gp: [N,k,chi] = [375,3,Mod(7,375)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("375.7");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(375, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 17]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [80,-4,0,0,0,0,4,72]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{80} + 4 T_{2}^{79} + 8 T_{2}^{78} - 24 T_{2}^{77} - 428 T_{2}^{76} - 740 T_{2}^{75} + \cdots + 87\!\cdots\!41 \)
T2^80 + 4*T2^79 + 8*T2^78 - 24*T2^77 - 428*T2^76 - 740*T2^75 + 102*T2^74 + 15444*T2^73 + 98743*T2^72 + 78556*T2^71 - 138920*T2^70 - 3581004*T2^69 - 17273353*T2^68 - 14752876*T2^67 + 24556998*T2^66 + 544972220*T2^65 + 2606754083*T2^64 + 3249018996*T2^63 + 413725082*T2^62 - 67552563076*T2^61 - 307397204619*T2^60 - 235150472112*T2^59 + 461565022526*T2^58 + 7862005870172*T2^57 + 31339210076384*T2^56 + 29100258505520*T2^55 - 12101814054356*T2^54 - 568006912791532*T2^53 - 2596177466553179*T2^52 - 4045988505257468*T2^51 - 2050479057659340*T2^50 + 29582242840757512*T2^49 + 152013501402896084*T2^48 + 257712064682766928*T2^47 + 192664961647154106*T2^46 - 836024920936168560*T2^45 - 4083392970188832624*T2^44 - 3109188139092889888*T2^43 + 9548051987750111904*T2^42 + 48192808949153841928*T2^41 + 123342486068320850651*T2^40 + 47002234442785688712*T2^39 - 191290894570540378576*T2^38 - 461650711959325557772*T2^37 - 1237830188040346426234*T2^36 + 112039812509456989180*T2^35 + 1810766442562551830656*T2^34 - 1074950859061083818768*T2^33 + 14619429743307062378254*T2^32 + 4785142066910348118768*T2^31 - 33192155594719945980560*T2^30 + 6297080836951179288488*T2^29 - 43253798391014999873609*T2^28 - 53897065760934106070228*T2^27 + 124239810208382403775544*T2^26 + 70711816678819600254960*T2^25 + 686835337094668476191374*T2^24 - 664942558604110586056712*T2^23 - 2235267485448752766616554*T2^22 + 3528082223926370354625872*T2^21 - 749402259483468675690199*T2^20 - 4795977578389868446679104*T2^19 + 9315936538398742209124792*T2^18 - 3802105066877321115512376*T2^17 - 7997397951041628391427847*T2^16 + 10269198882390827342693540*T2^15 - 2682036287250943577707652*T2^14 - 2990156315185590470805144*T2^13 + 3536032765302888834073057*T2^12 - 1971054546588771703402356*T2^11 + 717423951360442156047570*T2^10 - 194561710793836982464996*T2^9 + 45241633916318663897753*T2^8 + 14471054470761036293676*T2^7 + 2469775828915227332102*T2^6 + 2435819465273472791380*T2^5 + 468863619900870859042*T2^4 + 150263306316200865104*T2^3 + 30942590394408698318*T2^2 + 4636801025080595276*T2 + 873410470086191041
acting on \(S_{3}^{\mathrm{new}}(375, [\chi])\).