 0.412131 0.209991i
\(78\) −14.0650 + 2.22767i −0.180320 + 0.0285599i
\(79\) −21.7607 + 29.9510i −0.275452 + 0.379127i −0.924221 0.381859i \(-0.875284\pi\)
0.648769 + 0.760985i \(0.275284\pi\)
\(80\) 0 0
\(81\) 7.28115 5.29007i 0.0898908 0.0653095i
\(82\) −79.4905 79.4905i −0.969396 0.969396i
\(83\) 16.2002 102.284i 0.195183 1.23234i −0.674332 0.738429i \(-0.735568\pi\)
0.869514 0.493907i \(-0.164432\pi\)
\(84\) −16.0475 + 5.21416i −0.191042 + 0.0620733i
\(85\) 0 0
\(86\) −9.29951 + 28.6210i −0.108134 + 0.332802i
\(87\) −27.2765 + 53.5331i −0.313523 + 0.615323i
\(88\) 32.1031 + 16.3573i 0.364808 + 0.185879i
\(89\) −108.616 35.2914i −1.22040 0.396533i −0.373175 0.927761i \(-0.621731\pi\)
−0.847229 + 0.531228i \(0.821731\pi\)
\(90\) 0 0
\(91\) −4.46922 13.7548i −0.0491123 0.151152i
\(92\) 42.9115 + 6.79652i 0.466429 + 0.0738752i
\(93\) 13.2870 13.2870i 0.142871 0.142871i
\(94\) −59.0902 81.3306i −0.628619 0.865219i
\(95\) 0 0
\(96\) −44.8500 32.5855i −0.467188 0.339432i
\(97\) 9.20986 + 58.1488i 0.0949470 + 0.599472i 0.988583 + 0.150679i \(0.0481460\pi\)
−0.893636 + 0.448793i \(0.851854\pi\)
\(98\) 33.6869 + 66.1143i 0.343744 + 0.674636i
\(99\) 24.3537i 0.245997i
\(100\) 0 0
\(101\) 76.1042 0.753507 0.376754 0.926313i \(-0.377040\pi\)
0.376754 + 0.926313i \(0.377040\pi\)
\(102\) 108.555 55.3117i 1.06427 0.542272i
\(103\) 3.16859 0.501856i 0.0307631 0.00487239i −0.141034 0.990005i \(-0.545043\pi\)
0.171797 + 0.985132i \(0.445043\pi\)
\(104\) 8.59981 11.8366i 0.0826905 0.113814i
\(105\) 0 0
\(106\) 184.214 133.839i 1.73787 1.26263i
\(107\) 93.9432 + 93.9432i 0.877974 + 0.877974i 0.993325 0.115351i \(-0.0367993\pi\)
−0.115351 + 0.993325i \(0.536799\pi\)
\(108\) 1.80490 11.3957i 0.0167121 0.105516i
\(109\) 203.328 66.0652i 1.86539 0.606103i 0.872269 0.489026i \(-0.162648\pi\)
0.993123 0.117076i \(-0.0373523\pi\)
\(110\) 0 0
\(111\) −13.0130 + 40.0498i −0.117234 + 0.360809i
\(112\) 39.7395 77.9931i 0.354817 0.696367i
\(113\) 125.909 + 64.1541i 1.11424 + 0.567735i 0.911419 0.411480i \(-0.134988\pi\)
0.202824 + 0.979215i \(0.434988\pi\)
\(114\) −106.449 34.5874i −0.933763 0.303398i
\(115\) 0 0
\(116\) 23.8014 + 73.2532i 0.205184 + 0.631493i
\(117\) 9.76761 + 1.54704i 0.0834838 + 0.0132225i
\(118\) 187.570 187.570i 1.58958 1.58958i
\(119\) 72.7311 + 100.106i 0.611185 + 0.841224i
\(120\) 0 0
\(121\) 44.5768 + 32.3869i 0.368403 + 0.267661i
\(122\) −5.98312 37.7760i −0.0490420 0.309639i
\(123\) 35.4427 + 69.5603i 0.288152 + 0.565531i
\(124\) 24.0892i 0.194267i
\(125\) 0 0
\(126\) 32.8272 0.260533
\(127\) −166.206 + 84.6861i −1.30871 + 0.666820i −0.962486 0.271332i \(-0.912536\pi\)
−0.346222 + 0.938152i \(0.612536\pi\)
\(128\) 126.397 20.0193i 0.987473 0.156400i
\(129\) 12.2842 16.9077i 0.0952263 0.131068i
\(130\) 0 0
\(131\) 132.639 96.3682i 1.01251 0.735635i 0.0477795 0.998858i \(-0.484786\pi\)
0.964735 + 0.263223i \(0.0847855\pi\)
\(132\) 22.0764 + 22.0764i 0.167245 + 0.167245i
\(133\) 17.7827 112.276i 0.133705 0.844179i
\(134\) 63.4822 20.6266i 0.473748 0.153930i
\(135\) 0 0
\(136\) −38.6816 + 119.050i −0.284424 + 0.875366i
\(137\) 57.9190 113.672i 0.422766 0.829726i −0.577148 0.816640i \(-0.695834\pi\)
0.999914 0.0130861i \(-0.00416557\pi\)
\(138\) −75.3124 38.3736i −0.545742 0.278070i
\(139\) 17.6523 + 5.73557i 0.126995 + 0.0412631i 0.371825 0.928303i \(-0.378732\pi\)
−0.244830 + 0.969566i \(0.578732\pi\)
\(140\) 0 0
\(141\) 21.5739 + 66.3977i 0.153006 + 0.470905i
\(142\) 125.855 + 19.9335i 0.886306 + 0.140377i
\(143\) −18.9223 + 18.9223i −0.132324 + 0.132324i
\(144\) 35.1814 + 48.4231i 0.244315 + 0.336271i
\(145\) 0 0
\(146\) −230.132 167.201i −1.57625 1.14521i
\(147\) −8.06116 50.8961i −0.0548378 0.346232i
\(148\) 24.5086 + 48.1009i 0.165599 + 0.325006i
\(149\) 10.5645i 0.0709024i 0.999371 + 0.0354512i \(0.0112868\pi\)
−0.999371 + 0.0354512i \(0.988713\pi\)
\(150\) 0 0
\(151\) 119.808 0.793433 0.396716 0.917941i \(-0.370150\pi\)
0.396716 + 0.917941i \(0.370150\pi\)
\(152\) 102.463 52.2076i 0.674100 0.343471i
\(153\) −83.5681 + 13.2359i −0.546197 + 0.0865090i
\(154\) −52.2125 + 71.8643i −0.339042 + 0.466651i
\(155\) 0 0
\(156\) 10.2566 7.45188i 0.0657476 0.0477684i
\(157\) −61.8710 61.8710i −0.394083 0.394083i 0.482057 0.876140i \(-0.339890\pi\)
−0.876140 + 0.482057i \(0.839890\pi\)
\(158\) 14.4443 91.1978i 0.0914197 0.577202i
\(159\) −150.391 + 48.8649i −0.945854 + 0.307326i
\(160\) 0 0
\(161\) 26.5277 81.6438i 0.164768 0.507104i
\(162\) −10.1906 + 20.0002i −0.0629050 + 0.123458i
\(163\) −262.372 133.685i −1.60964 0.820153i −0.999614 0.0277732i \(-0.991158\pi\)
−0.610028 0.792380i \(-0.708842\pi\)
\(164\) 95.1843 + 30.9272i 0.580392 + 0.188581i
\(165\) 0 0
\(166\) 79.8142 + 245.643i 0.480809 + 1.47978i
\(167\) −27.9969 4.43427i −0.167646 0.0265525i 0.0720471 0.997401i \(-0.477047\pi\)
−0.239693 + 0.970849i \(0.577047\pi\)
\(168\) −23.8490 + 23.8490i −0.141958 + 0.141958i
\(169\) −92.9485 127.933i −0.549991 0.756998i
\(170\) 0 0
\(171\) 62.8844 + 45.6882i 0.367745 + 0.267182i
\(172\) −4.19120 26.4622i −0.0243675 0.153850i
\(173\) 21.3003 + 41.8042i 0.123123 + 0.241643i 0.944338 0.328976i \(-0.106703\pi\)
−0.821215 + 0.570619i \(0.806703\pi\)
\(174\) 149.848i 0.861198i
\(175\) 0 0
\(176\) −161.963 −0.920246
\(177\) −164.138 + 83.6325i −0.927334 + 0.472500i
\(178\) 281.331 44.5585i 1.58051 0.250328i
\(179\) 65.0062 89.4733i 0.363163 0.499851i −0.587864 0.808960i \(-0.700031\pi\)
0.951027 + 0.309109i \(0.100031\pi\)
\(180\) 0 0
\(181\) 152.214 110.590i 0.840962 0.610995i −0.0816769 0.996659i \(-0.526028\pi\)
0.922639 + 0.385664i \(0.126028\pi\)
\(182\) 25.5061 + 25.5061i 0.140144 + 0.140144i
\(183\) −4.15507 + 26.2341i −0.0227053 + 0.143356i
\(184\) 82.5931 26.8361i 0.448876 0.145849i
\(185\) 0 0
\(186\) −14.4822 + 44.5718i −0.0778615 + 0.239633i
\(187\) 103.941 203.997i 0.555837 1.09089i
\(188\) 79.7455 + 40.6323i 0.424178 + 0.216129i
\(189\) −21.6815 7.04476i −0.114717 0.0372739i
\(190\) 0 0
\(191\) −47.3319 145.673i −0.247811 0.762683i −0.995161 0.0982534i \(-0.968674\pi\)
0.747351 0.664430i \(-0.231326\pi\)
\(192\) 0.0382351 + 0.00605585i 0.000199141 + 3.15409e-5i
\(193\) −243.828 + 243.828i −1.26336 + 1.26336i −0.313901 + 0.949456i \(0.601636\pi\)
−0.949456 + 0.313901i \(0.898364\pi\)
\(194\) −86.3078 118.792i −0.444885 0.612332i
\(195\) 0 0
\(196\) −53.4443 38.8295i −0.272675 0.198110i
\(197\) 33.5989 + 212.135i 0.170553 + 1.07683i 0.913309 + 0.407266i \(0.133518\pi\)
−0.742757 + 0.669562i \(0.766482\pi\)
\(198\) −27.5754 54.1197i −0.139270 0.273332i
\(199\) 261.788i 1.31552i 0.753228 + 0.657760i \(0.228496\pi\)
−0.753228 + 0.657760i \(0.771504\pi\)
\(200\) 0 0
\(201\) −46.3549 −0.230621
\(202\) −169.122 + 86.1720i −0.837238 + 0.426594i
\(203\) 150.315 23.8076i 0.740469 0.117279i
\(204\) −63.7555 + 87.7519i −0.312527 + 0.430157i
\(205\) 0 0
\(206\) −6.47314 + 4.70301i −0.0314230 + 0.0228302i
\(207\) 41.5070 + 41.5070i 0.200517 + 0.200517i
\(208\) −10.2885 + 64.9592i −0.0494641 + 0.312304i
\(209\) −200.038 + 64.9964i −0.957121 + 0.310988i
\(210\) 0 0
\(211\) −5.06063 + 15.5750i −0.0239840 + 0.0738152i −0.962332 0.271877i \(-0.912356\pi\)
0.938348 + 0.345692i \(0.112356\pi\)
\(212\) −92.0323 + 180.623i −0.434114 + 0.851997i
\(213\) −78.8466 40.1744i −0.370172 0.188612i
\(214\) −315.135 102.394i −1.47260 0.478475i
\(215\) 0 0
\(216\) −7.12668 21.9337i −0.0329939 0.101545i
\(217\) −47.0115 7.44589i −0.216643 0.0343129i
\(218\) −377.039 + 377.039i −1.72954 + 1.72954i
\(219\) 116.115 + 159.819i 0.530206 + 0.729766i
\(220\) 0 0
\(221\) −75.2149 54.6468i −0.340339 0.247271i
\(222\) −16.4300 103.735i −0.0740089 0.467274i
\(223\) −19.6834 38.6309i −0.0882664 0.173233i 0.842653 0.538457i \(-0.180992\pi\)
−0.930920 + 0.365224i \(0.880992\pi\)
\(224\) 140.426i 0.626900i
\(225\) 0 0
\(226\) −352.442 −1.55948
\(227\) 145.293 74.0305i 0.640058 0.326126i −0.103667 0.994612i \(-0.533058\pi\)
0.743724 + 0.668486i \(0.233058\pi\)
\(228\) 98.4201 15.5882i 0.431667 0.0683694i
\(229\) 5.52850 7.60933i 0.0241419 0.0332285i −0.796775 0.604276i \(-0.793463\pi\)
0.820917 + 0.571047i \(0.193463\pi\)
\(230\) 0 0
\(231\) 49.9072 36.2597i 0.216048 0.156968i
\(232\) 108.865 + 108.865i 0.469246 + 0.469246i
\(233\) −4.20377 + 26.5415i −0.0180419 + 0.113912i −0.995066 0.0992181i \(-0.968366\pi\)
0.977024 + 0.213130i \(0.0683659\pi\)
\(234\) −23.4577 + 7.62187i −0.100247 + 0.0325721i
\(235\) 0 0
\(236\) −72.9776 + 224.602i −0.309227 + 0.951703i
\(237\) −29.1113 + 57.1341i −0.122832 + 0.241072i
\(238\) −274.975 140.107i −1.15536 0.588683i
\(239\) 325.106 + 105.633i 1.36028 + 0.441981i 0.896135 0.443781i \(-0.146363\pi\)
0.464141 + 0.885761i \(0.346363\pi\)
\(240\) 0 0
\(241\) −27.6920 85.2271i −0.114904 0.353639i 0.877023 0.480449i \(-0.159526\pi\)
−0.991927 + 0.126810i \(0.959526\pi\)
\(242\) −135.732 21.4978i −0.560875 0.0888339i
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 20.0144 + 27.5475i 0.0820263 + 0.112900i
\(245\) 0 0
\(246\) −157.525 114.448i −0.640344 0.465237i
\(247\) 13.3611 + 84.3589i 0.0540937 + 0.341534i
\(248\) −21.8601 42.9029i −0.0881456 0.172995i
\(249\) 179.369i 0.720358i
\(250\) 0 0
\(251\) −259.732 −1.03479 −0.517394 0.855747i \(-0.673098\pi\)
−0.517394 + 0.855747i \(0.673098\pi\)
\(252\) −26.0401 + 13.2681i −0.103334 + 0.0526513i
\(253\) −156.884 + 24.8479i −0.620093 + 0.0982131i
\(254\) 273.461 376.386i 1.07662 1.48184i
\(255\) 0 0
\(256\) −258.289 + 187.658i −1.00894 + 0.733038i
\(257\) 124.723 + 124.723i 0.485305 + 0.485305i 0.906821 0.421516i \(-0.138502\pi\)
−0.421516 + 0.906821i \(0.638502\pi\)
\(258\) −8.15400 + 51.4823i −0.0316047 + 0.199544i
\(259\) 101.448 32.9623i 0.391689 0.127268i
\(260\) 0 0
\(261\) −32.1577 + 98.9711i −0.123209 + 0.379200i
\(262\) −185.640 + 364.340i −0.708551 + 1.39061i
\(263\) −79.8979 40.7100i −0.303794 0.154791i 0.295448 0.955359i \(-0.404531\pi\)
−0.599242 + 0.800568i \(0.704531\pi\)
\(264\) 59.3517 + 19.2845i 0.224817 + 0.0730474i
\(265\) 0 0
\(266\) 87.6111 + 269.639i 0.329365 + 1.01368i
\(267\) −195.374 30.9443i −0.731739 0.115896i
\(268\) −42.0203 + 42.0203i −0.156792 + 0.156792i
\(269\) −29.3157 40.3496i −0.108980 0.149999i 0.751043 0.660253i \(-0.229551\pi\)
−0.860023 + 0.510255i \(0.829551\pi\)
\(270\) 0 0
\(271\) −176.269 128.067i −0.650439 0.472571i 0.212982 0.977056i \(-0.431682\pi\)
−0.863421 + 0.504485i \(0.831682\pi\)
\(272\) −88.0248 555.767i −0.323621 2.04326i
\(273\) −11.3725 22.3198i −0.0416576 0.0817576i
\(274\) 318.189i 1.16127i
\(275\) 0 0
\(276\) 75.2514 0.272650
\(277\) −31.6907 + 16.1472i −0.114407 + 0.0582933i −0.510257 0.860022i \(-0.670450\pi\)
0.395850 + 0.918315i \(0.370450\pi\)
\(278\) −45.7220 + 7.24165i −0.164467 + 0.0260491i
\(279\) 19.1303 26.3306i 0.0685675 0.0943750i
\(280\) 0 0
\(281\) 300.785 218.533i 1.07041 0.777697i 0.0944226 0.995532i \(-0.469900\pi\)
0.975986 + 0.217835i \(0.0698995\pi\)
\(282\) −123.124 123.124i −0.436609 0.436609i
\(283\) −39.1052 + 246.901i −0.138181 + 0.872441i 0.817047 + 0.576571i \(0.195609\pi\)
−0.955228 + 0.295870i \(0.904391\pi\)
\(284\) −107.891 + 35.0561i −0.379900 + 0.123437i
\(285\) 0 0
\(286\) 20.6245 63.4756i 0.0721136 0.221943i
\(287\) 89.7777 176.199i 0.312814 0.613933i
\(288\) −85.5552 43.5926i −0.297067 0.151363i
\(289\) 481.637 + 156.493i 1.66657 + 0.541500i
\(290\) 0 0
\(291\) 31.5111 + 96.9812i 0.108286 + 0.333269i
\(292\) 250.132 + 39.6170i 0.856615 + 0.135675i
\(293\) 28.4897 28.4897i 0.0972346 0.0972346i −0.656816 0.754051i \(-0.728097\pi\)
0.754051 + 0.656816i \(0.228097\pi\)
\(294\) 75.5430 + 103.976i 0.256949 + 0.353660i
\(295\) 0 0
\(296\) 87.2999 + 63.4271i 0.294932 + 0.214281i
\(297\) 6.59868 + 41.6624i 0.0222178 + 0.140278i
\(298\) −11.9620 23.4768i −0.0401410 0.0787812i
\(299\) 64.5003i 0.215720i
\(300\) 0 0
\(301\) −52.9382 −0.175874
\(302\) −266.243 + 135.658i −0.881600 + 0.449198i
\(303\) 130.194 20.6206i 0.429682 0.0680549i
\(304\) −303.848 + 418.211i −0.999500 + 1.37569i
\(305\) 0 0
\(306\) 170.722 124.037i 0.557914 0.405348i
\(307\) −395.674 395.674i −1.28884 1.28884i −0.935491 0.353351i \(-0.885042\pi\)
−0.353351 0.935491i \(-0.614958\pi\)
\(308\) 12.3713 78.1095i 0.0401667 0.253602i
\(309\) 5.28462 1.71708i 0.0171023 0.00555688i
\(310\) 0 0
\(311\) −149.055 + 458.744i −0.479276 + 1.47506i 0.360826 + 0.932633i \(0.382495\pi\)
−0.840102 + 0.542428i \(0.817505\pi\)
\(312\) 11.5048 22.5794i 0.0368742 0.0723697i
\(313\) 195.466 + 99.5948i 0.624492 + 0.318194i 0.737446 0.675406i \(-0.236032\pi\)
−0.112955 + 0.993600i \(0.536032\pi\)
\(314\) 207.548 + 67.4365i 0.660982 + 0.214766i
\(315\) 0 0
\(316\) 25.4025 + 78.1807i 0.0803875 + 0.247407i
\(317\) −260.197 41.2111i −0.820809 0.130003i −0.268114 0.963387i \(-0.586401\pi\)
−0.552695 + 0.833384i \(0.686401\pi\)
\(318\) 278.875 278.875i 0.876967 0.876967i
\(319\) −165.517 227.814i −0.518862 0.714152i
\(320\) 0 0
\(321\) 186.165 + 135.257i 0.579954 + 0.421361i
\(322\) 33.4934 + 211.469i 0.104017 + 0.656737i
\(323\) −331.749 651.095i −1.02709 2.01577i
\(324\) 19.9840i 0.0616789i
\(325\) 0 0
\(326\) 734.423 2.25283
\(327\) 329.938 168.112i 1.00898 0.514103i
\(328\) 197.589 31.2950i 0.602405 0.0954116i
\(329\) 103.946 143.069i 0.315944 0.434860i
\(330\) 0 0
\(331\) 42.7419 31.0538i 0.129130 0.0938181i −0.521346 0.853346i \(-0.674570\pi\)
0.650475 + 0.759527i \(0.274570\pi\)
\(332\) −162.597 162.597i −0.489749 0.489749i
\(333\) −11.4100 + 72.0401i −0.0342644 + 0.216337i
\(334\) 67.2367 21.8465i 0.201307 0.0654088i
\(335\) 0 0
\(336\) 46.8510 144.192i 0.139437 0.429144i
\(337\) 283.573 556.543i 0.841463 1.65146i 0.0859789 0.996297i \(-0.472598\pi\)
0.755484 0.655167i \(-0.227402\pi\)
\(338\) 351.411 + 179.053i 1.03968 + 0.529742i
\(339\) 232.779 + 75.6346i 0.686664 + 0.223111i
\(340\) 0 0
\(341\) 27.2150 + 83.7590i 0.0798092 + 0.245628i
\(342\) −191.477 30.3269i −0.559873 0.0886752i
\(343\) −244.312 + 244.312i −0.712279 + 0.712279i
\(344\) −31.4781 43.3259i −0.0915062 0.125947i
\(345\) 0 0
\(346\) −94.6688 68.7809i −0.273609 0.198789i
\(347\) −14.2223 89.7958i −0.0409863 0.258777i 0.958683 0.284475i \(-0.0918193\pi\)
−0.999670 + 0.0256976i \(0.991819\pi\)
\(348\) 60.5658 + 118.867i 0.174040 + 0.341572i
\(349\) 481.591i 1.37992i −0.723849 0.689958i \(-0.757629\pi\)
0.723849 0.689958i \(-0.242371\pi\)
\(350\) 0 0
\(351\) 17.1289 0.0488002
\(352\) 231.509 117.960i 0.657697 0.335113i
\(353\) 323.170 51.1852i 0.915497 0.145000i 0.319129 0.947711i \(-0.396610\pi\)
0.596368 + 0.802711i \(0.296610\pi\)
\(354\) 270.058 371.703i 0.762877 1.05001i
\(355\) 0 0
\(356\) −205.156 + 149.054i −0.576281 + 0.418692i
\(357\) 151.547 + 151.547i 0.424501 + 0.424501i
\(358\) −43.1498 + 272.437i −0.120530 + 0.760998i
\(359\) −661.981 + 215.091i −1.84396 + 0.599138i −0.846152 + 0.532942i \(0.821086\pi\)
−0.997807 + 0.0661963i \(0.978914\pi\)
\(360\) 0 0
\(361\) −95.8935 + 295.130i −0.265633 + 0.817534i
\(362\) −213.037 + 418.109i −0.588500 + 1.15500i
\(363\) 85.0340 + 43.3270i 0.234253 + 0.119358i
\(364\) −30.5418 9.92363i −0.0839061 0.0272627i
\(365\) 0 0
\(366\) −20.4710 63.0032i −0.0559316 0.172140i
\(367\) 438.510 + 69.4532i 1.19485 + 0.189246i 0.721997 0.691896i \(-0.243224\pi\)
0.472853 + 0.881141i \(0.343224\pi\)
\(368\) −276.041 + 276.041i −0.750111 + 0.750111i
\(369\) 79.4803 + 109.395i 0.215394 + 0.296464i
\(370\) 0 0
\(371\) 324.051 + 235.437i 0.873454 + 0.634601i
\(372\) −6.52702 41.2100i −0.0175457 0.110779i
\(373\) 106.315 + 208.656i 0.285028 + 0.559399i 0.988481 0.151342i \(-0.0483596\pi\)
−0.703453 + 0.710741i \(0.748360\pi\)
\(374\) 571.022i 1.52680i
\(375\) 0 0
\(376\) 178.899 0.475796
\(377\) −101.885 + 51.9128i −0.270251 + 0.137700i
\(378\) 56.1584 8.89461i 0.148567 0.0235307i
\(379\) −45.5534 + 62.6989i −0.120194 + 0.165432i −0.864874 0.501989i \(-0.832602\pi\)
0.744680 + 0.667421i \(0.232602\pi\)
\(380\) 0 0
\(381\) −261.387 + 189.909i −0.686055 + 0.498448i
\(382\) 270.126 + 270.126i 0.707137 + 0.707137i
\(383\) 76.7271 484.436i 0.200332 1.26485i −0.658497 0.752583i \(-0.728808\pi\)
0.858829 0.512262i \(-0.171192\pi\)
\(384\) 210.806 68.4949i 0.548973 0.178372i
\(385\) 0 0
\(386\) 265.761 817.928i 0.688500 2.11898i
\(387\) 16.4337 32.2529i 0.0424643 0.0833409i
\(388\) 116.477 + 59.3481i 0.300199 + 0.152959i
\(389\) 229.887 + 74.6949i 0.590970 + 0.192018i 0.589209 0.807981i \(-0.299439\pi\)
0.00176103 + 0.999998i \(0.499439\pi\)
\(390\) 0 0
\(391\) −170.528 524.832i −0.436134 1.34228i
\(392\) −130.421 20.6566i −0.332706 0.0526955i
\(393\) 200.799 200.799i 0.510938 0.510938i
\(394\) −314.863 433.372i −0.799145 1.09993i
\(395\) 0 0
\(396\) 43.7483 + 31.7850i 0.110475 + 0.0802651i
\(397\) 56.6087 + 357.414i 0.142591 + 0.900286i 0.950443 + 0.310900i \(0.100630\pi\)
−0.807851 + 0.589386i \(0.799370\pi\)
\(398\) −296.420 581.757i −0.744774 1.46170i
\(399\) 196.891i 0.493462i
\(400\) 0 0
\(401\) −41.2205 −0.102794 −0.0513972 0.998678i \(-0.516367\pi\)
−0.0513972 + 0.998678i \(0.516367\pi\)
\(402\) 103.012 52.4871i 0.256248 0.130565i
\(403\) 35.3223 5.59451i 0.0876485 0.0138822i
\(404\) 99.3269 136.712i 0.245859 0.338395i
\(405\) 0 0
\(406\) −307.080 + 223.106i −0.756354 + 0.549523i
\(407\) −139.560 139.560i −0.342899 0.342899i
\(408\) −33.9168 + 214.142i −0.0831295 + 0.524859i
\(409\) 11.1021 3.60730i 0.0271446 0.00881980i −0.295413 0.955370i \(-0.595457\pi\)
0.322558 + 0.946550i \(0.395457\pi\)
\(410\) 0 0
\(411\) 68.2837 210.156i 0.166140 0.511328i
\(412\) 3.23395 6.34698i 0.00784938 0.0154053i
\(413\) 415.768 + 211.844i 1.00670 + 0.512940i
\(414\) −139.236 45.2407i −0.336320 0.109277i
\(415\) 0 0
\(416\) −32.6042 100.346i −0.0783756 0.241215i
\(417\) 31.7523 + 5.02907i 0.0761445 + 0.0120601i
\(418\) 370.939 370.939i 0.887414 0.887414i
\(419\) −172.247 237.078i −0.411091 0.565818i 0.552393 0.833584i \(-0.313715\pi\)
−0.963484 + 0.267766i \(0.913715\pi\)
\(420\) 0 0
\(421\) −180.537 131.168i −0.428830 0.311563i 0.352351 0.935868i \(-0.385382\pi\)
−0.781181 + 0.624305i \(0.785382\pi\)
\(422\) −6.38947 40.3415i −0.0151409 0.0955960i
\(423\) 54.8977 + 107.743i 0.129782 + 0.254711i
\(424\) 405.207i 0.955677i
\(425\) 0 0
\(426\) 220.705 0.518088
\(427\) 59.9471 30.5446i 0.140391 0.0715329i
\(428\) 291.366 46.1479i 0.680763 0.107822i
\(429\) −27.2439 + 37.4980i −0.0635056 + 0.0874080i
\(430\) 0 0
\(431\) −251.983 + 183.076i −0.584647 + 0.424771i −0.840396 0.541972i \(-0.817678\pi\)
0.255750 + 0.966743i \(0.417678\pi\)
\(432\) 73.3061 + 73.3061i 0.169690 + 0.169690i
\(433\) −60.9708 + 384.955i −0.140810 + 0.889041i 0.811598 + 0.584216i \(0.198598\pi\)
−0.952408 + 0.304825i \(0.901402\pi\)
\(434\) 112.902 36.6841i 0.260143 0.0845255i
\(435\) 0 0
\(436\) 146.694 451.477i 0.336454 1.03550i
\(437\) −230.158 + 451.710i −0.526677 + 1.03366i
\(438\) −438.997 223.680i −1.00228 0.510685i
\(439\) −648.013 210.552i −1.47611 0.479617i −0.543162 0.839628i \(-0.682773\pi\)
−0.932948 + 0.360010i \(0.882773\pi\)
\(440\) 0 0
\(441\) −27.5809 84.8852i −0.0625416 0.192483i
\(442\) 229.022 + 36.2735i 0.518149 + 0.0820667i
\(443\) −109.896 + 109.896i −0.248072 + 0.248072i −0.820179 0.572107i \(-0.806126\pi\)
0.572107 + 0.820179i \(0.306126\pi\)
\(444\) 54.9606 + 75.6468i 0.123785 + 0.170376i
\(445\) 0 0
\(446\) 87.4826 + 63.5598i 0.196149 + 0.142511i
\(447\) 2.86246 + 18.0729i 0.00640372 + 0.0404315i
\(448\) −0.0445175 0.0873705i −9.93694e−5 0.000195023i
\(449\) 352.558i 0.785208i −0.919708 0.392604i \(-0.871574\pi\)
0.919708 0.392604i \(-0.128426\pi\)
\(450\) 0 0
\(451\) −365.900 −0.811308
\(452\) 279.574 142.450i 0.618527 0.315156i
\(453\) 204.959 32.4624i 0.452449 0.0716609i
\(454\) −239.053 + 329.028i −0.526547 + 0.724730i
\(455\) 0 0
\(456\) 161.141 117.076i 0.353379 0.256745i
\(457\) 453.981 + 453.981i 0.993395 + 0.993395i 0.999978 0.00658340i \(-0.00209558\pi\)
−0.00658340 + 0.999978i \(0.502096\pi\)
\(458\) −3.66971 + 23.1696i −0.00801247 + 0.0505887i
\(459\) −139.376 + 45.2859i −0.303651 + 0.0986622i
\(460\) 0 0
\(461\) 20.3868 62.7440i 0.0442229 0.136104i −0.926507 0.376277i \(-0.877204\pi\)
0.970730 + 0.240173i \(0.0772041\pi\)
\(462\) −69.8494 + 137.087i −0.151189 + 0.296726i
\(463\) −366.287 186.633i −0.791117 0.403094i 0.0112413 0.999937i \(-0.496422\pi\)
−0.802358 + 0.596843i \(0.796422\pi\)
\(464\) −658.204 213.863i −1.41854 0.460913i
\(465\) 0 0
\(466\) −20.7109 63.7416i −0.0444440 0.136785i
\(467\) 222.934 + 35.3093i 0.477375 + 0.0756088i 0.390485 0.920609i \(-0.372307\pi\)
0.0868898 + 0.996218i \(0.472307\pi\)
\(468\) 15.5272 15.5272i 0.0331777 0.0331777i
\(469\) 69.0169 + 94.9936i 0.147158 + 0.202545i
\(470\) 0 0
\(471\) −122.608 89.0803i −0.260315 0.189130i
\(472\) 73.8454 + 466.241i 0.156452 + 0.987799i
\(473\) 44.4689 + 87.2752i 0.0940147 + 0.184514i
\(474\) 159.928i 0.337401i
\(475\) 0 0
\(476\) 274.752 0.577210
\(477\) −244.037 + 124.343i −0.511609 + 0.260678i
\(478\) −842.072 + 133.371i −1.76166 + 0.279019i
\(479\) −107.714 + 148.256i −0.224874 + 0.309512i −0.906514 0.422175i \(-0.861267\pi\)
0.681641 + 0.731687i \(0.261267\pi\)
\(480\) 0 0
\(481\) −64.8392 + 47.1084i −0.134801 + 0.0979386i
\(482\) 158.040 + 158.040i 0.327884 + 0.327884i
\(483\) 23.2600 146.858i 0.0481574 0.304054i
\(484\) 116.358 37.8070i 0.240409 0.0781137i
\(485\) 0 0
\(486\) −12.0142 + 36.9760i −0.0247206 + 0.0760823i
\(487\) 198.241 389.069i 0.407065 0.798910i −0.592915 0.805265i \(-0.702023\pi\)
0.999980 + 0.00635532i \(0.00202297\pi\)
\(488\) 60.6441 + 30.8997i 0.124271 + 0.0633191i
\(489\) −485.068 157.608i −0.991960 0.322307i
\(490\) 0 0
\(491\) −58.5836 180.302i −0.119315 0.367213i 0.873508 0.486810i \(-0.161840\pi\)
−0.992823 + 0.119597i \(0.961840\pi\)
\(492\) 171.214 + 27.1176i 0.347996 + 0.0551172i
\(493\) 691.775 691.775i 1.40320 1.40320i
\(494\) −125.210 172.337i −0.253462 0.348861i
\(495\) 0 0
\(496\) 175.111 + 127.226i 0.353046 + 0.256503i
\(497\) 35.0652 + 221.393i 0.0705537 + 0.445458i
\(498\) 203.098 + 398.602i 0.407827 + 0.800406i
\(499\) 326.118i 0.653543i −0.945103 0.326772i \(-0.894039\pi\)
0.945103 0.326772i \(-0.105961\pi\)
\(500\) 0 0
\(501\) −49.0964 −0.0979969
\(502\) 577.187 294.091i 1.14977 0.585839i
\(503\) −256.945 + 40.6961i −0.510826 + 0.0809069i −0.406526 0.913639i \(-0.633260\pi\)
−0.104299 + 0.994546i \(0.533260\pi\)
\(504\) −34.3372 + 47.2611i −0.0681294 + 0.0937720i
\(505\) 0 0
\(506\) 320.498 232.856i 0.633396 0.460189i
\(507\) −193.673 193.673i −0.381998 0.381998i
\(508\) −64.7944 + 409.096i −0.127548 + 0.805306i
\(509\) −592.785 + 192.608i −1.16461 + 0.378404i −0.826627 0.562750i \(-0.809744\pi\)
−0.337980 + 0.941153i \(0.609744\pi\)
\(510\) 0 0
\(511\) 154.630 475.902i 0.302603 0.931316i
\(512\) 129.105 253.382i 0.252158 0.494887i
\(513\) 119.957 + 61.1213i 0.233835 + 0.119145i
\(514\) −418.388 135.943i −0.813985 0.264480i
\(515\) 0 0
\(516\) −14.3400 44.1340i −0.0277907 0.0855310i
\(517\) −323.183 51.1872i −0.625112 0.0990081i
\(518\) −188.118 + 188.118i −0.363162 + 0.363162i
\(519\) 47.7659 + 65.7441i 0.0920345 + 0.126675i
\(520\) 0 0
\(521\) 632.041 + 459.205i 1.21313 + 0.881391i 0.995511 0.0946427i \(-0.0301709\pi\)
0.217619 + 0.976034i \(0.430171\pi\)
\(522\) −40.6018 256.350i −0.0777812 0.491091i
\(523\) −32.3892 63.5674i −0.0619296 0.121544i 0.857967 0.513705i \(-0.171727\pi\)
−0.919896 + 0.392161i \(0.871727\pi\)
\(524\) 364.044i 0.694741i
\(525\) 0 0
\(526\) 223.648 0.425186
\(527\) −272.623 + 138.908i −0.517311 + 0.263583i
\(528\) −277.075 + 43.8843i −0.524763 + 0.0831143i
\(529\) 85.9045 118.237i 0.162390 0.223511i
\(530\) 0 0
\(531\) −258.135 + 187.546i −0.486130 + 0.353194i
\(532\) −178.480 178.480i −0.335489 0.335489i
\(533\) −23.2434 + 146.753i −0.0436086 + 0.275334i
\(534\) 469.207 152.455i 0.878665 0.285496i
\(535\) 0 0
\(536\) −36.7063 + 112.970i −0.0684818 + 0.210765i
\(537\) 86.9648 170.678i 0.161946 0.317836i
\(538\) 110.834 + 56.4728i 0.206011 + 0.104968i
\(539\) 229.696 + 74.6328i 0.426152 + 0.138465i
\(540\) 0 0
\(541\) 146.082 + 449.594i 0.270022 + 0.831042i 0.990494 + 0.137558i \(0.0439252\pi\)
−0.720472 + 0.693484i \(0.756075\pi\)
\(542\) 536.721 + 85.0083i 0.990260 + 0.156842i
\(543\) 230.432 230.432i 0.424369 0.424369i
\(544\) 530.594 + 730.300i 0.975357 + 1.34246i
\(545\) 0 0
\(546\) 50.5450 + 36.7231i 0.0925732 + 0.0672584i
\(547\) 3.82493 + 24.1496i 0.00699255 + 0.0441492i 0.990938 0.134321i \(-0.0428853\pi\)
−0.983945 + 0.178470i \(0.942885\pi\)
\(548\) −128.606 252.403i −0.234682 0.460589i
\(549\) 46.0051i 0.0837981i
\(550\) 0 0
\(551\) −898.762 −1.63115
\(552\) 134.023 68.2881i 0.242795 0.123710i
\(553\) 160.426 25.4091i 0.290102 0.0459477i
\(554\) 52.1412 71.7662i 0.0941176 0.129542i
\(555\) 0 0
\(556\) 33.3420 24.2244i 0.0599676 0.0435690i
\(557\) −361.027 361.027i −0.648163 0.648163i 0.304385 0.952549i \(-0.401549\pi\)
−0.952549 + 0.304385i \(0.901549\pi\)
\(558\) −12.6983 + 80.1741i −0.0227569 + 0.143681i
\(559\) 37.8286 12.2913i 0.0676720 0.0219880i
\(560\) 0 0
\(561\) 122.542 377.146i 0.218435 0.672274i
\(562\) −420.974 + 826.208i −0.749064 + 1.47012i
\(563\) 808.836 + 412.123i 1.43665 + 0.732012i 0.986929 0.161155i \(-0.0515219\pi\)
0.449725 + 0.893167i \(0.351522\pi\)
\(564\) 147.432 + 47.9036i 0.261404 + 0.0849354i
\(565\) 0 0
\(566\) −192.662 592.952i −0.340392 1.04762i
\(567\) −39.0000 6.17699i −0.0687830 0.0108942i
\(568\) −160.343 + 160.343i −0.282294 + 0.282294i
\(569\) 100.389 + 138.174i 0.176430 + 0.242836i 0.888069 0.459710i \(-0.152047\pi\)
−0.711639 + 0.702546i \(0.752047\pi\)
\(570\) 0 0
\(571\) −18.3779 13.3524i −0.0321855 0.0233842i 0.571576 0.820549i \(-0.306332\pi\)
−0.603762 + 0.797165i \(0.706332\pi\)
\(572\) 9.29526 + 58.6880i 0.0162505 + 0.102601i
\(573\) −120.442 236.381i −0.210196 0.412533i
\(574\) 493.210i 0.859252i
\(575\) 0 0
\(576\) 0.0670507 0.000116407
\(577\) −408.355 + 208.067i −0.707721 + 0.360602i −0.770512 0.637425i \(-0.780000\pi\)
0.0627918 + 0.998027i \(0.480000\pi\)
\(578\) −1247.51 + 197.586i −2.15832 + 0.341845i
\(579\) −351.057 + 483.188i −0.606316 + 0.834522i
\(580\) 0 0
\(581\) −367.576 + 267.059i −0.632661 + 0.459655i
\(582\) −179.836 179.836i −0.308997 0.308997i
\(583\) 115.939 732.010i 0.198866 1.25559i
\(584\) 481.436 156.428i 0.824377 0.267856i
\(585\) 0 0
\(586\) −31.0525 + 95.5697i −0.0529906 + 0.163088i
\(587\) 409.786 804.250i 0.698102 1.37010i −0.220683 0.975346i \(-0.570829\pi\)
0.918785 0.394757i \(-0.129171\pi\)
\(588\) −101.949 51.9459i −0.173383 0.0883433i
\(589\) 267.333 + 86.8618i 0.453876 + 0.147473i
\(590\) 0 0
\(591\) 114.957 + 353.801i 0.194513 + 0.598649i
\(592\) −479.100 75.8820i −0.809291 0.128179i
\(593\) 244.551 244.551i 0.412397 0.412397i −0.470176 0.882573i \(-0.655810\pi\)
0.882573 + 0.470176i \(0.155810\pi\)
\(594\) −61.8378 85.1124i −0.104104 0.143287i
\(595\) 0 0
\(596\) 18.9777 + 13.7881i 0.0318418 + 0.0231344i
\(597\) 70.9322 + 447.848i 0.118814 + 0.750164i
\(598\) −73.0330 143.335i −0.122129 0.239691i
\(599\) 40.7095i 0.0679624i −0.999422 0.0339812i \(-0.989181\pi\)
0.999422 0.0339812i \(-0.0108186\pi\)
\(600\) 0 0
\(601\) 713.924 1.18789 0.593947 0.804504i \(-0.297569\pi\)
0.593947 + 0.804504i \(0.297569\pi\)
\(602\) 117.642 59.9414i 0.195418 0.0995704i
\(603\) −79.3005 + 12.5600i −0.131510 + 0.0208291i
\(604\) 156.367 215.221i 0.258886 0.356326i
\(605\) 0 0
\(606\) −265.973 + 193.241i −0.438900 + 0.318879i
\(607\) −374.723 374.723i −0.617337 0.617337i 0.327511 0.944847i \(-0.393790\pi\)
−0.944847 + 0.327511i \(0.893790\pi\)
\(608\) 129.730 819.084i 0.213372 1.34718i
\(609\) 250.697 81.4565i 0.411654 0.133755i
\(610\) 0 0
\(611\) −41.0597 + 126.369i −0.0672007 + 0.206823i
\(612\) −85.2916 + 167.394i −0.139365 + 0.273520i
\(613\) −230.186 117.286i −0.375508 0.191331i 0.256043 0.966665i \(-0.417581\pi\)
−0.631551 + 0.775335i \(0.717581\pi\)
\(614\) 1327.30 + 431.267i 2.16173 + 0.702389i
\(615\) 0 0
\(616\) −48.8484 150.340i −0.0792993 0.244058i
\(617\) 403.258 + 63.8697i 0.653578 + 0.103517i 0.474413 0.880302i \(-0.342660\pi\)
0.179165 + 0.983819i \(0.442660\pi\)
\(618\) −9.79948 + 9.79948i −0.0158568 + 0.0158568i
\(619\) 400.379 + 551.074i 0.646816 + 0.890265i 0.998956 0.0456817i \(-0.0145460\pi\)
−0.352140 + 0.935947i \(0.614546\pi\)
\(620\) 0 0
\(621\) 82.2535 + 59.7606i 0.132453 + 0.0962329i
\(622\) −188.195 1188.21i −0.302564 1.91031i
\(623\) 227.476 + 446.447i 0.365130 + 0.716608i
\(624\) 113.915i 0.182556i
\(625\) 0 0
\(626\) −547.143 −0.874030
\(627\) −324.600 + 165.392i −0.517703 + 0.263783i
\(628\) −191.894 + 30.3930i −0.305564 + 0.0483965i
\(629\) 403.043 554.741i 0.640767 0.881940i
\(630\) 0 0
\(631\) −395.032 + 287.008i −0.626042 + 0.454846i −0.855027 0.518584i \(-0.826459\pi\)
0.228985 + 0.973430i \(0.426459\pi\)
\(632\) 116.188 + 116.188i 0.183842 + 0.183842i
\(633\) −4.43726 + 28.0158i −0.00700989 + 0.0442587i
\(634\) 624.883 203.037i 0.985620 0.320247i
\(635\) 0 0
\(636\) −108.502 + 333.934i −0.170600 + 0.525053i
\(637\) 44.5244 87.3841i 0.0698970 0.137181i
\(638\) 625.771 + 318.846i 0.980832 + 0.499759i
\(639\) −145.770 47.3637i −0.228123 0.0741215i
\(640\) 0 0
\(641\) 17.7948 + 54.7668i 0.0277610 + 0.0854396i 0.963977 0.265985i \(-0.0856973\pi\)
−0.936216 + 0.351425i \(0.885697\pi\)
\(642\) −566.854 89.7809i −0.882951 0.139846i
\(643\) 178.471 178.471i 0.277560 0.277560i −0.554575 0.832134i \(-0.687119\pi\)
0.832134 + 0.554575i \(0.187119\pi\)
\(644\) −112.040 154.210i −0.173976 0.239457i
\(645\) 0 0
\(646\) 1474.46 + 1071.25i 2.28244 + 1.65829i
\(647\) 51.1811 + 323.144i 0.0791052 + 0.499450i 0.995150 + 0.0983735i \(0.0313640\pi\)
−0.916044 + 0.401077i \(0.868636\pi\)
\(648\) −18.1348 35.5915i −0.0279858 0.0549252i
\(649\) 863.397i 1.33035i
\(650\) 0 0
\(651\) −82.4413 −0.126638
\(652\) −582.581 + 296.840i −0.893529 + 0.455276i
\(653\) −327.898 + 51.9339i −0.502141 + 0.0795313i −0.402366 0.915479i \(-0.631812\pi\)
−0.0997745 + 0.995010i \(0.531812\pi\)
\(654\) −542.850 + 747.170i −0.830047 + 1.14246i
\(655\) 0 0
\(656\) −727.530 + 528.581i −1.10904 + 0.805764i
\(657\) 241.945 + 241.945i 0.368257 + 0.368257i
\(658\) −68.9971 + 435.631i −0.104859 + 0.662053i
\(659\) 1028.88 334.304i 1.56128 0.507290i 0.604129 0.796887i \(-0.293521\pi\)
0.957149 + 0.289597i \(0.0935212\pi\)
\(660\) 0 0
\(661\) −277.189 + 853.099i −0.419348 + 1.29062i 0.488956 + 0.872308i \(0.337378\pi\)
−0.908304 + 0.418311i \(0.862622\pi\)
\(662\) −59.8209 + 117.405i −0.0903640 + 0.177349i
\(663\) −143.479 73.1061i −0.216408 0.110266i
\(664\) −437.136 142.034i −0.658337 0.213907i
\(665\) 0 0
\(666\) −56.2144 173.010i −0.0844059 0.259775i
\(667\) −670.371 106.176i −1.00505 0.159185i
\(668\) −44.5055 + 44.5055i −0.0666250 + 0.0666250i
\(669\) −44.1400 60.7536i −0.0659791 0.0908125i
\(670\) 0 0
\(671\) −100.713 73.1723i −0.150094 0.109050i
\(672\) 38.0487 + 240.230i 0.0566201 + 0.357485i
\(673\) 514.734 + 1010.22i 0.764834 + 1.50107i 0.862613 + 0.505864i \(0.168826\pi\)
−0.0977789 + 0.995208i \(0.531174\pi\)
\(674\) 1557.86i 2.31137i
\(675\) 0 0
\(676\) −351.126 −0.519417
\(677\) −6.84418 + 3.48729i −0.0101096 + 0.00515109i −0.459038 0.888417i \(-0.651806\pi\)
0.448928 + 0.893568i \(0.351806\pi\)
\(678\) −602.932 + 95.4951i −0.889281 + 0.140848i
\(679\) 151.824 208.968i 0.223600 0.307759i
\(680\) 0 0
\(681\) 228.498 166.013i 0.335533 0.243779i
\(682\) −155.318 155.318i −0.227738 0.227738i
\(683\) −64.3583 + 406.342i −0.0942289 + 0.594938i 0.894714 + 0.446640i \(0.147379\pi\)
−0.988943 + 0.148298i \(0.952621\pi\)
\(684\) 164.146 53.3343i 0.239980 0.0779742i
\(685\) 0 0
\(686\) 266.288 819.551i 0.388175 1.19468i
\(687\) 7.39599 14.5154i 0.0107656 0.0211287i
\(688\) 214.497 + 109.292i 0.311769 + 0.158854i
\(689\) −286.225 93.0001i −0.415421 0.134978i
\(690\) 0 0
\(691\) −336.357 1035.20i −0.486769 1.49812i −0.829402 0.558652i \(-0.811319\pi\)
0.342633 0.939469i \(-0.388681\pi\)
\(692\) 102.896 + 16.2971i 0.148693 + 0.0235507i
\(693\) 75.5529 75.5529i 0.109023 0.109023i
\(694\) 133.280 + 183.444i 0.192046 + 0.264329i
\(695\) 0 0
\(696\) 215.736 + 156.741i 0.309965 + 0.225203i
\(697\) −198.862 1255.56i −0.285311 1.80138i
\(698\) 545.300 + 1070.21i 0.781232 + 1.53325i
\(699\) 46.5443i 0.0665870i
\(700\) 0 0
\(701\) 356.852 0.509061 0.254530 0.967065i \(-0.418079\pi\)
0.254530 + 0.967065i \(0.418079\pi\)
\(702\) −38.0645 + 19.3948i −0.0542230 + 0.0276280i
\(703\) −622.181 + 98.5439i −0.885038 + 0.140176i
\(704\) −0.106646 + 0.146785i −0.000151485 + 0.000208502i
\(705\) 0 0
\(706\) −660.207 + 479.668i −0.935137 + 0.679417i
\(707\) −236.100 236.100i −0.333946 0.333946i
\(708\) −63.9882 + 404.006i −0.0903788 + 0.570630i
\(709\) −449.573 + 146.075i −0.634095 + 0.206030i −0.608388 0.793640i \(-0.708184\pi\)
−0.0257068 + 0.999670i \(0.508184\pi\)
\(710\) 0 0
\(711\) −34.3208 + 105.629i −0.0482712 + 0.148563i
\(712\) −230.121 + 451.639i −0.323204 + 0.634324i
\(713\) 189.138 + 96.3704i 0.265270 + 0.135162i
\(714\) −508.369 165.179i −0.712001 0.231343i
\(715\) 0 0
\(716\) −75.8853 233.551i −0.105985 0.326188i
\(717\) 584.789 + 92.6215i 0.815606 + 0.129179i
\(718\) 1227.54 1227.54i 1.70966 1.70966i
\(719\) 396.460 + 545.680i 0.551404 + 0.758943i 0.990202 0.139643i \(-0.0445955\pi\)
−0.438798 + 0.898586i \(0.644596\pi\)
\(720\) 0 0
\(721\) −11.3869 8.27308i −0.0157932 0.0114745i
\(722\) −121.074 764.429i −0.167692 1.05877i
\(723\) −70.4658 138.297i −0.0974631 0.191282i
\(724\) 417.770i 0.577030i
\(725\) 0 0
\(726\) −238.025 −0.327858
\(727\) 3.06318 1.56077i 0.00421345 0.00214686i −0.451883 0.892077i \(-0.649247\pi\)
0.456096 + 0.889931i \(0.349247\pi\)
\(728\) −63.4004 + 10.0416i −0.0870885 + 0.0137935i
\(729\) 15.8702 21.8435i 0.0217698 0.0299636i
\(730\) 0 0
\(731\) −275.311 + 200.025i −0.376623 + 0.273633i
\(732\) 41.7032 + 41.7032i 0.0569716 + 0.0569716i
\(733\) 34.5462 218.116i 0.0471299 0.297566i −0.952853 0.303433i \(-0.901867\pi\)
0.999983 + 0.00586626i \(0.00186730\pi\)
\(734\) −1053.12 + 342.178i −1.43476 + 0.466183i
\(735\) 0 0
\(736\) 193.527 595.615i 0.262944 0.809259i
\(737\) 98.6335 193.579i 0.133831 0.262658i
\(738\) −300.492 153.108i −0.407170 0.207464i
\(739\) 218.413 + 70.9668i 0.295553 + 0.0960308i 0.453040 0.891490i \(-0.350339\pi\)
−0.157488 + 0.987521i \(0.550339\pi\)
\(740\) 0 0
\(741\) 45.7145 + 140.695i 0.0616930 + 0.189872i
\(742\) −986.703 156.278i −1.32979 0.210618i
\(743\) −308.291 + 308.291i −0.414927 + 0.414927i −0.883451 0.468524i \(-0.844786\pi\)
0.468524 + 0.883451i \(0.344786\pi\)
\(744\) −49.0213 67.4720i −0.0658888 0.0906882i
\(745\) 0 0
\(746\) −472.518 343.304i −0.633401 0.460193i
\(747\) −48.6005 306.852i −0.0650610 0.410779i
\(748\) −230.796 452.962i −0.308551 0.605565i
\(749\) 582.884i 0.778217i
\(750\) 0 0
\(751\) 158.526 0.211087 0.105544 0.994415i \(-0.466342\pi\)
0.105544 + 0.994415i \(0.466342\pi\)
\(752\) −716.540 + 365.095i −0.952845 + 0.485499i
\(753\) −444.330 + 70.3749i −0.590079 + 0.0934594i
\(754\) 167.632 230.726i 0.222324 0.306002i
\(755\) 0 0
\(756\) −40.9525 + 29.7538i −0.0541700 + 0.0393568i
\(757\) 211.358 + 211.358i 0.279205 + 0.279205i 0.832792 0.553587i \(-0.186741\pi\)
−0.553587 + 0.832792i \(0.686741\pi\)
\(758\) 30.2375 190.912i 0.0398911 0.251863i
\(759\) −261.652 + 85.0160i −0.344733 + 0.112011i
\(760\) 0 0
\(761\) −124.883 + 384.349i −0.164103 + 0.505058i −0.998969 0.0453953i \(-0.985545\pi\)
0.834866 + 0.550454i \(0.185545\pi\)
\(762\) 365.834 717.989i 0.480097 0.942243i
\(763\) −835.744 425.833i −1.09534 0.558103i
\(764\) −323.457 105.098i −0.423373 0.137562i
\(765\) 0 0
\(766\) 378.015 + 1163.41i 0.493493 + 1.51881i
\(767\) −346.286 54.8463i −0.451481 0.0715076i
\(768\) −391.015 + 391.015i −0.509134 + 0.509134i
\(769\) 278.600 + 383.460i 0.362289 + 0.498647i 0.950785 0.309853i \(-0.100280\pi\)
−0.588496 + 0.808500i \(0.700280\pi\)
\(770\) 0 0
\(771\) 247.162 + 179.573i 0.320573 + 0.232910i
\(772\) 119.776 + 756.236i 0.155150 + 0.979580i
\(773\) −364.589 715.546i −0.471655 0.925674i −0.997191 0.0749030i \(-0.976135\pi\)
0.525536 0.850771i \(-0.323865\pi\)
\(774\) 90.2816i 0.116643i
\(775\) 0 0
\(776\) 261.303 0.336730
\(777\) 164.618 83.8769i 0.211863 0.107950i
\(778\) −595.442 + 94.3087i −0.765349 + 0.121219i
\(779\) −686.440 + 944.803i −0.881181 + 1.21284i
\(780\) 0 0
\(781\) 335.538 243.783i 0.429626 0.312142i
\(782\) 973.216 + 973.216i 1.24452 + 1.24452i
\(783\) −28.1965 + 178.026i −0.0360108 + 0.227364i
\(784\) 564.526 183.426i 0.720059 0.233961i
\(785\) 0 0
\(786\) −218.861 + 673.585i −0.278449 + 0.856978i
\(787\) −222.389 + 436.463i −0.282578 + 0.554591i −0.988048 0.154150i \(-0.950736\pi\)
0.705469 + 0.708740i \(0.250736\pi\)
\(788\) 424.925 + 216.510i 0.539246 + 0.274759i
\(789\) −147.714 47.9951i −0.187217 0.0608303i
\(790\) 0 0
\(791\) −191.585 589.638i −0.242206 0.745434i
\(792\) 106.760 + 16.9091i 0.134798 + 0.0213498i
\(793\) −35.7451 + 35.7451i −0.0450758 + 0.0450758i
\(794\) −530.494 730.162i −0.668128 0.919600i
\(795\) 0 0
\(796\) 470.270 + 341.671i 0.590791 + 0.429235i
\(797\) 238.720 + 1507.22i 0.299523 + 1.89111i 0.435156 + 0.900355i \(0.356693\pi\)
−0.135633 + 0.990759i \(0.543307\pi\)
\(798\) 222.938 + 437.540i 0.279371 + 0.548296i
\(799\) 1136.80i 1.42278i
\(800\) 0 0
\(801\) −342.617 −0.427736
\(802\) 91.6020 46.6736i 0.114217 0.0581964i
\(803\) −914.476 + 144.839i −1.13882 + 0.180372i
\(804\) −60.4997 + 83.2707i −0.0752484 + 0.103571i
\(805\) 0 0
\(806\) −72.1602 + 52.4274i −0.0895288 + 0.0650465i
\(807\) −61.0840 61.0840i −0.0756927 0.0756927i
\(808\) 52.8402 333.620i 0.0653963 0.412896i
\(809\) 687.263 223.305i 0.849522 0.276026i 0.148276 0.988946i \(-0.452628\pi\)
0.701246 + 0.712920i \(0.252628\pi\)
\(810\) 0 0
\(811\) 268.108 825.153i 0.330590 1.01745i −0.638264 0.769818i \(-0.720347\pi\)
0.968854 0.247634i \(-0.0796529\pi\)
\(812\) 153.415 301.095i 0.188935 0.370806i
\(813\) −336.248 171.327i −0.413589 0.210734i
\(814\) 468.158 + 152.114i 0.575133 + 0.186872i
\(815\) 0 0
\(816\) −301.173 926.914i −0.369084 1.13592i
\(817\) 308.781 + 48.9062i 0.377945 + 0.0598607i
\(818\) −20.5871 + 20.5871i −0.0251676 + 0.0251676i
\(819\) −25.5029 35.1017i −0.0311390 0.0428592i
\(820\) 0 0
\(821\) −114.066 82.8741i −0.138936 0.100943i 0.516146 0.856500i \(-0.327366\pi\)
−0.655082 + 0.755558i \(0.727366\pi\)
\(822\) 86.2140 + 544.334i 0.104883 + 0.662207i
\(823\) −404.846 794.555i −0.491915 0.965437i −0.994874 0.101127i \(-0.967755\pi\)
0.502959 0.864311i \(-0.332245\pi\)
\(824\) 14.2387i 0.0172800i
\(825\) 0 0
\(826\) −1163.81 −1.40897
\(827\) 258.953 131.943i 0.313124 0.159545i −0.290365 0.956916i \(-0.593777\pi\)
0.603489 + 0.797371i \(0.293777\pi\)
\(828\) 128.735 20.3895i 0.155476 0.0246251i
\(829\) −320.933 + 441.726i −0.387133 + 0.532842i −0.957457 0.288578i \(-0.906818\pi\)
0.570324 + 0.821420i \(0.306818\pi\)
\(830\) 0 0
\(831\) −49.8391 + 36.2102i −0.0599748 + 0.0435742i
\(832\) 0.0520972 + 0.0520972i 6.26168e−5 + 6.26168e-5i
\(833\) −131.261 + 828.750i −0.157576 + 0.994898i
\(834\) −76.2556 + 24.7770i −0.0914336 + 0.0297086i
\(835\) 0 0
\(836\) −144.321 + 444.173i −0.172632 + 0.531308i
\(837\) 25.5924 50.2279i 0.0305763 0.0600095i
\(838\) 651.215 + 331.811i 0.777107 + 0.395956i
\(839\) 400.077 + 129.993i 0.476849 + 0.154938i 0.537574 0.843217i \(-0.319341\pi\)
−0.0607243 + 0.998155i \(0.519341\pi\)
\(840\) 0 0
\(841\) −111.946 344.535i −0.133111 0.409673i
\(842\) 549.718 + 87.0668i 0.652872 + 0.103405i
\(843\) 455.348 455.348i 0.540152 0.540152i
\(844\) 21.3737 + 29.4184i 0.0253243 + 0.0348559i
\(845\) 0 0
\(846\) −243.992 177.270i −0.288406 0.209540i
\(847\) −37.8169 238.766i −0.0446480 0.281897i
\(848\) −826.941 1622.96i −0.975166 1.91387i
\(849\) 432.975i 0.509983i
\(850\) 0 0
\(851\) −475.716 −0.559008
\(852\) −175.074 + 89.2048i −0.205486 + 0.104700i
\(853\) 209.883 33.2422i 0.246053 0.0389709i −0.0321898 0.999482i \(-0.510248\pi\)
0.278242 + 0.960511i \(0.410248\pi\)
\(854\) −98.6316 + 135.755i −0.115494 + 0.158963i
\(855\) 0 0
\(856\) 477.047 346.595i 0.557298 0.404900i
\(857\) 549.525 + 549.525i 0.641220 + 0.641220i 0.950855 0.309636i \(-0.100207\pi\)
−0.309636 + 0.950855i \(0.600207\pi\)
\(858\) 18.0840 114.178i 0.0210769 0.133074i
\(859\) −1586.71 + 515.554i −1.84716 + 0.600179i −0.849839 + 0.527043i \(0.823301\pi\)
−0.997322 + 0.0731359i \(0.976699\pi\)
\(860\) 0 0
\(861\) 105.844 325.753i 0.122931 0.378343i
\(862\) 352.671 692.157i 0.409132 0.802966i
\(863\) −61.9038 31.5416i −0.0717310 0.0365488i 0.417757 0.908559i \(-0.362816\pi\)
−0.489488 + 0.872010i \(0.662816\pi\)
\(864\) −158.173 51.3936i −0.183071 0.0594833i
\(865\) 0 0
\(866\) −300.388 924.499i −0.346868 1.06755i
\(867\) 866.352 + 137.217i 0.999253 + 0.158266i
\(868\) −74.7323 + 74.7323i −0.0860972 + 0.0860972i
\(869\) −176.651 243.139i −0.203281 0.279792i
\(870\) 0 0
\(871\) −71.3739 51.8562i −0.0819448 0.0595364i
\(872\) −148.438 937.202i −0.170227 1.07477i
\(873\) 80.1842 + 157.370i 0.0918490 + 0.180264i
\(874\) 1264.41i 1.44670i
\(875\) 0 0
\(876\) 438.641 0.500732
\(877\) 303.375 154.577i 0.345923 0.176257i −0.272393 0.962186i \(-0.587815\pi\)
0.618316 + 0.785929i \(0.287815\pi\)
\(878\) 1678.45 265.840i 1.91167 0.302779i
\(879\) 41.0188 56.4575i 0.0466653 0.0642292i
\(880\) 0 0
\(881\) −130.707 + 94.9645i −0.148362 + 0.107792i −0.659490 0.751713i \(-0.729228\pi\)
0.511128 + 0.859505i \(0.329228\pi\)
\(882\) 157.406 + 157.406i 0.178465 + 0.178465i
\(883\) −12.9653 + 81.8594i −0.0146832 + 0.0927060i −0.993942 0.109909i \(-0.964944\pi\)
0.979258 + 0.202615i \(0.0649440\pi\)
\(884\) −196.332 + 63.7922i −0.222095 + 0.0721632i
\(885\) 0 0
\(886\) 119.782 368.650i 0.135194 0.416083i
\(887\) −331.311 + 650.234i −0.373518 + 0.733071i −0.998883 0.0472620i \(-0.984950\pi\)
0.625364 + 0.780333i \(0.284950\pi\)
\(888\) 166.532 + 84.8523i 0.187536 + 0.0955543i
\(889\) 778.348 + 252.901i 0.875532 + 0.284478i
\(890\) 0 0
\(891\) 22.5771 + 69.4851i 0.0253390 + 0.0779855i
\(892\) −95.0851 15.0600i −0.106598 0.0168834i
\(893\) −738.474 + 738.474i −0.826958 + 0.826958i
\(894\) −26.8248 36.9212i −0.0300054 0.0412989i
\(895\) 0 0
\(896\) −454.229 330.017i −0.506952 0.368322i
\(897\) 17.4765 + 110.342i 0.0194833 + 0.123013i
\(898\) 399.198 + 783.470i 0.444541 + 0.872461i
\(899\) 376.325i 0.418604i
\(900\) 0 0
\(901\) 2574.86 2.85778
\(902\) 813.119 414.305i 0.901462 0.459318i
\(903\) −90.5628 + 14.3437i −0.100291 + 0.0158845i
\(904\) 368.654 507.409i 0.407803 0.561293i
\(905\) 0 0
\(906\) −418.713 + 304.212i −0.462155 + 0.335775i
\(907\) 592.187 + 592.187i 0.652907 + 0.652907i 0.953692 0.300785i \(-0.0972486\pi\)
−0.300785 + 0.953692i \(0.597249\pi\)
\(908\) 56.6416 357.621i 0.0623806 0.393856i
\(909\) 217.138 70.5525i 0.238876 0.0776155i
\(910\) 0 0
\(911\) 470.455 1447.91i 0.516416 1.58936i −0.264276 0.964447i \(-0.585133\pi\)
0.780691 0.624917i \(-0.214867\pi\)
\(912\) −406.485 + 797.773i −0.445708 + 0.874751i
\(913\) 749.050 + 381.660i 0.820428 + 0.418029i
\(914\) −1522.90 494.819i −1.66619 0.541377i
\(915\) 0 0
\(916\) −6.45372 19.8625i −0.00704555 0.0216840i
\(917\) −710.455 112.525i −0.774761 0.122710i
\(918\) 258.450 258.450i 0.281536 0.281536i
\(919\) 808.788 + 1113.20i 0.880074 + 1.21132i 0.976400 + 0.215968i \(0.0692906\pi\)
−0.0963268 + 0.995350i \(0.530709\pi\)
\(920\) 0 0
\(921\) −784.099 569.682i −0.851357 0.618547i
\(922\) 25.7400 + 162.516i 0.0279176 + 0.176265i
\(923\) −76.4602 150.062i −0.0828388 0.162580i
\(924\) 136.976i 0.148243i
\(925\) 0 0
\(926\) 1025.30 1.10724
\(927\) 8.57529 4.36933i 0.00925058 0.00471341i
\(928\) 1096.59 173.683i 1.18167 0.187159i
\(929\) 18.7994 25.8751i 0.0202361 0.0278526i −0.798779 0.601624i \(-0.794520\pi\)
0.819015 + 0.573772i \(0.194520\pi\)
\(930\) 0 0
\(931\) 623.629 453.093i 0.669848 0.486673i
\(932\) 42.1920 + 42.1920i 0.0452704 + 0.0452704i
\(933\) −130.694 + 825.172i −0.140080 + 0.884429i
\(934\) −535.394 + 173.960i −0.573227 + 0.186253i
\(935\) 0 0
\(936\) 13.5636 41.7443i 0.0144910 0.0445987i
\(937\) −105.454 + 206.965i −0.112544 + 0.220880i −0.940408 0.340049i \(-0.889556\pi\)
0.827863 + 0.560930i \(0.189556\pi\)
\(938\) −260.933 132.952i −0.278180 0.141740i
\(939\) 361.374 + 117.418i 0.384850 + 0.125045i
\(940\) 0 0
\(941\) 503.761 + 1550.42i 0.535347 + 1.64763i 0.742899 + 0.669404i \(0.233450\pi\)
−0.207552 + 0.978224i \(0.566550\pi\)
\(942\) 373.330 + 59.1297i 0.396317 + 0.0627704i
\(943\) −623.619 + 623.619i −0.661314 + 0.661314i
\(944\) −1247.27 1716.72i −1.32126 1.81856i
\(945\) 0 0
\(946\) −197.642 143.595i −0.208923 0.151792i
\(947\) −28.3129 178.761i −0.0298975 0.188765i 0.968220 0.250101i \(-0.0804639\pi\)
−0.998117 + 0.0613359i \(0.980464\pi\)
\(948\) 64.6399 + 126.863i 0.0681855 + 0.133822i
\(949\) 375.973i 0.396178i
\(950\) 0 0
\(951\) −456.291 −0.479802
\(952\) 489.334 249.328i 0.514006 0.261899i
\(953\) −213.634 + 33.8363i −0.224170 + 0.0355050i −0.267509 0.963555i \(-0.586200\pi\)
0.0433390 + 0.999060i \(0.486200\pi\)
\(954\) 401.518 552.642i 0.420878 0.579289i
\(955\) 0 0
\(956\) 614.067 446.146i 0.642329 0.466680i
\(957\) −344.881 344.881i −0.360377 0.360377i
\(958\) 71.4988 451.425i 0.0746334 0.471216i
\(959\) −532.332 + 172.965i −0.555091 + 0.180360i
\(960\) 0 0
\(961\) −260.595 + 802.029i −0.271171 + 0.834578i
\(962\) 90.7481 178.103i 0.0943327 0.185138i
\(963\) 355.126 + 180.946i 0.368770 + 0.187898i
\(964\) −189.242 61.4883i −0.196309 0.0637846i
\(965\) 0 0
\(966\) 114.596 + 352.691i 0.118630 + 0.365104i
\(967\) 1448.08 + 229.353i 1.49749 + 0.237180i 0.850767 0.525543i \(-0.176138\pi\)
0.646726 + 0.762723i \(0.276138\pi\)
\(968\) 172.926 172.926i 0.178642 0.178642i
\(969\) −743.948 1023.96i −0.767748 1.05671i
\(970\) 0 0
\(971\) 1546.53 + 1123.62i 1.59272 + 1.15718i 0.899925 + 0.436044i \(0.143621\pi\)
0.692795 + 0.721135i \(0.256379\pi\)
\(972\) −5.41471 34.1871i −0.00557068 0.0351719i
\(973\) −36.9695 72.5567i −0.0379953 0.0745700i
\(974\) 1089.07i 1.11814i
\(975\) 0 0
\(976\) −305.956 −0.313479
\(977\) 90.8290 46.2797i 0.0929673 0.0473692i −0.406889 0.913478i \(-0.633386\pi\)
0.499856 + 0.866109i \(0.333386\pi\)
\(978\) 1256.40 198.994i 1.28466 0.203470i
\(979\) 544.940 750.046i 0.556629 0.766134i
\(980\) 0 0
\(981\) 518.883 376.990i 0.528932 0.384292i
\(982\) 334.341 + 334.341i 0.340469 + 0.340469i
\(983\) 31.0320 195.928i 0.0315687 0.199317i −0.966863 0.255295i \(-0.917828\pi\)
0.998432 + 0.0559777i \(0.0178276\pi\)
\(984\) 329.541 107.074i 0.334900 0.108815i
\(985\) 0 0
\(986\) −754.003 + 2320.58i −0.764709 + 2.35353i
\(987\) 139.058 272.916i 0.140889 0.276511i
\(988\) 168.978 + 86.0988i 0.171031 + 0.0871446i
\(989\) 224.537 + 72.9565i 0.227034 + 0.0737680i
\(990\) 0 0
\(991\) −126.479 389.263i −0.127628 0.392798i 0.866743 0.498755i \(-0.166209\pi\)
−0.994371 + 0.105957i \(0.966209\pi\)
\(992\) −342.963 54.3199i −0.345728 0.0547580i
\(993\) 64.7056 64.7056i 0.0651617 0.0651617i
\(994\) −328.604 452.285i −0.330588 0.455015i
\(995\) 0 0
\(996\) −322.214 234.102i −0.323508 0.235043i
\(997\) −147.130 928.943i −0.147573 0.931738i −0.944702 0.327929i \(-0.893649\pi\)
0.797129 0.603808i \(-0.206351\pi\)
\(998\) 369.260 + 724.714i 0.370000 + 0.726166i
\(999\) 126.332i 0.126459i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.3.k.b.7.2 80
5.2 odd 4 75.3.k.a.28.2 80
5.3 odd 4 375.3.k.a.118.9 80
5.4 even 2 375.3.k.c.7.9 80
15.2 even 4 225.3.r.b.28.9 80
25.6 even 5 375.3.k.a.232.9 80
25.8 odd 20 inner 375.3.k.b.268.2 80
25.17 odd 20 375.3.k.c.268.9 80
25.19 even 10 75.3.k.a.67.2 yes 80
75.44 odd 10 225.3.r.b.217.9 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.k.a.28.2 80 5.2 odd 4
75.3.k.a.67.2 yes 80 25.19 even 10
225.3.r.b.28.9 80 15.2 even 4
225.3.r.b.217.9 80 75.44 odd 10
375.3.k.a.118.9 80 5.3 odd 4
375.3.k.a.232.9 80 25.6 even 5
375.3.k.b.7.2 80 1.1 even 1 trivial
375.3.k.b.268.2 80 25.8 odd 20 inner
375.3.k.c.7.9 80 5.4 even 2
375.3.k.c.268.9 80 25.17 odd 20